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Abstract. In this paper the Heillinger-Reissner principle is employed to derive a new model for a 
curved beam made of functionally graded materials. The model is developed on the assumptions that 
the shear deformability is not negligible. The Hellinger-Reissner principle can be handled in order to 
derive the motion equations together with a consistent description of the constitutive equations. This 
leads to obtain the shear coefficients of the beam theory as an inherent part of the model deduction, 
thus avoiding the imposition of shear coefficients arbitrarily taken from other approaches, as one can 
see in many papers of the open literature.  
Despite the technological importance of new materials, it is interesting to remark that curved beam 
models for the aforementioned graded materials are not available under the conception of a one-
dimensional beam theory. On the other hand, this model contains the curved model for isotropic 
materials and particular cases for laminated composite beams.  
A finite element procedure is employed in order to solve the motions equations for free vibrations 
problems with or without the presence of initial stresses. Different types of laws of graded properties 
are tested. Parametric studies and comparisons with analytical solutions are performed as well. 
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1 INTRODUCTION 

During the past twenty years, strategic and high technology industries, such as defense, 
aerospace or automotive industries demanded new advanced materials in order to maintain or 
increase the leadership in the production of high competitive goods. Designers have been 
always claiming for materials that combine in a unified fashion, the best properties of metals 
and ceramics, that is, the stiffness, electrical conductivity and machinability of metals and the 
high strength, low density and high temperature resistance of ceramics. During the past ten or 
twelve years these kind of advanced materials are becoming no longer experimental 
specimens in laboratories but a well developed reality. Functionally graded materials (FGM) 
are just an example of such advanced materials. Its name was settled in the beginning of the 
nineties, in Japan, associated with a particular manufacturing process. The variation in 
percentage of the material constituents (basically from a ceramic to a metal) can be arranged 
in such a way to create a new material with graded properties in spatial directions. The 
underlying ideas about a material with graded properties reflects the notion that such material 
can avoid the presence of certain undesirable behaviors such as thermal stress gradients or 
residual stresses among others, which are common in the interface of ceramic and metallic 
materials.  

Many papers have been devoted to study shells and solids constructed with FGM such as 
the works carried out by Reddy and Chin (1998), Reddy (2000), Praveen and Reddy (1998), 
El-Abbasi and Meguid (2000) and Kitipornchai et al. (2004) among others. The recent works 
of Chakraborty et al. (2003), Goupee and Vel (2006), Ding et al. (2007) and Lu et al. (2008), 
among others can be considered the most relevant for functionally graded straight beam. In 
these papers different laws defining the graded properties of the beams have been employed. 
The gradation laws can be of the exponential type or a power law or any other with “ad-hoc” 
purposes. Many of the aforementioned papers introduce a three dimensional or a two 
dimensional complex model. On the other hand there are quite a few papers devoted to study 
functionally graded curved beams. Dryden (2007) carried out a study on a curved beam by 
means of an approximation to a two dimensional description based in the hypothesis of plane 
stresses. Shafiee et al. (2006) developed a model for buckling analysis of curved beams made 
of FGM; however this model do not considered shear flexibility and dynamic problems were 
not studied.  

It has to be noted that, despite its technological interest, no studies on the dynamics of 
curved beams made of FGM have been performed in the past years according to the 
knowledge of the authors. Thus, the aim of the present work is intended to be a contribution 
on the subject. The curved beam model is developed, taking into account the shear flexibility 
of the structure in the in-plane motion, through the employment of the Heillinger-Reissner 
variational principle together with a displacement field accounting for linear and second order 
terms. Also a state of arbitrary initial stresses is considered. The use of the Heillinger-
Reissner variational principle leads to the motion equations and constitutive equations in a 
unified fashion. The constitutive equations are derived consistently avoiding the use of 
arbitrary taken shear factors as it appears in recent papers (Chakraborty et al., 2003 and Oh et 
al., 2003). A four-node isoparametric element is employed to discretize the motion equations 
and vibrations patterns of curved beams with different gradation properties are calculated. An 
alternative exact solution (based in a power series methodology) of the motion equations for 
the free vibration problem is also employed for comparison and validation purposes.   
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2 MODEL DEVELOPMENT 

