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Abstract. In this paper, the ignition and combustion of a methane/air mixture flowing along an infinite
array of catalytic parallel plates has been studied by inclusion of the gas expansion effects and the finite
heat conduction on the plates. The system of equations considers the full compressible Navier-Stokes
equations coupled with the energy equations of the plates. The gas expansion effects which arises from
temperature changes has been considered. The limits of large and small thermal conductivity of the plate
material are analyzed and the critical conditions for ignition are obtained. The governing equations are
solved numerically using finite differences.
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1 INTRODUCTION

The catalytic ignition of fuel/air mixtures has received considerable attention in the literature
in the past few years, due to its role in the start-up in the automobile catalytic converters and in
the catalytic and catalytically assisted combustors [1-5]. Experimental and theoretical studies
of catalytic ignition have been published increasing our knowledge about several aspects related
with this type of critical nonlinear process. Veser and Schmidt (1996) published experimental
results of the catalytic ignition of different hydrocarbons on platinum using an stagnation-point
flow configuration. They showed that for methane, the critical ignition temperature decreases
as the mixture becomes richer. From the theoretical point of view, the ignition process has been
studied by either numerical simulations using elementary chemistry [6-8] or by large activa-
tion energy asymptotic analyzes using an one-step overall reaction mechanism [9-12]. The ba-
sic principles of heterogeneous catalysis has been described elsewhere Williams et al. (1992),
Ertl (1982). Williams et al. (1992) presented a model for the catalytic combustion of hydro-
gen at high temperatures. They presented the rate parameters of a detailed surface chemistry.
Warnatz et al. (1994) studied the catalytic combustion and ignition of hydrogen using detailed
kinetic mechanisms for both surface and gas-phase reactions. Deutschmann et al. (1996) stud-
ied the catalytic ignition of different fuels on different catalyst materials. They indicated that
the ignition process is an abrupt transition from kinetically controlled system to one controlled
by mass transport and depends mainly on the adsorption - desorption reaction steps. In their nu-
merical simulations they showed that one or the other reactant almost covered the surface prior
to ignition. There is a need to obtain reduced kinetic schemes for the catalytic combustion,
which help to build a bridge between the full numerical works and the theories developed using
an overall one-step reaction for the surface kinetics. In these lines, Treviño (1999b) presented
an asymptotic analysis for the catalytic ignition using a simplified model for the heterogeneous
chemistry. The critical conditions for ignition has been deduced and obtained in a closed form
the parametric influence on this critical process. He found that the most important reactions
to predict ignition are the adsorption reactions for both reactants and the desorption reaction
of the reactant which has a larger adsorption reaction rate. This analysis has been applied to
methane and air mixtures on a platinum catalyst Treviño (1999a), with a closed form for the
global reaction rate.

The objective of this work is to extend the previous analysis Treviño (1999a) to study the
ignition and combustion of methane and air mixtures flowing along an infinite array of thin
channels in an attempt to simulate the behavior in monolith combustors.

2 FORMULATION

The physical model under study is shown in Fig. 1. An uniform reactive mixture of methane
and air gas flow, with velocity u∗0, density ρ∗0, temperature T ∗

0 , reactant concentrations Yi0 and
pressure p∗0, enters an infinite array of plates with a separation given by H∗. The thickness of
the plates, h∗, is assumed to be very small compared with the separation H∗, h∗ << H∗. The
total length of the studied system is L∗+ L∗i +L∗f , with an induction length L∗i and a final length
L∗f . The array of plates begin at x∗ = 0 and ends at x∗ = L∗. The plates are heated internally by
the catalytic reactions with a heat production rate per unit surface denoted by ω∗(x∗). A finite
plate thermal conductivity, λ∗w, enables heat to be transferred longitudinally thus changing in an
important way the resulting temperature at the plate surface. For very low Mach number flows,
the pressure variations, of order the dynamic pressure ρ∗0u

