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1 INTRODUCTION

In this paper we present new domain decomposition methods for solving exterior boundary
value problems in 2D elasticity. As a model problem we consider the exterior boundary value
problem for the Lamé system. A rather complete survey on domain decomposition methods can
be found in Quarteroni and Valli, (1999) and Smith et. al., (1996).

One of the main features of the domain decomposition methodsthat we present here is that
they are based on the use of a suitable Dirichlet–to–Neumannmapping (DtN) to transform the
exterior problem into an equivalent problem in a bounded domain. In what concerning the
Laplace operator, the so–called uncoupling method can be used. This method allows to use a
simple DtN mapping (see Gatica et. al, 1998) given just in terms of the hypersingular integral
operator. However, in elasticity problems, the uncouplingmethod must be replaced for a more
general class of DtN mappings (see Givoli, 1992; Givolli andKeller, 1989). Specifically, in
this work we use the DtN mapping based on infinite Fourier series presented in Han and Wu,
(1992). It is worth remarking that the idea of using Fourier series was first introduced in Feng,
(1983).

The outline of the paper is as follows. In section 2, we present the method of Han and
Wu for the numerical solution of the exterior boundary valueproblem for the Lamé system.
Here, we present the DtN mapping, the variational formulation and also discuss about the error
when considering a finite number of terms in the Fourier series. In section 3 we present the
continuous Steklov–Poincaré operators related to our interface problem. In section 4 we show
the finite dimensional approximations of the Steklov–Poicaré operators and finally, in section
5, we present some iteration–by–subdomain algorithms.

2 THE DTN MAPPING OF HAN AND WU

Let D be a bounded and simply connected domain inR2 with polygonal boundaryΓD.
Then, givenf := (f1, f2) ∈ [L2(R2 − D̄)]2 with compact support,g0 ∈ [H1/2(ΓD)]2, the linear
exterior boundary value problem reads:Find u := (u1, u2) such that

− div σ(u) = f in R2 − D̄ ,

u = g0 on ΓD , (1)

u = O(1) , ‖x‖ → +∞ ,

whereσ(u) := λ tr e(u) I + 2 µ e(u) is the stress tensor,e(u) is the strain tensor given by
eij(u) := 1

2
{ ∂ui

∂xj
+

∂uj

∂xi
}, i, j = 1, 2, tr denotes the trace of a tensor,I denotes the identity tensor

andλ, µ > 0 are the Lamé constants.
Now, in order to transform (1), we introduce a circleΓN of radiusR, centered at the origin,

such that its interior region contains̄D and such that the support off is contained in the annular
regionΩ bounded byΓD andΓN . Then, following Han and Wu, (1992), the exterior problem
(1) can be transformed, equivalently, into the following boundary value problem in the bounded
domainΩ̄: Find u ∈ [H1(Ω)]2 such that

− div σ(u) = f in Ω ,

u = g0 on ΓD , (2)

σ(u)ν = T̃(u) on ΓN ,
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whereT̃ := (T̃1, T̃2) : [H1/2(ΓN)]2 → [H−1/2(ΓN)]2 is the DtN mapping defined by

T̃1(v) :=
2 + 2k

1 + 2k

µ

πR

∞
∑

n=1

∫ 2π

0

∂2v1

∂φ2
(R, φ)

cos n(θ − φ)

n
dφ

− 2k

1 + 2k

µ

πR

∞
∑

n=1

∫ 2π

0

∂2v2

∂φ2
(R, φ)

sin n(θ − φ)

n
dφ ,

T̃2(v) :=
2 + 2k

1 + 2k

µ

πR

∞
∑

n=1

∫ 2π

0

∂2v2

∂φ2
(R, φ)

cos n(θ − φ)

n
dφ

+
2k

1 + 2k

µ

πR

∞
∑

n=1

∫ 2π

0

∂2v1

∂φ2
(R, φ)

sin n(θ − φ)

n
dφ

for all x ∈ ΓN , v := (v1, v2), vi = vi(r, θ), i = 1, 2, x = r cos θ, y = r sin θ, k := µ
λ+µ

andν
denotes the outward normal toΓN .