In Figure 1 one can see the structural model for the curved beam. In order to develop the 
model, the following hypotheses are performed: 

a) The cross-section is rigid in its own plane, i.e. in the ZX plane. 
b) Only in-plane motions are considered (i.e. in the YX plane). 
c) The shear flexibility is taken into account. 
d) Power, exponential, or any other law for the graded materials can be employed across 

the inner and outer radii.  
e) No approximation is performed in the curvature terms. 
f) An arbitrary in-plane state of initial stresses is also considered. 
 

 
Figure 1: Structural model. 

The reference system {O:xyz} is located in the geometric center of the cross-section. The 
beam can be configured with graded properties in such a way that the core is mainly metallic 
and the surfaces are mainly ceramic or with a graded variation from a metallic surface at the 
inner radius Ri and a ceramic surface at the outer radius Re. In the first case the properties can 
vary according to the Eq. (1a), but in the second case the properties can vary according to Eq. 
(1b) or (1c) for exponential or power law, respectively. 

( ) ( )
+

−

+ =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+=

M

M
M

n

MMM
,

h
y21y

P
P

PP ΛΛΛ    with   (1a)

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
==

−

+

+

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−

M

Mh
y21

M Log
2
1,ey

P
P

PP δ

Λ
Λ

δ

   with   (1b)

( ) ( )
+

−

+ =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−+=

M

M
M

n

MMM
,

2
1

h
y1y

P
P

PP ΛΛΛ    with   (1c)

Where, P(y) denotes a typical material property (i.e., density ρ or Young’s modulus E or 
transversal elastic modulus G, among others). and define the properties of the outer +M

P −M
P
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(normally ceramic) and inner materials (normally metallic).   

 
Figure 2: Variation of a typical property with the power exponent n. 

In Figure 2 one can see the variation with respect to the power exponent n of a typical 
property along the radial coordinate according to, for example, Eq. (1a). In this case the 
ceramic component is located at the inner and outer surfaces, whereas the metallic component 
is placed in the core. Notice the proportional increase of the metallic component with the 
increase of exponent n. In the limiting case, when ∞→n , the whole beam is made by a 
metallic constituent.  

2.1 The Heillinger-Reissner Functional 

The variational principle of Heillinger-Reissner for an in-plane curved beam subjected to 
initial stresses may be presented in the following form (see Washizu, 1974): 
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As it can be seen, Eq. (2a) corresponds to the common principle of virtual work; however 
(2b) corresponds to the variational form of the complementary energy. The above variational 
principle is subjected to the next constraint equation corresponding to the initial configuration 
due to the initial stresses: 
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In Eq. (2a), (2b) and (3), ijσ and ( )0
ijσ  are the incremental and initial stresses, iX and 

( )0
iX are incremental and initial volume forces, iT and ( )0

iT are incremental and initial surface 
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forces acting in the domain Sa; ρ, E and G are material properties corresponding to the 
density, longitudinal elasticity modulus and shear elasticity modulus, respectively. and 

 are the linear and non-linear strain components given by the following form (Piovan and 
Cortinez, 2007): 

L
ijε

NL
ijε

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

≅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

=
j

NL
i

i

NL
j

j

L
h

i

L
hL

ij
j

L
i

i

L
jL

ij x
u

x
u

2
1

x
u

x
u

2
1,

x
u

x
u

2
1 εε    (4)

where and are linear and non-linear (or second order) displacement components, 
whereas i, j and h are typical indexes, according to the Einstein’s notation. 

L
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2.2 The displacement field and for a curved beam 

Taking into account aforementioned assumptions (a)–(c) it is possible to develop the 
displacement field of the in-plane motion, for an arbitrary point of a curved beam including 
first- and second-order terms of rotational parameters, in the following form: 
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where uxc and uyc are the displacements of the reference point O, θz is the rotation parameter 
for bending.  