∗2
0 , are very small compared with the

pressure at the inlet conditions, p∗0, thus reducing the equation of state of the gas to be written
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Figure 1: Schematics of the studied problem.

as ρ∗T ∗ ' ρ∗0T
∗
0 . Scaling both Cartesian coordinates with H∗ (x = x∗/H∗, y = y∗/H∗), all

velocities with u∗0 (u = u∗/u∗0, v = v∗/u∗0), the temperature with that of the inlet condition T ∗
0

(ϕ = T ∗/T ∗
0 ), the density with ρ∗0 (ρ = ρ∗/ρ∗0 = 1/ϕ), the mass concentrations of reactants

with those at the inlet, Y = Y ∗
F /Y ∗

F0, YO = Y ∗
O/Y ∗

O0, the viscosity µ∗, with that at the inlet
(µ = µ∗/µ∗0), the thermal conductivity of the gas, k∗, with the corresponding value at the inlet
conditions (k = k∗/k∗0), the mass diffusivity for the fuel with those at the inlet conditions,
D = D∗

F /D∗
F0 and the pressure with the dynamic pressure ρ∗0u

∗2
0 (p = (p∗ − p∗0)/ρ

∗
0u
∗2
0 ), the

nondimensional equations for the gas flow are given by

(ρu)x + (ρv)y = 0 (1)

uux + vuy = −ϕpx +
ϕ

Re

{
[2µ/3 (2ux − vy)]x + [µ (uy + vx)]y

}
, (2)

uvx + vvy = −ϕpy +
ϕ

Re

{
[2µ/3 (2vy − ux)]y + [µ (uy + vx)]x

}
, (3)

uϕx + vϕy =
ϕ

Re Pr

[
(kϕx)x + (kϕy)y

]
, (4)

uYx + vYy =
ϕ

Re Pr LF

[(DF /ϕYx)x + (DF /ϕYy)y] , (5)

where the index denote derivatives, that is ϕx = ∂ϕ/∂x. Here Re corresponds to the Reynolds
number, Re = ρ∗0u

∗
0H

∗/µ∗0, LF is the Lewis number of the reactant, LF = ρ∗0D
∗
F0C

∗
p0/k

∗
0 and

Pr is the Prandtl number, Pr = µ∗0C
∗
p0/k

∗
0. Here, C∗

p0 is the heat capacity measured at the inlet
conditions. The associated boundary conditions are:

u = v = Yy − LF ϕw

Dγ
ω = ϕ− ϕw = 0 at y = 0, 1 and 0 ≤ x ≤ L (6)

u− 1 = v = ϕ− 1 at x = −Li (7)
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ux = v = ϕx = 0 at x = L + Lf (8)

v = uy = ϕy = Yy = 0 at y = 0, 1 and 0 > x > L, (9)

where ω is the nondimendional heat generation rate, ω = ω∗H∗/(k∗0T
∗
0 ) and γ is the heat release

parameter defined by γ = Q∗Y ∗
F0/C

∗
p0WF T ∗

0 = (T ∗
e − T ∗

0 )/T ∗
0 . Here Q∗ is the heat release per

unit mol of fuel consumed, T ∗
e corresponds to the adiabatic flame temperature and ϕw is to the

nondimensional temperature at the plate surface, to be found after solving the nondimensional
energy equation of the plate given by

λϕwxx + kϕy

∣∣
y=0

+ ω(x) = 0. (10)

In this equation, the thermally thin approximation has been employed for the plate, which means
that the transverse variation of the temperature is assumed to be very small compared with
overall temperature difference and is true if the aspect ratio of the plate h∗/L∗ is very small
compared with unity. λ is a nondimensional parameter which measures the ability of the plate
to transfer heat in the longitudinal direction,

λ =
k∗w
k∗0

h∗

H∗ (11)

