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1 INTRODUCTION

In this paper we present new domain decomposition methadsofeing exterior boundary
value problems in 2D elasticity. As a model problem we coaisttie exterior boundary value
problem for the Lamé system. A rather complete survey onadeslecomposition methods can
be found in Quarteroni and Valli, (1999) and Smith et. al99@).

One of the main features of the domain decomposition metti@lsve present here is that
they are based on the use of a suitable Dirichlet—-to—Neunrapping (DtN) to transform the
exterior problem into an equivalent problem in a bounded @lom In what concerning the
Laplace operator, the so—called uncoupling method can &e. uBhis method allows to use a
simple DtN mapping (see Gatica et. al, 1998) given just imgeof the hypersingular integral
operator. However, in elasticity problems, the uncoupimgthod must be replaced for a more
general class of DN mappings (see Givoli, 1992; Givolli atedler, 1989). Specifically, in
this work we use the DtN mapping based on infinite Fourieresgpresented in Han and Wu,
(1992). It is worth remarking that the idea of using Fourigniess was first introduced in Feng,
(1983).

The outline of the paper is as follows. In section 2, we presea method of Han and
Wu for the numerical solution of the exterior boundary vapweblem for the Lamé system.
Here, we present the DtN mapping, the variational formataéind also discuss about the error
when considering a finite number of terms in the Fourier serla section 3 we present the
continuous Steklov—Poincaré operators related to oerfate problem. In section 4 we show
the finite dimensional approximations of the Steklov—P@azperators and finally, in section
5, we present some iteration—by—subdomain algorithms.

2 THE DTN MAPPING OF HAN AND WU

Let D be a bounded and simply connected domaiRiwith polygonal boundaryp,.
Then, giverf := (f1, f») € [L*(R? — D)]? with compact supporg, € [H'/?(I'p)]?, the linear
exterior boundary value problem read®nd u := (uq, uy) such that

—dive(u) = f inR?*-D,
u = go oOn FD) (1)
u = O(1), [lz]| = +o0,

whereo(u) := Atre(u)I + 2 ue(u) is the stress tensoe(u) is the strain tensor given by
eij(u) == 3 gj;; + g—QZ}, i,7 = 1,2, tr denotes the trace of a tensbdenotes the identity tensor
and\, ¢ > 0 are the Lamé constants.

Now, in order to transforml(), we introduce a circlé' 5 of radiusR, centered at the origin,
such that its interior region contaiisand such that the support bfs contained in the annular
region(2 bounded byI', andI'y. Then, following Han and Wu, (1992), the exterior problem
(1) can be transformed, equivalently, into the following bdary value problem in the bounded
domain{: Findu € [H'(Q2)]? such that

—dive(u) = f inQ,
u = go on 1—‘D ) (2)
o)y = T(u) onTy,
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whereT := (T1,T3) : [H/?(T'y)]? — [H~'/3(I'y)]? is the DtN mapping defined by

. 2 + 2k = [T 6 —
L = % / o2 (P o = o
2k: - 82212 sm n(0 — ¢)
RETE Z [ G re T s,
- 2+ 2k = [T 9% cosn(f — ¢
L) = 1o %Z/O a¢§<R’¢)%d¢
2k o 621)1 sm n(f — ¢)
2k TR Z/ 8¢>2 n d¢

forallz € 'y, v := (v1,v2), v; = vi(1,0),i = 1,2,z = rcosb, y = rsinb, k := ﬁ andv
denotes the outward normal kg, .

It is important to remark that the mappifif gives the exact boundary condition for the
exterior problem and therefore, in practice, by taking gushite number of terms on the Fourier
series introduces and error that must be considered. Alsmote thafl' generates a boundary
condition of nonlocal character.

In what follows, we consider approximations of the operafor This is, we define the
sequencd™ := (TN, TN) : [HY2(I'y)]> — [H Y2(T'x)]%, N € NU {0}, by

' = Ty %i [t == g,
TV(v) = figz %f}/jﬁ %(R,@msn(j %) 46
~
1 ikzk = ENE /0% %@ o0 =9) g

This sequence leads to define, férc N U {0}, the following boundary value problemBind
uy € [HY(Q)]? such that

—divo(uy) = f inQ,
uy = g onlp, ®3)
cluy)y = TV(uy) onTy.