It is important to remark that the mapping̃T gives the exact boundary condition for the
exterior problem and therefore, in practice, by taking justa finite number of terms on the Fourier
series introduces and error that must be considered. Also, we note that̃T generates a boundary
condition of nonlocal character.

In what follows, we consider approximations of the operatorT̃. This is, we define the
sequencẽTN := (T̃N

1 , T̃N
2 ) : [H1/2(ΓN)]2 → [H−1/2(ΓN)]2, N ∈ N ∪ {0}, by

T̃N
1 (v) :=

2 + 2k

1 + 2k

µ

πR

N
∑

n=1

∫ 2π

0

∂2v1

∂φ2
(R, φ)

cos n(θ − φ)

n
dφ

− 2k

1 + 2k

µ

πR

N
∑

n=1

∫ 2π

0

∂2v2

∂φ2
(R, φ)

sinn(θ − φ)

n
dφ ,

T̃N
2 (v) :=

2 + 2k

1 + 2k

µ

πR

N
∑

n=1

∫ 2π

0

∂2v2

∂φ2
(R, φ)

cos n(θ − φ)

n
dφ

+
2k

1 + 2k

µ

πR

N
∑

n=1

∫ 2π

0

∂2v1

∂φ2
(R, φ)

sin n(θ − φ)

n
dφ .

This sequence leads to define, forN ∈ N ∪ {0}, the following boundary value problems:Find
uN ∈ [H1(Ω)]2 such that

− div σ(uN ) = f in Ω ,

uN = g0 on ΓD , (3)

σ(uN)ν = T̃N(uN) on ΓN .

On the other hand, by using integration by parts, we obtain the following variational formu-
lation of (2): Find u ∈ [H1(Ω)]2 such thatu = g0 onΓD and

Ã(u,v) + B(u,v) =

∫

Ω

f · v dx ∀v := (v1, v2) ∈ [H1
ΓD

(Ω)]2 , (4)
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where

Ã(u,v) :=

∫

Ω

σ(u) : e(v) dx ,

σ(u) : e(v) :=

2
∑

i,j=1

σij(u)eij(v)

and

B(u,v) :=
2 + 2k

1 + 2k

µ

π

∞
∑

n=1

∫ 2π

0

∫ 2π

0

{

∂u1

∂φ
(R, φ)

∂v1

∂θ
(R, θ) +

∂u2

∂φ
(R, φ)

∂v2

∂θ
(R, θ)

}

×cos n(θ − φ)

n
dφ dθ

+
2k

1 + 2k

µ

π

∞
∑

n=1

∫ 2π

0

∫ 2π

0

{

∂u1

∂φ
(R, φ)

∂v2

∂θ
(R, θ) − ∂u2

∂φ
(R, φ)

∂v1

∂θ
(R, θ)

}

×sin n(θ − φ)

n
dφ dθ . (5)

Analogously, by using integration by parts, we obtain the following variational formulation of
(3): Find uN ∈ [H1(Ω)]2 such thatuN = g0 onΓD and

Ã(uN ,v) + BN(uN ,v) =

∫

Ω

f · v dx ∀v ∈ [H1
ΓD

(Ω)]2 , (6)

where

BN (u,v) :=
2 + 2k

1 + 2k

µ

π

N
∑

n=1

∫ 2π

0

∫ 2π

0

{

∂u1

∂φ
(R, φ)

∂v1

∂θ
(R, θ) +

∂u2

∂φ
(R, φ)

∂v2

∂θ
(R, θ)

}

×cos n(θ − φ)

n
dφ dθ

+
2k

1 + 2k

µ

π

N
∑

n=1

∫ 2π

0

∫ 2π

0

{

∂u1

∂φ
(R, φ)

∂v2

∂θ
(R, θ) − ∂u2

∂φ
(R, φ)

∂v1

∂θ
(R, θ)

}

×sin n(θ − φ)

n
dφ dθ . (7)

The following result is necessary to prove the uniqueness ofsolution for both variational
formulations (4) and (6).