The associated boundary conditions to Eq. (10), for very thin plates are assumed to be given
by adiabatic edges, ϕx = 0 at x = 0 and x = L. Introducing the stream function ψ, such as
u = ϕψy and v = −ϕψx, and the vorticity Ω, Ω = vx − uy, the nondimensional governing
equations (1) to (4) transform to

−Ω = ϕ
(
ψxx + ψyy

)
+ ϕxψx + ϕyψy (12)

ψyΩx − ψxΩy − ϕx

(
ψyψyy + ψxψxy

)
+ ϕy

(
ψyψxy + ψxψxx

)
=

1

Re

[
µ (Ωxx + Ωyy) + 2µx (vxx + vyy)− 2µy (uxx + uyy) + 2µxy (vy − ux) +

(uy + vx)
(
µxx − µyy

)]
, (13)

ψyϕx − ψxϕy =
1

Re Pr

[
k

(
ϕxx + ϕyy

)
+ kxϕx + kyϕy

]
. (14)

ψyYx − ψxYy =
1

LF Re Pr

[
D

ϕ
(Yxx + Yyy) +

1

ϕ
(DxYx + DyYy)− D

ϕ2
(Yxϕx + Yyϕy)

]
. (15)

For not very rich mixtures of methane and air, the heterogeneous heating rate can be given by
Treviño (1999a)

ω∗ =
Q∗ΓrFarOd

rOa

, (16)

where Γ is the surface molar concentration in mol/cm2, and corresponds to the surface site
density (∼ 1015 sites/cm2) divided by the Avogadro number, 6.0221367× 1023 mol−1, then the
assumed value for Γ ' 1.6603 · 10−9 mol/cm2. rFa and rOa are the adsorption rates for the fuel
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Nr Reaction S A E
Fa CH4 + 2Pt(s) → CH3(s) + H(s) 0.01 − −
Oa O2 + 2Pt → 2O(s) .07(300/T ) − −
Od 2O(s) → O2 + 2Pt(s) − 3.7 · 1021 190

Table 1: Heterogeneous reaction model. Units: A (mol,cm,s), E (KJ/mol)

and the molecular oxygen, respectively and rOd represents the rate of desorption for molecular
oxygen. All rates are in s−1 units. Therefore, the nondimensional heating rate takes the form

ω =
HQ∗Γ2AOa

k∗0T
∗
0

SF

SO

(
WO

WF

)3/2
Y ∗

F0

Y ∗
O0

Y (x, 0) exp

(
− EOd

RT ∗
0 ϕw

)
. (17)

Here SF and SO are the sticking probabilities for the fuel and molecular oxygen, respectively,
WF and WO are the molecular weights of the fuel and molecular oxygen, respectively, AOd and
EOd are the pre-exponential and the activation energy of the desorption reaction for molecular
oxygen, respectively. R represents the universal gas constant. The kinetic parameter are shown
in table 1.

3 ASYMPTOTIC LIMIT λ →∞
For large values of λ compared with unity, the temperature of the plate tends to be uniform

and an asymptotic solution for λ →∞, can be obtained by assuming the following asymptotic
expansion, with 1/λ as the small parameter of expansion,





ϕ
ϕw

ψ
Ω
Y





=





ϕ0(x, y)
ϕw0

ψ0(x, y)
Ω0(x, y)
Y0(x, y)





+
∞∑

j=1

1

λj





ϕj(x, y)
ϕwj(x)
ψj(x, y)
Ωj(x, y)
Yj(x, y)





, (18)

resulting the value of ϕw0, which is a uniform along the plate. The resulting nondimensional
energy equations for the plates, given by Eq. (10), are

ϕw1xx = − ϕ0y

∣∣
y=0

− ω, (19)

ϕwjxx = − ϕ(j−1)y

∣∣
y=1

, for j > 1, (20)

to be solved with the adiabatic boundary conditions

ϕwjx(0) = ϕwjx(L) = 0, for all j. (21)
The adiabatic boundary condition at the leading order then requires that