On the other hand, by using integration by parts, we obtardhowing variational formu-
lation of (2): Findu € [H'(2)]? such thatu = g, onT'p, and

A(u,v) + B(u,v) = /Qf vdr V= (v, ) € [H (Q)], 4)
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where
A(u,v) ::/a(u) e(v)dx,
Q
2

Z w)eij (v

and
L 2+ 2k ,u 8u1 8’01 8u2 8’02
By = / / { 0) G (R.0) + AR 0) 52 (R,e)}
>(cosn(@ gb i df

+ 1_2:“2#2/ / {6“1 &;2(1%,«9) %f(z%w&”(z%,e)}

x S”m(# dpdo . (5)

Analogously, by using integration by parts, we obtain tHefing variational formulation of
(3): Find uy € [H'(©2)]* such thatuy = gy onT'p and

A(uN,v)+BN(uN,v):/Qf~vd:c Vv e [H (), (6)
where
Br(uv) = fjg’;ﬁsz (G om0+ S2ra 52 r o)
XL"(G %) 4 do

Lt [ (oS- S2matno)

XW(igﬁ do . (7)

The following result is necessary to prove the uniqguenessohition for both variational
formulations 4) and ©).

Lemma 1. The bilinear formsB andBy, N € N, are symmetric and continuous pr' (2)]% x
[H'(€)]*. Moreover,B(v,v) > 0forall v e [H} (Q)]> andBy(v,v) > 0, N € N, for all
v € [Hp ()]

Proof. See Lemma 2 in Han and Wu, (1992).

Now, we note thatl is a continuous bilinear form o/ (Q))2 x [H'(2)]2. Moreover, as a
consecuence of Korn’s inequality, it follows thatis coercive onH; (Q)]°. Then, by using
Lemma 1, we deduce that both variational formulatiehsagd @) satisfy the hypothesis of the
Lax—Milgram Lemma.

The following result allows to get control when using a fintember of terms in the the
Fourier series that defings.
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Theorem 1. There exist€' > 0, independent ofV, such that for all > 2,

C
|B(u,v) — By(u,v)| < FHUH[HHM(FN)P||V||[H1/2(FN)}2

Vv e [H%D ()2
and

lu = uy |l )2 < W”“H[HH/%FN)P )

wherej, is the coerciveness constantf
Proof. See Lemma 3 and Theorem 1 in Han and Wu, (1992).

Theorem 1 shows that, for solving)( is enough to consider the probles) §ince the error
lu — un||z )2 is controlled by the number of terms in the Fourier serieswhat follows,
we develop a domain decomposition method for the exterioblpm () by considering its
approximation byg).

3 STEKLOV-POINCAR E OPERATORS

Let I" be a polygonal and closed curve containef?jrsuch that its interior region contains
D and such that it split§ into two subdomaing), and(,. This is,(2; is the annular region
bounded by, andTl’, ©2; by I' andI"y and2 = Q; U T U 2,. Also, we denote by;, i = 1, 2,
the outward normal t62; onI". With this, and given\ € [H'/%(T")]2, we define the following
boundary value problems:

e Find llN’l(A) € [Hl(Ql)]z such that
—divo(uyi(A)) = f inQy,
uni(A) = g onlp, (8)
uN71()\) = A onl.
e Find UN’Q(A) € [Hl(Qg)]z such that
— div O-(UN’Q(A)) = f in QQ,
uya(\) = A onT, (9)
O-(UN’Q()\))V = TN(UNQ()\)) on FN.