Lemma 1. The bilinear formsB andBN , N ∈ N, are symmetric and continuous on[H1(Ω)]2×
[H1(Ω)]2. Moreover,B(v,v) ≥ 0 for all v ∈ [H1

ΓD
(Ω)]2 andBN (v,v) ≥ 0, N ∈ N, for all

v ∈ [H1
ΓD

(Ω)]2.

Proof. See Lemma 2 in Han and Wu, (1992).

Now, we note that̃A is a continuous bilinear form on[H1(Ω)]2 × [H1(Ω)]2. Moreover, as a
consecuence of Korn’s inequality, it follows thatÃ is coercive on[H1

ΓD
(Ω)]2. Then, by using

Lemma 1, we deduce that both variational formulations (4) and (6) satisfy the hypothesis of the
Lax–Milgram Lemma.

The following result allows to get control when using a finitenumber of terms in the the
Fourier series that defines̃T.

M.A. BARRIENTOS, M.E. MELLADO2182

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Theorem 1.There existsC > 0, independent ofN , such that for alll ≥ 2,

|B(u,v) − BN(u,v)| ≤ C

N l−1
‖u‖[Hl−1/2(ΓN )]2‖v‖[H1/2(ΓN )]2

∀v ∈ [H1
ΓD

(Ω)]2

and

‖u− uN‖[H1(Ω)]2 ≤
C

β0N l−1
‖u‖[Hl−1/2(ΓN )]2 ,

whereβ0 is the coerciveness constant ofÃ.

Proof. See Lemma 3 and Theorem 1 in Han and Wu, (1992).

Theorem 1 shows that, for solving (4), is enough to consider the problem (6) since the error
‖u − uN‖[H1(Ω)]2 is controlled by the number of terms in the Fourier series. Inwhat follows,
we develop a domain decomposition method for the exterior problem (1) by considering its
approximation by (6).

3 STEKLOV–POINCAR É OPERATORS

Let Γ be a polygonal and closed curve contained inΩ, such that its interior region contains
D̄ and such that it splitsΩ into two subdomains,Ω1 andΩ2. This is,Ω1 is the annular region
bounded byΓD andΓ, Ω2 by Γ andΓN andΩ = Ω1 ∪ Γ ∪ Ω2. Also, we denote byνi, i = 1, 2,
the outward normal to∂Ωi onΓ. With this, and givenλ ∈ [H1/2(Γ)]2, we define the following
boundary value problems:

• Find uN,1(λ) ∈ [H1(Ω1)]
2 such that

− div σ(uN,1(λ)) = f in Ω1 ,

uN,1(λ) = g0 on ΓD , (8)

uN,1(λ) = λ on Γ .

• Find uN,2(λ) ∈ [H1(Ω2)]
2 such that

− div σ(uN,2(λ)) = f in Ω2 ,

uN,2(λ) = λ on Γ , (9)

σ(uN,2(λ))ν = T̃N(uN,2(λ)) on ΓN .

On the other hand, the continuity of the normal stresses onΓ leads to the following interface
problem:Find λ̄ ∈ [H1/2(Γ)]2 such that

[σ(uN,1(λ̄))ν1 + σ(uN,2(λ̄))ν2, µ] = 0 ∀µ ∈ [H1/2(Γ)]2 , (10)

where[·, ·] denotes the duality pairing between[H−1/2(Γ)]2 and[H1/2(Γ)]2 defined by means
of the inner product on[L2(Γ)]2.

