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Abstract. A finite element procedure for transient three dimensional (3D) heat transfer problems was 
developed and implemented. The domain was divided into linear tetrahedral elements using a three 
dimensional mesh generator software. A pre-processing program was developed in order to the mesh 
information to be compatible with finite element program. All the numerical algorithms have been 
implemented using Matlab 6.5.  Results were validated by comparing with analytical solutions of heat 
transfer in a finite cylinder and a sphere, and with the numerical solution generated by commercial 
software for heating an irregular piece of meat. A post-processing code was implemented in order to 
obtain further information from the results, such as the temperature prediction at an arbitrary point, 
and the average temperature. The code can also be used to determine concentration profiles in mass 
transfer problems (3D domains) and to simulate heat transfer problems in food processing with 
convective boundary conditions. The open source program can be easily applied with the important 
advantage that it can be coupled with macroscopic balances, microbial inactivation rates, or with 
different objective functions that optimize the process (e.g. quality attributes). 
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INTRODUCTION 

Many engineers today are required to routinely solve complex problems in heat and mass 
transfer, structural mechanics, fluid dynamics, vibrations, and acoustics, using computational 
tools such as solid modelers, computer-aided design and finite element simulation software 
packages. The proficiency in using such systems enables engineers to model complex 
engineering design and to analyze problems efficiently. Commercial software based on finite 
element analysis is often used as a “black box” program, where the user is not allowed to see 
its inner code.  Even though many physical problems can be simulated with a software 
package, simulations involving safety and quality of foods in biological systems have not yet 
been incorporated (Martins, 2004). Some of the advantages of working with an open 
computer program are, for example, the ability to combine the microbial inactivation kinetics, 
food quality, and manufacturing cost equations, which are then used for optimization 
techniques in the food industry (Erdogdu et al., 2005; Martins, 2006, Santos et al., 2008). In 
commercial software packages the ability to couple macroscopic heat balances is generally 
not possible, even though it is useful for the evaluation and prediction of the actual industrial 
conditions. Besides commercial softwares are very expensive for small scale industry.  

For three dimensional (3D) problems the finite element method is often more difficult to 
implement, in contrast with one or two dimensional problems. An important issue when 
trying to generate an open source program in three dimensions is that the mesh data produced 
by external mesh generators are hard to integrate with other codes, especially because there is 
a lack of information about the assignment of the node points and elements numbering. 
Therefore, the ability to understand and to use the mesh information is valuable to create a 
three dimensional finite element program. Preprocessing of the mesh data must be 
implemented in order to be compatible with the finite element code, as well as the 
postprocessing of the results. 

Many food engineering processes involve heat transfer with convective boundary 
conditions. For regular shapes a finite difference method gives accurate predictions, however 
the finite element method is more suited when dealing with non-conventional shapes (Arce et 
al., 1983, Ngadi et al., 1996), especially in three dimensions.  

The goals of this work are: 
 

• to develop a three dimensional finite element program to solve heat or mass transfer 
equations in transient state with convective boundary conditions. 

• to develop a preprocessing program that combines the mesh information from 3D 
geometries obtained from an external mesh generator in order to be compatible with 
the main program.  

• to generate a postprocessing program that calculates the dependent variable 
(temperature or concentration) in any given point of the domain and also integrates 
these variables on the surface or volume of the irregular object. 

• to validate the model comparing the output with analytical solutions and commercial 
software simulations of the three dimensional problems. 

1 MATHEMATICAL MODEL 

The governing differential equations for transient state heat conduction in a region Ω  with 
convective boundary conditions are the following (Carslaw and Jaeger, 1959): 
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The variable T is the temperature scalar function T(x, y, z, t), T∞ is the external fluid 
temperature, k is the thermal conductivity (isotropic), Cp the specific heat, ρ the density, n the 
outward normal unit vector to the boundary surface, h the surface heat transfer coefficient, 
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=  where x, y, and z are the cartesian coordinates. The initial condition is 

T=T0   at t= 0 in  Ω .  