On the other hand, the continuity of the normal stressés leads to the following interface
problem:Find \ € [H'/2(T")]? such that

[o(un,i (M) + o(una(N))ve, p] =0 V€ [H(I)]?, (10)

where|[-, ] denotes the duality pairing betwegfi—'/2(I")]?> and[H/?(I")]? defined by means
of the inner product ofZ?(T")]%.
Now, we define linear extension operat®s i = 1, 2, as follows

e R, : [HY2(I))? 5\ — R\ € [H'(9,)]? as the solution of

—dive(RiA) = 0 in Qy,
RN = 0 onlp, (11)
RN = X onl.
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e Ry: [HY/2(I)]? 5 X — Ry € [H'(9)]? as the solution of

—diva(RgA) = 0 in Qy,
RoA = A onl, (12)
c(R )y = TNV(Ry\) onTy.

It is worth remarking that for anp € [H'/%(T")]?, RiA and R\ are, respectively, the
harmonic extensions of to ©2; and),. Moreover, we definav, € [H'(Q)]> andw, €
[H'(9,)]? as the unique weak solutions of the following boundary valwblems:

e Findw; € [H'({)]? such that
—dive(w;) = f inQy,
W, = 8o on FD s (13)

w; = 0 onl.

e Find wy € [H'(2)]? such that

—divo(wy) = f inQy,
wy = 0 onl, (14)

o(wo)v = TV(wy) onTly.

Also, we denote by, € [H'(£2)]? a smooth extension @, on (2, such thag := 0in Q, UT,
and definew, := w; — g. Therefore, it follows that,

U.NJ()\) = W + g + Rl)\ (15)

and
uN72()\) = Wy + RQ)\ . (16)

Now, we introduce continuous and symmetric bilinear forns [H*(,)]* x [H'(21)]* —
R, Ay : [HY(Q)]? x [HY(Q)]? — RandA : [HY(Q)]? x [H}(Q)]* — R, given by

Ai(z1,v1) == /ﬂ o(2,) : e(vy) dz,

Ao (22, V2) ::/ 0(2z9) : e(vy)dr + Bn(2zo, V)
Qo
and

A(z,v) = ZAk(Zk,Vk) Vz,v e [H'(Q),

wherez;, := z|g, Y vi. := vl|g,. Then, the unique solutiony € [H'(Q2)]* of (6) satisfies
uy =goonl'pand
Aluy,v) = F(v) Vve[H} (Q),

where

F(v) ::/Qf-vdx.
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Note that for any\ € [H'/?(T")]?, the harmonic extensio®;, i = 1, 2, satisfy
A1(RiA, ) =0 Vo e [Hy(n))? 17)

and
Ay(RoX, 0) =0 Vo e [HN(D)), (18)

where HL(Qy) :=={v e H'(OQy) :v=0o0nT}.
Lemma 2. The solutionuy of (6) is related withw; andw, trough the following identities:
w1 = (uy — g)lo, — Ri((uy — g)[r)

and
wy = un|a, — Ra(un|r).

Proof. It is analogous to the proof of Lemma 3 in Gatica et. al., (1998

In what follows, we define the functions

—— Wi, eanuF,
T Wao , enQQUF,

and o
L R , en{; U T,
RA:= { Rg)\, en{), UT,

forall A € [H'2(T")]%. Note thatw € [H'(Q)]*, w = 0onTpUT andRX € [H} (Q)]
Then, by replacing 15) and (6) into (10), and using integration by parts, we deduce the
Steklov—Poincaré problenfind A € [H'/?(I")]? such that

SA = x, (19)

whereS : [HY?(T)]? — [H~'/*(T")]? is the Steklov—Poincaré operator given by

[\

[SA ] = Z Ap (RpA, Ryp) VA, pe [HV(ID)P?

k=1
andy € [H~'%(T")]? is defined as follows
(onl = [ £ Rpde — AGw+ g Rp) Ve [HVHD)P.
Q

The following result is necessary to prove existence anduemess of solution for the
Steklov—Poincaré problem 9).

Lemma 3. There exist constants;, C; > 0, ¢ = 1,2, depending only of;, such that

CillMlrvmye < IR g < CollX ey YA € [HYAD)PE.

Proof. It follows from usual arguments for elliptic problems ane tproperties of the bilinear
form By.
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Lemma 4. There exists an unique € [H'/2(I")]? such thaS \ = y.