Employing (5a) and (5b) in (4), and after a few algebraic steps, the strain components can 
be defined in terms of the displacement variables uxc, uyc and θz as:  
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In Eq. (7a-c), εN, εM and εQ may be regarded as generalized deformations. That is εN 
identify the generalized axial deformation, εM is the bending deformation and εQ is the 
bending shear deformation.  
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2.3 Motion Equations 

Substituting Eq (5a)-(5b) and (6a)-(6d) into Eq (2a) and integrating in the corresponding 
domains one gets the following Equation: 

0PMGK =+++ LLLL  (8)

where  is the virtual work due to internal forces,  is the virtual work due to initial 
stresses and of applied volume and surface initial forces due to second-order 
displacements,  is the virtual work of inertial forces and  is virtual work of applied 
volume forces and surface forces. This last term may include, as a limiting case, applied 
point forces or beam forces.  
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The terms of the virtual work Eq (8) can be written in the following compact form:   
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where {  is the vector of beam displacements, }U { }U&&  is the vector of accelerations and { }Uδ  is 
the corresponding vector of variational displacements, whereas ( ){ }E∆  and ( ){ }G∆  are vectors 
of generalized deformations given by: 
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The vector ( ){ }EQ  introduced in Eq. (9a) contains the internal forces or beam stress 
resultants: 
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where NX is the axial (or circumferential) force, MZ is the bending moment and QY is the shear 
force. These beam stress resultants are defined as follows: 
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ET  of initial beam stress resultants, introduced in (9b), is written in the 
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The matrices ( )[ ]0
XC , ( )[ ]0

TC  and ( )[ ]0
DC  introduced in (9b) are defined as follows: 
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where ( )0
yX  and ( )0

yT  are the volume and surface forces in the radial direction, respectively; 

and ( ) ( ) ( ){ }0
y

0
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0 F,FF =  is a generic point-load applied at the point { }DD y,xD = . Eq. (14c) can 
be also obtained from volume forces employing Dirac-Delta operators (Piovan and Cortínez, 
2007).  

In Eq. (9c) the matrix  is given by: [M]
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In Eq. (9d) the vectors of forces { and }P { }T  are defined in the follwing form: 
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where XN , ZM  and YQ  are beam stress resultants applied at the ends. 
The differential equations of motion and related boundary conditions can be obtained by 

substituting Eq. (5), (6), (10), (11), (13), (14), (15) and (17) into Eq. (9) and then performing 
in Eq. (8) the conventional procedures of the variational calculus. Then, the differential 
equations of motion are: 
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whereas ,  can be easily obtained from (15) and (17a). jM jP

2.4 Constitutive Equations  

The constitutive equations of the stresses (as well as stress resultants) in terms of the 
generalized deformations can be obtained consistently by means of Eq. (2b). As a first step, it 
is useful to note that, according to Eq (1), the elasticity moduli can be expressed as: 
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That is, the material properties can be represented by a product of a dimensional material 
property factor and a function which is independent of dimensional concerns. Now the normal 
and shear stresses can be represented, in terms of the forces or beams stress resultants, by 
means of the following expressions: 
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The stresses described in Eq. (23) verify the following differential equation (represented in 
cylindrical co-ordinates) for static equilibrium without presence of volume forces: 
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Thus, substituting Eq. (22) and Eq. (23) into Eq. (2b), performing the common steps of the 
variational calculus and after a brief algebraic handling, one obtains the following expressions 
for the beam stress resultants or beam forces, as follows: 
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The form of Eq. (23b) contains by itself the shear correction factor associated with every 
first order shear beam theory without imposing that shear factor arbitrarily as it may be seen 
in many recent papers (Oh et al., 2003; Chakraborty et al., 2003 among others).  

It is interesting to mention that the present model collects in a unified formulation the 
equations to solve curved beams with four different types of materials, i.e. for isotropic 
material, for ceramic material, for graded material and also for especially orthotropic material 
as well.   