Representing the temperature using a finite dimensional space Vh  with shape functions H, 

 (Galerkin Method) (
∧

⋅= TH z)y,(x,T~ Zienkiewicz and Taylor, 1994a; Zienkiewicz and 
Taylor, 1994b; Bathe, 1996) and applying the divergence theorem the following equation is 
obtained:  
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Where CG is the global capacitance matrix, KG is the global conductance matrix, and FG the 

global force vector.  is the vector that represents the temperature values at the node points, 

and  represents the

∧

T

t∂
∂

∧

T*
T . This semi discrete problem (equation (3)) is a system of stiff 

ordinary differential equations. For the time discretization we considered the classical 
backward Euler method (Johnson, 1986). 

1.1 Mesh generation and preprocessing 

The spatial discretization of the domain was done by means of a mesh generator using 
linear tetrahedral elements. The mesh information given by the program is generally 
transferred using three important matrices; the “p”, point matrix, “tm” tetrahedral matrix, and 
“e” boundary matrix. The point matrix represents the x, y, and z coordinates of the node points 
given in three columns, where each row represents the node number.  The “tm” matrix gives 
the element connectivity with the nodes; it is a 4 x N matrix, being N the number of elements; 
in each row the node numbers are given in a specific order, according to the numbering of the 
reference tetrahedral described in Figure 1. 
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Figure1: Reference tetrahedral 

 The linear shape functions are the following: 
 
h1= r  
h2= s 
h3= t 
h4= 1-r-s-t 
 

The boundary matrix “e” contains information of the node points (three) that are the 
vertices of the surface triangle in contact with the interface Ωδ . However there is no 
information of the element number to which this surface triangle belongs. This is an important 
issue when computing the element matrices, since the finite element code computes a “for” 
loop by elements.  

The triangle surface in contact with the interface contains three of the four vertices. These 
three node points are together in a particular order in the element matrix “tm”. As four is the 
number of node points of the tetrahedral, and three is the number of node points in the 
triangle surface the program must include as many “if” loops as the total combinations that 
the three node points can be found in the “tm” matrix which amounts to 24 (six for each of the 
four surface triangles).  

The pre-processing program helps to integrate the surface information required by the 
main program. As an example one of the 24 “if” loops in Matlab language, to determine the 
element number to which the surface triangle belongs, considering that length (e) is the 
number of boundary elements and length (tm) equals the total number of elements;  

 
for k=1:length(e) 
for i=1:length(tm) 
 
   %%%First main “if” loop of one of the 24 if loops%%%%%%%%%   
 if tm(1,i)==e(1,k) 
        if tm(2,i)==e(2,k) 
            if tm(3,i)==e(3,k) 
                element(1,k)=1; 
                element(2,k)=1; 
                element(3,k)=1; 

r

s

Node 1 

Node 2 

Node 3 

t 

Node 4 

M.V. SANTOS, N.E. ZARITZKY, A.N. CALIFANO, V. VAMPA1708

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



                element(4,k)=0; 
                element(5,k)=i; 
            end  
        end 
    end 
%%%%%end of the first main “if” loop 

 
The element number that contains the surface triangle is accumulated in the matrix “element” 
in the fifth row. The value zero is assigned to the node that does not belong to the surface 
triangle; in this example the shape function h4 is zero, thus row 4 of the element matrix is 
zero. The case h4 = 0 is named as surface triangle S4, which involves local node points 1, 2, 
and 3. The surface triangle S1 involves the local node points 2, 3 and 4 (h1 = 0), S2 involves 
the local node points 1, 4, and 3 (h2 = 0), and S3 the node points 1, 2, 4 (h3 = 0). Figure 2 
illustrates all possible surface triangle cases and the node points that correspond to each 
surface type. 
 

 a) b) 
 

c) d) 

Figure 2: Surface triangles and local node points that constitute each surface type.  a) S1, b) S2, c) S3, d) S4 

The Figure 2 d) which is the surface type S4 corresponds to the case described in the example. 

1.2 Finite element program 

The preprocessed mesh information is then used in the main program, which is written 
following the construction scheme presented in Becker et al., (1983). Figure 3 shows a flow 
chart explaining how the program works, where det(J) is the determinant of the Jacobian, aux 
is the module of the normal outward vector, and w is the vector that contains the weights of 
the quadrature integration rules.  
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Figure 3: Flow chart of the finite element program. 