Now, we define linear extension operatorsRi, i = 1, 2, as follows

• R1 : [H1/2(Γ)]2 ∋ λ → R1λ ∈ [H1(Ω1)]
2 as the solution of

− div σ(R1λ) = 0 in Ω1 ,

R1λ = 0 on ΓD , (11)

R1λ = λ on Γ .
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• R2 : [H1/2(Γ)]2 ∋ λ → R2λ ∈ [H1(Ω2)]
2 as the solution of

− div σ(R2λ) = 0 in Ω2 ,

R2λ = λ on Γ , (12)

σ(R2λ)ν = T̃N(R2λ) on ΓN .

It is worth remarking that for anyλ ∈ [H1/2(Γ)]2, R1λ and R2λ are, respectively, the
harmonic extensions ofλ to Ω1 andΩ2. Moreover, we definẽw1 ∈ [H1(Ω1)]

2 andw2 ∈
[H1(Ω2)]

2 as the unique weak solutions of the following boundary valueproblems:

• Find w̃1 ∈ [H1(Ω1)]
2 such that

− div σ(w̃1) = f in Ω1 ,

w̃1 = g0 on ΓD , (13)

w̃1 = 0 on Γ .

• Find w2 ∈ [H1(Ω2)]
2 such that

− div σ(w2) = f in Ω2 ,

w2 = 0 on Γ , (14)

σ(w2)ν = T̃N(w2) on ΓN .

Also, we denote byg ∈ [H1(Ω)]2 a smooth extension ofg0 onΩ, such thatg := 0 in Ω2 ∪Γ,
and definew1 := w̃1 − g. Therefore, it follows that,

uN,1(λ) = w1 + g + R1λ (15)

and
uN,2(λ) = w2 + R2λ . (16)

Now, we introduce continuous and symmetric bilinear formsA1 : [H1(Ω1)]
2× [H1(Ω1)]

2 →
R, A2 : [H1(Ω2)]

2 × [H1(Ω2)]
2 → R andA : [H1(Ω)]2 × [H1(Ω)]2 → R, given by

A1(z1,v1) :=

∫

Ω1

σ(z1) : e(v1) dx ,

A2(z2,v2) :=

∫

Ω2

σ(z2) : e(v2) dx + BN(z2,v2)

and

A(z,v) :=

2
∑

k=1

Ak(zk,vk) ∀ z,v ∈ [H1(Ω)]2 ,

wherezk := z|Ωk
y vk := v|Ωk

. Then, the unique solutionuN ∈ [H1(Ω)]2 of (6) satisfies
uN = g0 onΓD and

A(uN ,v) = F (v) ∀v ∈ [H1
ΓD

(Ω)]2 ,

where

F (v) :=

∫

Ω

f · v dx .
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Note that for anyλ ∈ [H1/2(Γ)]2, the harmonic extensionsRi, i = 1, 2, satisfy

A1(R1λ, ϕ) = 0 ∀ϕ ∈ [H1
0 (Ω1)]

2 (17)

and
A2(R2λ, ϕ) = 0 ∀ϕ ∈ [H1

Γ(Ω2)]
2 , (18)

whereH1
Γ(Ω2) := {v ∈ H1(Ω2) : v = 0 on Γ}.

Lemma 2. The solutionuN of (6) is related withw1 andw2 trough the following identities:

w1 = (uN − g)|Ω1
−R1((uN − g)|Γ)

and
w2 = uN |Ω2

−R2(uN |Γ) .

Proof. It is analogous to the proof of Lemma 3 in Gatica et. al., (1998).

In what follows, we define the functions

w :=

{

w1 , enΩ1 ∪ Γ,
w2 , enΩ2 ∪ Γ,

and

Rλ :=

{

R1λ , enΩ1 ∪ Γ,
R2λ , enΩ2 ∪ Γ,

for all λ ∈ [H1/2(Γ)]2. Note thatw ∈ [H1(Ω)]2, w = 0 on ΓD ∪ Γ andRλ ∈ [H1
ΓD

(Ω)]2.
Then, by replacing (15) and (16) into (10), and using integration by parts, we deduce the
Steklov–Poincaré problem:Find λ̄ ∈ [H1/2(Γ)]2 such that

S λ̄ = χ , (19)

whereS : [H1/2(Γ)]2 → [H−1/2(Γ)]2 is the Steklov–Poincaré operator given by

[Sλ, µ ] :=

2
∑

k=1

Ak (Rkλ,Rkµ) ∀λ, µ ∈ [H1/2(Γ)]2

andχ ∈ [H−1/2(Γ)]2 is defined as follows

[ χ, µ ] :=

∫

Ω

f · Rµ dx − A(w + g,Rµ) ∀µ ∈ [H1/2(Γ)]2 .