∫ L

0

[
ϕ0y

∣∣
y=0

+ ω
]
dx = 0. (22)

To study the ignition for high values of parameter λ compared with unity, we retain only the
leading order in λ. Due to the fact that in this limit the temperature of the plate is uniform, the
resulting nondimensional heating rate can be written as

ω = ∆Y0(x, 0) exp

[
EOd

RT ∗
0

ϕw0 − 1

ϕw0

]
, (23)
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where ∆ is the Damköhler number defined by

∆ =
HQ∗Γ2AOa

k∗0T
∗
0

SF

SO

(
WO

WF

)3/2
Y ∗

F0

Y ∗
O0

exp

(
−EOd

RT ∗
0

)
. (24)

Due to the large value of the activation energy of the desorption reaction for oxygen is large
(Eod = 190 Kcal/mol), the departure of ϕw0 from unity of the order RT ∗

0 /EOd increases the
reaction rate e times, and then a new scale of the nondimensional temperature is needed in
order to study the ignition process





ϕ(x, y)
ϕw(x)

ψ
Ω
Y





=





1
1

ψ0(x, y)
Ω0(x, y)

1





+
RT ∗

0

EOd

ϕw1





h(x, y)
1

ψ1(x, y)
Ω1(x, y)
g(x, y)





+ ..., (25)

where ψ0(x, y) and Ω0(x, y) are obtained after solving the following set of equations

−Ω0 = ψ0xx + ψ0yy (26)

ψ0yΩ0x − ψ0xΩ0y =
1

Re
[Ω0xx + Ω0yy] . (27)

Once ψ0(x, y) and Ω0(x, y) are known, the first order corrections can be obtained from a lin-
earized version of Eqs. (12) to (15) given by

−Ω1 =
(
ψ1xx + ψ1yy

)
+ h(ψ0xx + ψ0yy) + hxψ0x + hyψ0y (28)

ψ0yΩ1x + ψ1yΩ0x − ψ0xΩ1y − ψ1xΩ0y − hx

(
ψ0yψ0yy + ψ0xψ0xy

)

+hy

(
ψ0yψ0xy + ψ0xψ0xx

)
=

1

Re
(Ω1xx + Ω1yy) , (29)

ψ0yhx − ψ0xhy =
1

Re Pr
(hxx + hyy) . (30)

ψ0ygx − ψ0xgy =
1

LF Re Pr
(gxx + gyy) . (31)

These equations have to be solved with the boundary conditions

ψ0 − y = ψ1 = gy − LF Ze

γ
∆ exp (ϕw1) = h− 1 = 0 at y = 0, 1 and 0 ≤ x ≤ L (32)

ψ0y = ψ1y = Ω0 = Ω1 = hy = gy = 0 at y = 0, 1 and 0 > x > L, (33)

ψ0 − y = ψ1 = g = h = 0 at x = −Li. (34)
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Here Ze is the Zeldovich number defined by Ze = EOd/RT ∗
0 , which is in general very large

compared with unity. The energy equation of the plate, Eq. (22) then can be written as

∆ Ze exp (ϕw1)

ϕw1

= I(Lj, Re, Pr) = − 1

L

∫ L

0

hy|y=0 dx, (35)

where Lj denotes the geometrical influence including Li, L and Lf . Clearly, ignition (d∆/dϕw1 =
0) occurs as ϕw1 reaches the value of unity and thus, the critical Damköhler number for ignition
is

∆I =
I(Lj, Re, Pr, LF )

Ze exp(1)
. (36)

Fig. 2 shows the value of integral I , which is directly related to the ignition Damköhler
number, as a function of the Reynolds number for three different values of the channel length.
Using the kinetic parameters given in Table 1, the ignition temperature can be obtained from
the definition of the Damköhler number and is shown in Fig. 3.

100 101 102
10-2

10-1

100

L=2

L=7

 

 

I

Re

Pr=0.72
Li=2
Lf=1

L=17

Figure 2: Integral I for three different values of the nondimensional length L, in the asymptotic limit λ →∞.