(#) The calculation concerning the boundary integration is explained in detail in the following 
paragraphs: 

For each element when the computation of the Ke and Ce element matrices is completed, 
the boundary integration is performed if the tetrahedral contains a triangle that is exposed to 
the surface. The “element” matrix contains information of the surface type involved: S1, S2, 
S3 or S4. In a three dimensional space the integration of a function over a surface is 
represented by the following equation, (Leithold, 1998) 

                                                        dAfdSf
AS
∫∫∫∫ = n                                                        (4) 

 

If i =N the element loop has finished else 
continue for next element 

Assembly of element matrices into global 
matrices KG, CG, FG 

Compute the element matrix and force vector  
Kq=Kq+ 0.5*H'*h*H*det (J)*w*aux 

Fe=Fe+ 0.5*H'*h*H*Te*det (J)*w*aux 
Area=Area+ w*det(J)*0.5*aux     

Integration rule for 
triangles 

Loop on Boundary Conditions (#) 

Integration rule for 
tetrahedral 

Compute the element matrices 
Ke=Ke+1/6*det (J)*w* tH∇ *k* H∇  
Ce=Ce+1/6*det (J)*w*H'*H*ρ *Cp 

Loop on total elements N 
For i=1:N 

Loading: Mesh data, initialization of 
matrices and variables, and thermal 

properties 

Loop on time 
Calculate Tt+∆t 

End 
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As an example, if it is assumed that S4 has a boundary condition, the three involved node 
points that represents the surface is: 

                                          c1(x-x1) + c2 (y-y1) + c3 (z-z1) = 0                                          (5) 

where c1, c2, and c3 are: 

                                     c1= (y3-y4)*(z2-z4)-(z3-z4)*(y2-y4)                                                (6) 

                                     c2= (z3-z4)*(x2-x4)-(x3-x4)*(z2-z4)                                               (7) 

                                    c3= (x3-x4)*(y2-y4)-(y3-y4)*(x2-x4)                                             (8) 

When calculating the normal vector to the surface triangle special attention must be 
focused on the detection of a surface that is parallel to a coordinate plane, therefore the 
maximum value of cI with I= 1, 2, or 3 is identified by using the simple Matlab sentence 
code, 
 
[Value, Imax] = max (abs(c)) where c = [c1 c2 c3] 
 
 The next step calculates the Jacobian of the transformation y=y(r,s), z=z(r,s), since the 
surface is projected over the plane “yz” when c1 is the maximum value of the vector c. The 
Jacobian is defined as follows: 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

dr
dz

ds
dz

dr
dy

ds
dy

J                                                            (9) 

Finally, the evaluation of the function is done by numerical integration using the quadrature 
rule points for the triangle, obtaining the following expression (Bathe, 1996): 

                                                              (10) ∑∫∫ ≅
i

aux*5.0*)Jdet()i(w))i(s),i(r(fdSf

nWhere i denotes the corresponding quadrature integration point for the triangle, aux = , and 

w(i) are the weights of the quadrature rules (Hughes, 1987). The final computation for each 
element of the matrix Kq, vector Fe, and the area of the element triangle can be calculated, 
where the f(r(i), s(i)) is a polynomial function formed by multiplications of the interpolating 
functions (see Figure 3).  
 The time discretization with the α -Method (Segerlind, 1984), using =1 was used, 
therefore an implicit scheme was implemented (see equation 

α
14). It was used a time step of 1 

s (∆t =1 s).  
tΔtt TKGCGFGTKGCG ~)t(~)t( 11 αΔαΔ −+=+ −+−                           (11)                                

1.3 Postprocessing  

The results can be obtained using a postprocessing program that enables the user to 
calculate, for example, the temperature at any given point in the domain. A subroutine or 
function such as the next sentence (in Matlab language) can be implemented where the input 
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information are (for the point of interest M) the x, y, z coordinates of the point, and the “p” 
and “tm” matrices. The output information involves the node points and the interpolation 
functions evaluated at M.  