 

3 SOLUTION OF THE MOTION EQUATIONS 

In order to study vibratory patterns of this type of structures, the motion equations are 
solved with two methodologies: a) a power series solution and b) a finite element 
approximation.  

3.1 A Power Series Solution for the Eigenvalue problem 

The exact solution of the eigenvalue problem can be carried out by means of a 
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generalization of the power series scheme developed originally by Filipich et al. (2003) and 
Rosales and Filipich (2006) for structural problems involving isotropic materials. The 
methodology requires a previous non-dimensional re-definition of the differential equations, 
which implies that [ 1,0L/xx ∈= ], being L the circumferential length of the curved beam.  

The displacement variables have the common harmonic motion: 

{ } { } titi
321zycxc e.ueu,u,u,u,u   ΩΩθ ==  (28)

where Ω is the circular frequency measured in rad/seg, t is the temporal variable and 1−=i , 
whereas the generic displacement ( )xui  is expanded with the following power series: 

∑
=

=
M

k

k
iki xCu

0

)
,   i = 1,…,3 (29)

Theoretically ∞→M , however for practical purposes M may be an arbitrary large integer. 
Now employing Eq. (29) in the differential equations given by Eq. (18) then the non-
dimensional differential equations can be arranged in the following form: 

( ) ( ) ( ) ( ) 0xuu,uF̂xuxf ii

3

1j
jij =+′+′′∑

=

  λ ,  i = 1,…,3  and [ ]1,0∈x  (30)

The functions ( )xfij  and ( uuFi ′,ˆ )  which are considered analytic ∀ [ 1,0∈x ] condense the 
cross-section geometric properties together with the constitutive equations. The eigenvalue λ 
is related to the circular frequency by means of the following expression: 

+

+
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Eb

R2 2
2 ρΩπλ  (31)

Applying the boundary conditions in non-dimensional form and appealing to a recurrence 
scheme (Filipich et al, 2003; Piovan et al., 2008) of the power series one can represent the 
solution system in the following form: 
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From where one can obtain the common solution for the eigenvalue problem (for further 
explanations see Piovan et al., 2008; Filipich et al, 2003 and Rosales and Filipich, 2006).  

The recurrence scheme (Piovan et al., 2008) allows to shrink the algebraic problem from 
3(M+1) unknowns to only 3 unknown coefficients that can be selected according to the 
boundary equations. 

3.2 The Finite Element Formulation  

The structural model developed in the second section is numerically implemented with the 
finite element method. A five-node iso-parametric element is employed to discretize the 
structure. This element can represent appropriately the mechanics of the “in-plane” motions 
(Oñate, 1992). The interpolation of the generic displacements can be carried out by means of 
the following expression: 
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where: 
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The vector of displacements can be described as: 

{ } ( ){ } ( ){ } ( ){ } ( ){ } ( ){ }{ }54321 ,,,, UUUUUU =   (35)

with 
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Now substituting Eq (34) in (33) and then in Eq. (9a) to (9d) and considering a harmonic 
motion, one obtains the classic equation of the finite element method for eigenvalue problems 
considering a state of initial stresses: 

[ ] [ ] [ ]( ){ } { }0WMKK 2
G =−+ Ω  (37)

where [ ],  and K [ GK ] [ ]M  are the global elastic stiffness matrix, global geometric stiffness 
matrix and global mass matrix, respectively; whereas { }W  is the global vector of finite 
element variables. Ω = 2 π f is the circular frequency, whereas f is the frequency measured in 
Hertz. The matrix [  is calculated with the initial stresses obtained by means of the finite 
element equation corresponding to the condition given by Eq. (3). In order to avoid the shear 
locking phenomenon, reduced integration is employed in terms related to the shear 
deformability. 