Proof. SinceA; and A, are continuous bilinear forms, by using Lemma 3, it follolwattS
induces a continuous bilinear form ¢A/2(I")]2 x [H/?(I")]2. In what follows of the proof,
C' > 0 denotes a generic constant.

Now, in virtue of the Lemma 1, Korn’s inequality and Lemma & @educe that

2
[SAA > O / e(Ri\) : e(Ry\) da
k=1
= C/G(R)\):G(R)\) dx
Q

2
= O IR,

k=1
C H)‘”[QHUZ(F)P

v

for all A € [H'/%(T")]%. Then, alscS induces a bilinear form which is coercive 6H'/2(T")]2.
Therefore, a direct application of the Lax—Milgram Lemmangdetes the proof.

The following result establishes the equivalence betwkewvariational formulationg) and
the Steklov—Poincaré problerhg).

Theorem 2. Letuy € [H'(Q)]> and\ € [H'/%(I")]? be the unique solutions o6) and (L9),
respectively. Then,

5\:11]\[|F
and 5. ino
_ 1 J unvai(A), Ingy
“N_g+W+RA_{uN,2(A), in ), .

Proof. It is analogous to the proof of Theorem 3 in Gatica et. al, 8199

4 DISCRETE APPROXIMATIONS

We start by defining a triangulation 6f made up of straight and curves triangles in order
to describe exactly the circley. In fact, givenN € N, let0 =t < t;--- < ty = 27 be
an uniform partition ofl0, 27| with ¢,.; — ¢; = 2% for all j = 0, N — 1. Also, we consider
z : [0,2nr] — Ty as the parametrization dfy defined byz(t) := R (cost,sint)” for all
t € [0,27] and denote by); the annular region bounded by, and the polygonal curvg, ;,
with verticesz(t,), z(t2), . . ., 2(t,). Moreover, letZ; be a regular triangulation 6¢t;, made up

of trianglesr of diameterh:, and define

h:= sup h:.
FET;,

Then, by replacing each triangtec 7; with a side o', ;, by the corresponding curve triangle
onT'y, we get starting fronT;, a triangulatiortZ;, of 2 made up of straight and curves triangles.
Let 7 be the reference triangle with vertic&s := (0,0)7, P, := (1,0)” and P; := (0,1)7

and consider the family of surjective mappings, } .7, such thatt’.(7) = 7. This is, if 7 is a
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straight triangle of7;,, the mapping-’; is given by
F.(2) = B,z + b, (20)

whereB, is a square matrix of order 2 aind € R2. Now, if 7 is a curve triangle with vertices
Py, Py, Ps, such that?, = z(t;_;) € I'y andP; = z(t;) € I'y, the mapping". is as follows

F(#) = By + by + Go(7) Vi = (31, 8) € 7, 1)
where
GT(ZAC) =
1 ?352 {z(tj—1 + T2ty — tj-1)) — [2(tj—1) + 22(2(ty) — 2(8;-0))]} -

It can be shown tha®() is aC*>°—difeomorfisnthat takes the triangle on the curve triangle
in such a way thaFT(PZ-) = P, i = 1,3 (see Zenizek, 1990). Moreover, the image of the side
P, Py is the curve side of and the other two sides éfare transformed linearly by2() to the
straight sides of.

Let P,(7) be the space of polynomials of degre€el defined onr. Then, for each triangle
T € T, we define

Pi(1):={v:v=(JF) (DF.)vo F.' Vi€ P(7)},

whereJ F, andD F, denote, respectively, the Jacobian and tléelet derivative of the mapping
F,. With this, we define the finite element subspaces

Hip = {v, € C(Q%) :opl, € Pi(r) V7 CQ}
and ) i
Ay =A{vplr :vn € Hip}

Moreover, we define . .
H?,h = {Uh € Hl,h v, =0onT'pU F},

]:Izo’h = {v, € Hyp :vp=0o0nT}

and

Hz’,h = Hi,h X Hz’,ha
Ah = Ah X Ah7
0 ._ o r70
Hl,h . — HZ,h X Hl,h .