 
function [h1,h2,h3,h4,node1,node2,node3,node4]=pospro(x, y, z, p, tm) 

 
The function “pospro” calculates for each element the distance from M to the geometric 
center of the tetrahedral, and finds the least square distance storing the element number. A 
few code lines are shown below as an example.   

 
for i=1:length(tm) 

    %% square distance 
    xnode1=p(tm(1,i),1) 
    ynode1=p(tm(1,i),2) 
    znode1=p(tm(1,i),3) 

xm=(xnode1+xnode2+xnode3+xnode4)/4 
…………. 
dc(i)=(xm-x)^2+(ym-y)^2+(zm-z)^2 
end 

     
%%%%find minimum distance%%%%%%%%% 
[dcmin , element] = min(dc) 

 
 Since the nodes that constitute the element are known, as well as their coordinates, the x 
coordinate of the point M is written as: 

                               x = xnode1*h1+xnode2*h2+xnode3*h3+xnode4*h4                          (12) 

 Combining the interpolation functions, h4=1-h1-h2-h3, a simple system of three equations 
with three unknown variables h1, h2 and h3 is defined. With these data, the temperature (or 
concentration) at any point M is: 

                         T=T(node1)*h1+T(node2)*h2+T(node3)*h3+T(node4)*h4                     (13) 

 When the final concentration of a substance is the object value to be found, the 
concentration values of the nodes are stored and the computation of the volume is required.  

 
for n=1:length(tm)  
C1=c(tm(1,n)) 
C2=c(tm(2,n)) 
C3=c(tm(3,n)) 
C4=c(tm(4,n)) 
 
for i=1:pp  %%%%%integration points in tetrahedral 

Cp=C1*h1+C2*h2+C3*h3+C4*h4 
 Volume=Volume+ det(J)*w/6 
 Cm=Cm+ Cp*det(J)*w/6 

End 
End 
Cfinal = Cm/Volume 
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2 RESULTS AND DISCUSSION 

2.1 Code validation and testing of the numerical program with analytical solutions 

The analytical solution of the heat transfer with convective boundary conditions in a 
sphere is well known (Welty, 1974, Carslaw and Jaeger, 1959), therefore it was used to 
corroborate the accuracy and convergence of the numerical temperature predictions using 
different mesh sizes. The thermal properties of an acrylic material were used (k=0.2075 W/m 
ºC, Cp=1464 J/ kg ºC, ρ =1180 kg/m3). The initial temperature of the solid was 20º C and the 
fluid temperature was 60.3º C, and the heat transfer coefficient was 55 W/m2 ºC. The radius of 
the sphere (r) was 0.0152 m.  

The mesh information was obtained using a mesh generator called “DistMesh” (Perssons 
and Strang, 2004). This program is a simple MATLAB code that generates unstructured 
triangular and tetrahedral mesh. Figure 4 shows an example of two meshes used for the 
calculations. 

 
a) b) 

Figure 4: Different meshes used in the program, a) Mesh 2 b) Mesh 4. 

 

100
T

TTe
a

na ⋅
−

=of the percentage error (The infinite norm,
∞

) was calculated for 

each time step in three points in the domain: center (r=0), middle point (r= 7.6*10-3m) and a 
boundary point (r=0.0152m). The time required by the CPU to solve the numerical problem 
was also computed as timecpu given in minutes (see Table 1). The PC used for the simulations 
was an Intel(R) Core(TM) 2 6300 with a processor speed of 1.86 GHz and has a RAM 
memory of 2GB. 
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c,
e

∞ m,
e

∞ b,
e

∞
   timecpu 

Mesh 1 
142 node points 10.92 8.75 6.89 0.23 
515 elements 
Mesh 2 
592 node points 3.75 1.70 3.86 1.02 
2726 elements 
Mesh 3 
1908 node points 0.95 0.73 0.84 11.92 
9573 elements 
Mesh 4 
4500 node points 0.37 0.32 0.23 66.66 
23695 elements 

Table 1: Maximum percentage error for different meshes and computational time required. 