]GK

 

4 NUMERICAL STUDIES 

4.1 Some Preliminary Comparisons 

In this section a few comparisons are performed in order to show the usefulness of the 
model. The first study corresponds to a convergence test of the finite element approximation 
which is compared with the exact solution given by the power series methodology. A curved 
beam with R = L = 0.1 m, 2h = b = 0.02 m. The properties are graded according to Eq. (1c) 
from steel at the inner radius and ceramic of alumina in the outer radius (see Table 1 for 
material properties). The power exponent n = 1.2. The curved beam is clamped at one end 
and free in the other. The error in percentage of the first three non-dimensional frequencies is 
shown in Figure 3. Notice that with only two finite elements, the error reach values lesser 
than 0.1 % for the three eigenvalues. The exact solution (or with arbitrary precision) has been 
carried with series of a one hundred terms.  
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Properties of materials Steel Alumina 
(Al2O3) 

Young’s Modulus E (GPa) 214.00 390.00 
Shear modulus G (GPa) 82.20 137.00 

Material Density ρ 
(Kg/m3) 

7800.00 3200.00 

Table 1: Properties of metallic and ceramic materials. 

 
Figure 3: Convergence of the beam element approximation with respect to the exact values. 

 
Figure 4: Convergence of the beam element approximation with respect to a 3D finite element approximation. 

The second comparative example is based on a curved beam with the same features of the 
previous example. The beam approach is compared with a 3D finite element approximation 
performed in a special finite element solver called FlexPDE, where properties can be defined 
in a formula style (see http://www.pdesolutions.com for further explanations and illustrative 
examples of the program) that makes it quite useful when complex constitutive equations 
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have to be included in the structural model. In Figure 4 one can see the convergence test, 
based in the percentage error, of the first three frequencies  

4.2 Parametric Studies  

The following parametric studies are performed with the finite element approach presented 
in this paper. The cantilever curved beam has the geometric properties R = L = 50 cm, b = 2 
cm and h = 0.005 m. The three typical laws given in Eq (1a) to (1c) for graded properties are 
tested and compared. In Figure 5 one can see the variation of the frequency coefficients of the 
first three eigenvalues with respect to the exponent n corresponding to the gradation law 
represented by Eq. (1c) with metallic internal surface (at R=Ri) and a ceramic outer surface 
(at R=Re). In Figure 6, the gradation laws given by Eq. (1c) and Eq (1a) are compared. The 
gradation properties described by Eq. (1a) imply a metallic core and inner and outer ceramic 
surfaces (at both R=Re and R=Ri). 

 
Figure 5: Variation of the first three frequencies for a metallic/ceramic beam with respect to the exponent n.        

 ( ) First frequency coefficient, ( ) second frequency coefficient, ( ) third frequency coefficient. 

 
Figure 6: Variation of the first three frequencies with respect to the exponent n. Comparison of different laws for 

graded properties: (--) Metallic: Steel, (   ) Ceramic/Metallic, ( ) Metallic core/Ceramic surfaces. 
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Figure 7: Variation of the frequencies with the exponent n. Detail of the second frequency 

In Figure 7 one can see a detail of the variation of the second frequency coefficient with 
the exponent n. Note that the exponential law for graded properties, i.e. Eq (1b) does not vary 
with the mentioned exponent, in fact a beam constructed with this material law can have only 
a frequency for a defined metallic/ceramic ratio. This law also offers the possibility to 
represent as limiting possibilities the full metallic case and the full ceramic cases. It is 
interesting to note that when n = 20, for both laws given by Eq. (1a) and (1c) the beam is 
composed in more than 95% by metallic phase.  

5 CONCLUSIONS 

In this paper a new model considering shear deformability in curved beams made of 
functionally graded materials has been introduced. The model incorporates in a unified 
fashion the motion equations of the curved beam as well as consistent derivation of the 
constitutive equations due to shear deformability hypotheses. The model can be employed 
with different types of gradation laws, and it also contains as particular cases the use of 
ceramic materials or metallic materials and even especially orthotropic materials. This model 
can offer certain elementary solutions for curved beams of graded materials as a part of more 
general modeling of non-homogeneous curved beams; however this is part of current 
research. 
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