4 ASYMPTOTIC LIMIT λ → 0

On the other hand, for small values of λ compared with unity, the heat conduction along the
plate can be neglected. In this case the boundary condition at the plate surface is given by

ϕy

∣∣
y=0

= − γ

LF ϕw

Yy|y=0 = −ω(x) = −∆Y (x, 0) exp

[
EOd

RT ∗
0

ϕw − 1

ϕw

]
. (37)
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Figure 3: Ignition temperature for three different values of the nondimensional length L, in the asymptotic limit
λ →∞.

In this limit the solution leading to ignition can be obtained by assuming the following expan-
sions





ϕ(x, y)
ϕw(x)

ψ
Ω
Y





=





1
1

ψ0(x, y)
Ω0(x, y)

1





+
1

Ze





h(x, y)
hw

ψ1(x, y)
Ω1(x, y)
g(x, y)





, (38)

where the solution to the leading oder equations are obtained after solving the same equations
(26) to (27). h can be obtained after solving Eq. (30) with the boundary conditions at the plate
given by hy|y=0 = −∆ Ze exp(hw). For fully developed flow, Eq. (30) can be integrated along
the transverse coordinate to give

hζ = hζζ + ∆ exp(h), (39)

where ζ = Pe x , ∆ = 2∆ Ze / Pe2. The number 2 arises because the integration is performed
from 0 to 1/2. For simplicity the subindex w has been removed. Eq. (39) has to be solved with
the boundary conditions hζ = h0 at ζ = 0 and hζ = 0 at ζ = ζf . The boundary condition at
ζ = 0 comes from patching with the solution for ζ < 0. For a given value of ∆ there are two
possible values of h0 resulting in a single value of ζf < ζI(∆). There is not any solution for
ζf > ζI , indicating this length as the ignition length. Fig. 4 shows the Damköhler number for
ignition as a function of the length of the plate, after solving numerically Eq. (39).
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Figure 4: Damköhler number for ignition in the limit of λ → 0.

5 NUMERICAL SOLUTION PROCEDURE

The governing equations with the associated boundary conditions are solved numerically
using finite differences employing a pseudo-time as a tool to obtain convergence. The inte-
gration procedure is the following: An initial guess of the plate nondimensional temperature
is employed and the stream function, vorticity and temperature of the gas flow are obtained
by solving the discretized versions of Eqs. (12) to (14). A new nondimensional plate temper-
ature profile is obtained after using the transient version of Eq. (10) with a nondimensional
time step (time scaled with H∗/u∗0) of 10−2. This procedure is repeated until full convergence
is achieved. For numerical stability, positive and negative values of the convective terms in
the energy and the vorticity transport equations are discretized with upwind and rearward dif-
ferencing, respectively, while the buoyancy and diffusion terms are discretized with a central
difference formulation. All calculations were performed using air (Pr = .72) as the gas, and
wall vorticities were evaluated using the classical Thom’s first-order formula Tom (1933)

Ω(x, 0) =
2 [ψ(x, ∆y)− ψ(x, 0)]

∆y2
(40)

where ∆y is the grid space normal to the wall. Higher order evaluations are not always known
to lead to stable solutions Anderson et al. (1984). In order to get better accuracy at lower cost, a
strongly non-uniform staggered grid system with a denser clustering near the heated plates was
necessary. The computational domain was discretized using coordinate transformation func-
tions to generate a variable grid size system that is closely spaced near the plates, using the
boundary layer concepts Bender and Orszag (1978). For the transverse direction a coordinate
transformation function η(y) has been employed, to be obtained from the solution of the fol-
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lowing differential equation