It can be seen that there was an improvement of the solution as the number of node points 
increases, however the computational cost becomes higher. The optimal mesh that balanced 
the numerical effort in achieving an accurate solution and the execution speed of the code was 
Mesh 3, since the numerical error was low (less than 1%) and CPU time, acceptable.   

Secondly, the analytical solution of a finite acrylic cylinder was also compared with the 
numerical predictions using three different meshes. The height of the cylinder used was 
0.0304 m and the radius was 0.0152 m. The same thermal properties and initial conditions 
were used. 

∞
eFigure 5 shows as an example two of the meshes used. The was calculated in 

three points of the domain; center, middle point and a border point as well as the 
computational time required for the program to run the simulations (see Table 2).  

 
a) b) 

Figure 5: Different meshes for the finite cylinder used in the program, a) Mesh 3 b) Mesh 1. 
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c,
e

∞ m,
e

∞ b,
e

∞
  timecpu 

Mesh 1 
392 node points  4.15 1.99 8.23 0.71 
1609 elements 
Mesh 2 
957 node points 2.73 0.88 3.77 2.98 
4373 elements 
Mesh 3 
2960 node points 0.73 0.58 1.86 33.5 
14795 elements 

Table 2: Maximum percentage error for different mesh and computational time required. 

 
It can be observed that the numerical results for the finite cylinder satisfactorily agreed 

with the analytical solutions. The 
∞

e decreased as the number of elements increases, but the 
computational cost became also higher. The choice of the mesh used for the numerical 
program must be made balancing the loss in accuracy against savings in computational cost. 
In this case an optimum mesh selection could be an intermediate between Mesh 2 and Mesh 
3.  

2.2 Code testing in a complex 3D geometry with finite element software    

Finally, the program was used to simulate cooking of meat piece (semi-tendinousus 
muscle), where the cross-section was scanned and digitalized in order to create the irregular 
domain (Califano and Zaritzky (1993)). The mesh generated is shown in Figure 6 a) and it 
was obtained form the software package COMSOL, where the mesh information was 
exported from the program as a structure named “fem”. The mesh consisted of 3112 node 
points and 13735 elements. The irregular shaped meat cut had two domains which 
corresponded with two set of different thermal properties as shown in Figure 6 b). The 
thermal properties for the meat and fat were obtained by Califano and Zaritzky, (1993) and 
the thermal processing conditions are given in Table 3. The numerical prediction in a center 
point (7.65, 5.78, 3.5) and border point (3.84, 7.56, 3.5) given in centimeters were compared 
with the output temperatures of the software (see Figure 7).  
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Figure 6: a) Mesh used for simulation b) Food composition: Meat (orange) and fat (yellow).  

Thermal Properties and Process Conditions  
Initial Temperature (ºC) 14.6 
Fluid Temperature (ºC) 70 
Surface Heat Transfer Coefficient h (W/m2 ºC) 300 

Meat  
Thermal Conductivity (W/m ºC)     0.454 
Specific Heat (J/kg ºC) 3477.8 
Density (kg/m3) 969.2 

Fat 
Thermal Conductivity (W/m ºC)     0.175 
Specific Heat (J/kg ºC) 4111.95 
Density (kg/m3) 930 
Table 3: Thermal Properties of the meat piece and process conditions 
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Figure 7: Numerical Predictions in center and border point of the domain using the software (Tcs) and open 
source code (Tos).  
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As can be seen numerical predictions from the commercial software agreed satisfactorily 
with the numerical results from the open source code.  

3 CONCLUSIONS 

A finite element code for three dimensions has been developed to solve the linear unsteady 
heat transfer problem with convective boundary conditions. A pre- and post- processing code 
was successfully implemented in order to integrate the mesh information with the main 
program and to calculate the temperature distribution at any given point inside the domain. 
The numerical code was validated by comparing the temperature predictions with the 
analytical solutions of a sphere and finite cylinder. The program was then used to simulate 
heat transfer in a meat product with irregular domain. The numerical results obtained by the 
open source code were also compared with the commercial software predictions resulting in 
high agreement. The program code can be applied to three dimensional domains using an 
external mesh generator with the advantage that in food processing the microbial inactivation 
or quality kinetics can be easily coupled to the heat transfer process. 
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