Consequently, in virtue of the relatioris/) and (L8), we define, for all\;, € A}, the discrete
extension®R,; 5, i = 1, 2, as follows

e Ry): Ay >N — Ry N\, € Hyy, as the solution of

Al (Rl,h)\ha Uh) =0 Vvh c H?,h7
Rl,h)‘h = N\, onl.
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e Ry : Ay 2 Ny — Rop Ay, € Hyy, as the solution of

A2 (R27h)\h,vh) = 0 \V/Uh € HQOJL,
R2,h)\h A, onl'.

With this, we define the discrete Steklov—Poincaré opeiato
Sp = Sin+Sop,
whereS, ;, : A, — A}, i = 1,2, are the local discrete operators given by
[SinAn, tn] = Ai(Rip A, Rippen) YV An, pn € Ay,

whereA; denotes the dual of;,.

On the other hand, the numerical solving b9 by means of iterative solvers needs a suitable
preconditioner. This preconditioner needs to ensure tleatonvergence of the iteration—by—
subdomain algorithm must be independent.ofTo do this, we consider thirichlet—Robin
type preconditioner given b, := S, + T, where

[T, ] == c[An, pun) = ¢ / Awc pinds Y A, i € Ap
r

andc > 0 is an arbitrary constant. In what follows, we show thathe spectral condition
number ofP, ' S,,, is bounded independently af To do this, we need some previous results.

Theorem 3. There exist constants,;, C5 > 0, independent ok, such that

A (RypAn, Riphn) < Cy ||/\h||[2H1/2(F)]2 VL €N,

and
Az (RopAn, Ropn) < Oy ||/\h||[2H1/z(p)]2 VL €A,
Proof. We note first that
ARy, Ripdn) < C Rl Y An € A, (22)

whereC' > 0 depends only on the Lamé constants. In what follows of tbefp”’ > 0 denotes
a generic constant independentiofNow, since; is a polygonal domain andl, € [H(T")]?,
we have the following regularity estimate (see Lions and &fess, 1972)

IR AR50, )2 < C [ Al ey - (23)
Also, by using usual interpolation estimates (see Ciat®@T8), it follows that
IR A, = R p Al @y < C B2 IRyl /20, g2 - (24)
Moreover, we have the inverse inequality (see Ciarlet, 1,978

hl/? Ml e < ClMlleeye Y An € An. (25)
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Then, by using triangle inequality, Lemma 33f and @4),

IR1AL — Rpnll e + [R1A a1 )2
C R |Radnll sz + IRz 02
C hl/? ||)\h||[H1(F)}2 +C ||>‘h||[H1/2(F)}2 .

IR pAn (a1 )2

IANIA A

Therefore, in virtue ofZ5), we deduce that

IRuaMw e < CRY2 A2 | Nallne e + C AR vz oy
< ClMnllpgreaye

which, together withZ2), completes the first part of the proof.
On the other hand, by using Lemma 1, we have that

As(RopnAn, RonAn) < C[Rap Pz Y An € Ay (26)

and therefore, analogous calculations complete the proof.

Theorem 4. There exist constants,;, C5 > 0, independent ok, such that
C1 {[S2.n M, An] + [TAn, Al < [S1pAn, An] < Co {[Sa.nAn, An] + [TAn, Al }

forall \;, € Ay,

Proof. In virtue of the trace Theorem, the coercivenesd gfand denoting by’ > 0 a generic
constant independent af we deduce that

IMllFzye < IR e
< CA Ry, RipAn)
= C [Sl,h)\/w )\h]

forall \, € A,. Then, by using Theorem 3, we conclude the existence of antsst;, C, > 0,
independent of, such that

Cu Il 2y < 1S1aA0 An] < Co Az VA € An (27)

On the other hand, by using Lemma 1,

[Szades ] + [TA M) = /Q o(Royh) : e(Raphy) da
+Z3N(R27h)\h,R27h)\h) + [T(RapAn), RopAs)
> C {le@and)Ba, + IRapdnleye | - (28)
where