ε2d2ϕ

ds2
= ϕ−m1s (41)

with the boundary conditions ϕ (−1/2) = −1/2 and ϕ (1/2) = 1/2. This differential equation
is known to have two boundary layers at s = −1/2 and s = 1/2. Here ε is the resulting
boundary layer thickness and is assumed very small compared with unity and m1 is the slope
outside the boundary layer and is therefore positive and very small compared with unity. The
solution to Eq. (41) is given by

ϕ = m1s +
(1−m1)

2

sinh(s/ε)

sinh(1/2ε)
. (42)

Substitution of ϕ by 2η − 1 and s by 2y − 1, gives the desired function as

η(y) =
1

2
+ m1

(
y − 1

2

)
+

(1−m1)

2

sinh [k1 (y − 1/2)]

sinh [k1/2]
, (43)

where k1must be large compared with unity. The packing parameters of the mesh m1 and
k1 chosen were m1 = 0.4 and k1 = 10. For the solution of the system of equations, even grid
spacing was used in x and η, generating the desired mesh in the original coordinates x and y.
The following geometrical values were chosen: Li = 2, Lf = 1 with L = 17. Different mesh
sizes have been used depending on the Reynolds number. However a grid size of 221 x 84 was
found to be excellent up to Reynolds of 100. For simplicity, in order to reduce the complexity
of the problem, the thermal conductivity and the viscosity of the gas has been assumed to be
constants, µ = k = 1. The assumed value for the Prandtl number corresponds to that of air,
Pr = 0.72.

6 RESULTS

Numerical results were obtained for two different values of the longitudinal heat conduction
parameter λ, one very large compared with unity λ = 103 and the other very small compared
with unity, λ = .05 for two very different values of the Reynolds number, Re = 100 and
Re = 1. Fig. 5 shows the final temperature distribution at the plate surface as a function of
the streamwise coordinate for an initial temperature of T ∗

0 = 850 K, for a Reynolds number
of Re = 1 and the two different values of parameter λ. In both cases we got the ignition
condition. The temperature distribution is almost flat for large values of λ and is rather flat at
the downstream region for small values of λ. For very large value of the Reynolds number and
a higher value of the initial temperature of T ∗

0 = 1000 K, the same is plotted in Fig. 6. For
very small values of λ, there is an abrupt change in the temperature at a well distance from the
channel entrance. From these two figures we can conclude that ignition occurs earlier for larger
values of the heat conduction parameter λ.

7 CONCLUSIONS

In this paper, the ignition and combustion of a methane and air gas mixture flowing along
an infinite array of parallel catalytic plates has been studied by inclusion of the gas expansion
effects and the finite heat conduction on the plates. The system of equations consider the full
Navier-Stokes equations coupled with the energy equations of the plates. It was assumed that
the inlet Mach number is very small compared with unity, thus the pressure variations along the
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Figure 5: Final temperature distribution for an inlet temperature of T ∗0 = 850 K for a Reynolds number flow of
Re = 1.
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Figure 6: Final temperature distribution for an inlet temperature of T ∗0 = 1000 K for a Reynolds number flow of
Re = 100.
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system are very small compared with the pressure itself. Gas expansion then arises only from
temperature changes. The system of equations are solved numerically using finite differences
employing a pseudo-time as a tool to achieve convergence. The thickness of the plates are
assumed to be very small compared with the plates separation. Due to the large number of
parameters involved (L, Li, Lf , Re, Pr, ω, λ), the computations were restricted to the case of
L = 17, Li = 2, Lf = 1, Pr = 0.72, for a given value of the Reynolds number. For large
values of parameter λ compared with unity, the longitudinal heat conduction along the plate
produces an homogenization of the temperature and the resulting temperature gradients in the
longitudinal direction are then of order 1/λ. In both limits of very large and very small values
compared with unity of parameter λ, the ignition conditions are obtained, in closed form, in the
asymptotic limit of very large values of the Zeldovich numbers for the desorption reaction of
atomic oxygen. Preliminar results indicate that ignition occurs earlier as parameter λ increases.
However, more work is to be done in order strength this conclusion.
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