The following result is necessary to prove existence and uniqueness of solution for the
Steklov–Poincaré problem (19).

Lemma 3. There exist constantsCi, C̃i > 0, i = 1, 2, depending only onΩi, such that

Ci ‖λ‖[H1/2(Γ)]2 ≤ ‖Riλ‖[H1(Ωi)]2 ≤ C̃i ‖λ‖[H1/2(Γ)]2 ∀λ ∈ [H1/2(Γ)]2 .

Proof. It follows from usual arguments for elliptic problems and the properties of the bilinear
form BN .
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Lemma 4. There exists an uniquēλ ∈ [H1/2(Γ)]2 such thatS λ̄ = χ.

Proof. SinceA1 andA2 are continuous bilinear forms, by using Lemma 3, it follows thatS
induces a continuous bilinear form on[H1/2(Γ)]2 × [H1/2(Γ)]2. In what follows of the proof,
C > 0 denotes a generic constant.

Now, in virtue of the Lemma 1, Korn’s inequality and Lemma 3, we deduce that

[Sλ, λ] ≥ C

2
∑

k=1

∫

Ωk

e(Rkλ) : e(Rkλ) dx

= C

∫

Ω

e(Rλ) : e(Rλ) dx

≥ C ‖Rλ‖2
[H1(Ω)]2

= C
2

∑

k=1

‖Rkλ‖2
[H1(Ωk)]2

≥ C ‖λ‖2
[H1/2(Γ)]2

for all λ ∈ [H1/2(Γ)]2. Then, alsoS induces a bilinear form which is coercive on[H1/2(Γ)]2.
Therefore, a direct application of the Lax–Milgram Lemma completes the proof.

The following result establishes the equivalence between the variational formulation (6) and
the Steklov–Poincaré problem (19).

Theorem 2. Let uN ∈ [H1(Ω)]2 andλ̄ ∈ [H1/2(Γ)]2 be the unique solutions of (6) and (19),
respectively. Then,

λ̄ = uN |Γ
and

uN = g + w + Rλ̄ =

{

uN,1(λ̄) , in Ω1

uN,2(λ̄) , in Ω2 .

Proof. It is analogous to the proof of Theorem 3 in Gatica et. al, (1998).

4 DISCRETE APPROXIMATIONS

We start by defining a triangulation of̄Ω made up of straight and curves triangles in order
to describe exactly the circleΓN . In fact, givenN ∈ N, let 0 = t0 < t1 · · · < tN = 2π be
an uniform partition of[0, 2π] with tj+1 − tj = 2π

N
for all j = 0, N − 1. Also, we consider

z : [0, 2π] → ΓN as the parametrization ofΓN defined byz(t) := R (cos t, sin t)T for all
t ∈ [0, 2π] and denote byΩh̃ the annular region bounded byΓD and the polygonal curveΓN,h̃,
with verticesz(t1), z(t2), . . . , z(tn). Moreover, letTh̃ be a regular triangulation ofΩh̃, made up
of trianglesτ̃ of diameterhτ̃ , and define

h̃ := sup
τ̃∈Th̃

hτ̃ .

Then, by replacing each trianglẽτ ∈ Th̃ with a side onΓN,h̃, by the corresponding curve triangle
onΓN , we get starting fromTh̃, a triangulationTh of Ω̄ made up of straight and curves triangles.