2
leRan M)l 0, = D lleg Randn) 720,y -
ij=1
This induces to define the linear and continuous opel@tof H*(2,)]? — [[H'(Q)]*]* given
by

r

[[Cu, V]| ::/Q e(u):e(v)der/u-vds Yu,ve[HY(D))?,
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where[[-, -]] denotes the duality pairing betwepf ' (£2,)]?]* and[H!(3)]?. In what follows,
we prove that the operat@ is coercive orf ' (€,)]?.
In fact, we note first thaf C v, v]] > 0 for all v € [H'(2,)]?. Also, [[Cv,v]] = 0 implies
v = 0. In fact,
[Cv. V]l =le(V)l50, + V{22 =0
shows that € [H'(€,)]? is a rigid body motion withv = 0 onT'. Moreover, by using Korn's
inequality (see Ciarlet, 1988),

[Cv.v]] = [e(v)5a,
> C ”VH[2H1(92)12 - ”VH[2L2(Q2)}2

for all v € [H'(9,)]?, which shows tha€ satisfies the Garding inequality.
The above analysis shows th@tis coercive onH'(Q,)]?. Therefore, by using2g), the
coerciveness o and the trace Theorem, it follows that

[Son A, An) + [T, An)

Vv

C {|€(R2,h>\h)|3792 + ||R2,h)‘h||%2(1‘)}

C [[C(Ron n), Ropnl]

C | R p Al 22

M ooy (29)

AVARAVS

forall \;, € Ay,
Now, in virtue of Theorem 3 and the fact that\,, \n] = ¢ [[An[[f 2y < © H)\thHW(F)]Q,
it follows that

2
b — H
[S2 h)\ha )\h] + [T)\h, )\h] <C H)\hH[ 1/2(r VA, € Ah . (30)

)2
Then, by using29) and B0), we deduce the existence of constatitsC, > 0, independent of
h, such that

Crl[Mnllznrzayp < [S2ndn, An] + [TAn, An] < Co | Al ey (31)
for all A\, € Ay,. Finally, by combining27) and 1) the result follows.

The following Theorem shows that the spectral condition bemofP; 'S, is independent
of h.

Theorem 5. There exist€’' > 0, independent ok, such thatt < C.

Proof. By using Theorem 4, the proof is identical to the proof of Tieso 3 in Gatica et. al,
(1988).

5 ITERATION-BY-SUBDOMAIN ALGORITHMS

In this section we deduce the corresponding iteration—gygdemain algorithms related to
the Steklov—Poincaré problerhd). To do this, we present the Richardson iteration method and
the conjugate gradient method with preconditioning (PCGNM¥act, we consider the discrete
problem:Find A, € A, such that

ShAn = Xn s (32)

whereS;, : A, — A; is the discrete Steklov—Poincaré operafgr.c A; andAy, is the discrete
trace space.
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Then, given a preconditiond?;, : A, — A;, a relaxation parameter > 0 and an initial
guess\) € A;, the Richardson method generates the following sequenfiedidhe solution
An € Ay, of (32):

ML =M+ aP (i — SkAY) Vne NU{0}. (33)

Note that, given a small enough parameierthe invertibility of P, and S, ensures the
convergence of33). However, from the computational point of view, it is nes@y to show
that this convergence is independentofndeed, this is true if we can prove thatthe spectral
condition number o, 'S,, is bounded independently &f (see Quarteroni and Valli, 1999,
p. 126). Therefore, in virtue of Theorem 5, we deduce thatue of 83) allows to obtain
iteration—by—subdomain algorithms that are independeht o

It is worth mentioning that the optimum parameteii.e., that minimizes the spectral radius
of the iterative matrixI — a P, 'S;), is given bya,,; := 2/(0; + 0,,) and note that in this case,
the spectral radius ¢I — a,; P, 'S,), well known as the error reduction rate(is—1)/(k+1)
(Quarteroni and Valli, 1999, p. 127).