Let τ̂ be the reference triangle with verticeŝP1 := (0, 0)T , P̂2 := (1, 0)T andP̂3 := (0, 1)T

and consider the family of surjective mappings{Fτ}τ∈Th
such thatFτ (τ̂ ) = τ . This is, if τ is a
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straight triangle ofTh, the mappingFτ is given by

Fτ (x̂) := Bτ x̂ + bτ , (20)

whereBτ is a square matrix of order 2 andbτ ∈ R2. Now, if τ is a curve triangle with vertices
P1, P2, P3, such thatP2 = z(tj−1) ∈ ΓN andP3 = z(tj) ∈ ΓN , the mappingFτ is as follows

Fτ (x̂) := Bτ x̂ + bτ + Gτ (x̂) ∀ x̂ := (x̂1, x̂2) ∈ τ̂ , (21)

where
GT (x̂) :=

x̂1

1 − x̂2
{z(tj−1 + x̂2(tj − tj−1)) − [z(tj−1) + x̂2(z(tj) − z(tj−1))]} .

It can be shown that (21) is aC∞–difeomorfismthat takes the trianglêτ on the curve triangleτ
in such a way thatFτ (P̂i) = Pi, i = 1, 3 (see Zenizek, 1990). Moreover, the image of the side
P̂2P̂3 is the curve side ofτ and the other two sides of̂τ are transformed linearly by (21) to the
straight sides ofτ .

Let P1(τ̂ ) be the space of polynomials of degree≤ 1 defined on̂τ . Then, for each triangle
τ ∈ Th, we define

P1(τ) := {v : v = (JFτ )
−1(DFτ ) v̂ ◦ F−1

τ ∀ v̂ ∈ P1(τ̂)} ,

whereJFτ andDFτ denote, respectively, the Jacobian and the Frêchet derivative of the mapping
Fτ . With this, we define the finite element subspaces

H̃i,h := {vh ∈ C(Ω̄i) : vh|τ ∈ P1(τ) ∀ τ ⊆ Ω̄i}

and
Λ̃h := {vh|Γ : vh ∈ H̃i,h} .

Moreover, we define
H̃0

1,h := {vh ∈ H̃1,h : vh = 0 on ΓD ∪ Γ} ,

H̃0
2,h := {vh ∈ H̃2,h : vh = 0 on Γ}

and
Hi,h := H̃i,h × H̃i,h ,

Λh := Λ̃h × Λ̃h ,

H0
i,h := H̃0

i,h × H̃0
i,h .

Consequently, in virtue of the relations (17) and (18), we define, for allλh ∈ Λh, the discrete
extensionsRi,h, i = 1, 2, as follows

• R1,h : Λh ∋ λh → R1,hλh ∈ H1,h as the solution of

A1 (R1,hλh, vh) = 0 ∀ vh ∈ H0
1,h ,

R1,hλh = 0 on ΓD ,

R1,hλh = λh on Γ .
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• R2,h : Λh ∋ λh → R2,hλh ∈ H2,h as the solution of

A2 (R2,hλh, vh) = 0 ∀ vh ∈ H0
2,h ,

R2,hλh = λh on Γ .

With this, we define the discrete Steklov–Poincaré operator by

Sh := S1,h + S2,h ,

whereSi,h : Λh → Λ∗
h, i = 1, 2, are the local discrete operators given by

[Si,hλh, µh] := Ai(Ri,hλh,Ri,hµh) ∀λh, µh ∈ Λh ,

whereΛ∗
h denotes the dual ofΛh.

On the other hand, the numerical solving of (19) by means of iterative solvers needs a suitable
preconditioner. This preconditioner needs to ensure that the convergence of the iteration–by–
subdomain algorithm must be independent ofh. To do this, we consider theDirichlet–Robin
type preconditioner given byPh := S2,h + T, where

[Tλh, µh] := c [λh, µh] = c

∫

Γ

λh · µh ds ∀λh, µh ∈ Λh

andc > 0 is an arbitrary constant. In what follows, we show thatκ, the spectral condition
number ofP−1

h Sh, is bounded independently ofh. To do this, we need some previous results.