On the other hand, in order to accelerate the convergenoa)ly$¥CGM is used instead
Richardson. However, PCGM is only applicable to symmetnid positive definite systems.
Following Concus, Golub and O’Leary (see Goluv and Van Ld&83, p. 540), PCGM can be
written in the following way:

(0) Choose an initial guesg € Ay,.
(1) Solve

)\]11 = )\2 + Qp ZO s

wp = 1,

n=1.
(2) Solve

Pp2" =r" = xn — SpA;,

[Pz, 2"]
[Spzm, 27]
1 a,  [Ppz"2"] 1

— 1 ,
Wh1 a1 [Ppznt zn 1w,

n —

AL = AP (2™ + AT — AP

(3) If any specified stopping criteria is not satisfied,set n + 1 and go to ).
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In what concerning this method, we have the following estémia energy norm (see Quar-
teroni and Valli, 1999, p. 127),

k—1\"
=Nl <2 (YE51) 1= Al

The above estimate shows that the use of PCGM to solve theeths8teklov—Poincaré problem
leads to an algorithm with a convergence independent of

Strictly speaking, the iteration—by—subdomain algorghmust be written in terms of the
bilinear forms associated to the discrete problems gesebeither by the Richardson method
or PCGM. However, in order to see exactly what kind of proldenust be solved, we use the
continuous notation. Then, it is very important to note thatdiscretization of the correspond-
ing boundary value problems must be consistent with theelis@nalysis already presented in
this paper.

To deduce the iteration—by—subdomain algorithms gengkatehe Richardson method, we
first start with two subdomains and then we extend to an argitnumber of subdomains. In
fact, by replacind® = S, + T in the continuous version 088), it follows that

A = (1— )\ +a g,

wheres™ satisfies
Pp"=x—(S-T)A\".

Then, by using integration by parts, it follows that
o(uyo)ve + TB" = —o(uy )y + TA" enl,

whereuy ;== uy,1(\") = Wi + RiA" anduy, == uyn2(8") = wa + Ry3". This, together
with the fact thatu}, ,|. = A" andu},|. = 3", leads to the following iterative scheme to
update\™:

(0) Choose an initial gues¥’ € A, and setn = 0.

(1) Solve the Dirichlet problem

—dive (uy,;) = f inQ,
uy, = g onlp,
uy; = A" onl.

(2) Solve the Robin—type problem

—divo (uy,) = f inQy,
o(uf,)ve + Tul, = —o(uf )i + TA" onT,

(3) Update\™ by means oA = (1 —a) A" + a " wheref" := uf, }F. If any specified
stopping criteria is not satisfied, set=n + 1 and go to {).
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In what follows, we extend this algorithm to an arbitrary rhen of subdomains. In fact,
given an integep > 2, let';, j = 1,p — 1, be polygonal curves containedh such that the
interior region tol’; containsD and also the interior region 1, _;, and such that they splif3
into p subdomains?;, j = 1, p. In other words?2; is the annular region bounded by_; and
[';. Also, we use the notatiohy := I'p, ', := I'n, A 1= go, A} 1= A"r, anduy ; := uyy o,

p—1
Moreover, we defin€; := | ] ©Q;,Q, == [ J Q;andl := | T;.
odd j even j j=1

Therefore, by using the algorithm in two subdomains but nomsidering;, 2, andl’, and
by assuming, without loss of generality, thas even, we get the following iterative scheme:

(0) Choose an initial gues¥’ € A, and setn = 0.

(1) Solvein parallel, for all odd 7, j < p — 1, the Dirichlet problems

—divo (uy;) = f inQy,
n _ n
uy,;, = Aj only.

(2) Solvein parallel, for all eveny, j < p — 2, the Robin—type problems

—dive (uy;) = f inQy,
o(uy,)v; + Tuy,; = —o(uy, )y« + TA) onl;
and
—divo (uy,) = f inQ,,
o(uy, v, + Tuy, = —o(uy, )1 + TA; onl, 4,
o(uy,)v = TN(u’]V’p) only.

(3) Update\™ by means of?™! = (1 —a) A\ + a87,i=1,p — 1, where

ﬁn = (unN,2|F17 unN,2|F27 unN,4‘F37 unN,4‘F47 R unN,p‘Fp—l) :

If any specified stopping criteria is not satisfied,set n + 1 and go to {).

Analogously, one can deduce the iteration—by—subdoméjositams for PCGM. For the sake
of compactness, it will be presented separately in a fortticg paper.
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