Theorem 3.There exist constantsC1, C2 > 0, independent ofh, such that

A1(R1,hλh,R1,hλh) ≤ C1 ‖λh‖2
[H1/2(Γ)]2 ∀λh ∈ Λh

and
A2(R2,hλh,R2,hλh) ≤ C2 ‖λh‖2

[H1/2(Γ)]2 ∀λh ∈ Λh .

Proof. We note first that

A1(R1,hλh,R1,hλh) ≤ C ‖R1,hλh‖2
[H1(Ω1)]2 ∀λh ∈ Λh , (22)

whereC > 0 depends only on the Lamé constants. In what follows of the proof,C > 0 denotes
a generic constant independent ofh. Now, sinceΩ1 is a polygonal domain andλh ∈ [H1(Γ)]2,
we have the following regularity estimate (see Lions and Magenes, 1972)

‖R1λh‖[H3/2(Ω1)]2 ≤ C ‖λh‖[H1(Γ)]2 . (23)

Also, by using usual interpolation estimates (see Ciarlet,1978), it follows that

‖R1λh −R1,hλh‖[H1(Ω1)]2 ≤ C h1/2 ‖R1λh‖[H3/2(Ω1)]2 . (24)

Moreover, we have the inverse inequality (see Ciarlet, 1978),

h1/2 ‖λh‖[H1(Γ)]2 ≤ C ‖λh‖[H1/2(Γ)]2 ∀λh ∈ Λh . (25)
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Then, by using triangle inequality, Lemma 3, (23) and (24),

‖R1,hλh‖[H1(Ω1)]2 ≤ ‖R1λh − R1,hλh‖[H1(Ω1)]2 + ‖R1λh‖[H1(Ω1)]2

≤ C h1/2 ‖R1λh‖[H3/2(Ω1)]2 + ‖R1λh‖[H1(Ω1)]2

≤ C h1/2 ‖λh‖[H1(Γ)]2 + C ‖λh‖[H1/2(Γ)]2 .

Therefore, in virtue of (25), we deduce that

‖R1,hλh‖[H1(Ω1)]2 ≤ C h1/2 h−1/2 ‖λh‖[H1/2(Γ)]2 + C ‖λh‖[H1/2(Γ)]2

≤ C ‖λh‖[H1/2(Γ)]2

which, together with (22), completes the first part of the proof.
On the other hand, by using Lemma 1, we have that

A2(R2,hλh,R2,hλh) ≤ C ‖R2,hλh‖2
[H1(Ω2)]2 ∀λh ∈ Λh (26)

and therefore, analogous calculations complete the proof.

Theorem 4.There exist constantsC1, C2 > 0, independent ofh, such that

C1 {[S2,hλh, λh] + [Tλh, λh]} ≤ [S1,hλh, λh] ≤ C2 {[S2,hλh, λh] + [Tλh, λh]}

for all λh ∈ Λh.

Proof. In virtue of the trace Theorem, the coerciveness ofA1, and denoting byC > 0 a generic
constant independent ofh, we deduce that

‖λh‖2
[H1/2(Γ)]2 ≤ ‖R1,hλh‖2

[H1(Ω1)]2

≤ C A1(R1,hλh,R1,hλh)

= C [S1,hλh, λh]

for all λh ∈ Λh. Then, by using Theorem 3, we conclude the existence of constantsĈ1, Ĉ2 > 0,
independent ofh, such that

Ĉ1 ‖λh‖2
[H1/2(Γ)]2 ≤ [S1,hλh, λh] ≤ Ĉ2 ‖λh‖2

[H1/2(Γ)]2 ∀λh ∈ Λh . (27)

On the other hand, by using Lemma 1,

[S2,hλh, λh] + [Tλh, λh] =

∫

Ω2

σ(R2,hλh) : e(R2,hλh) dx

+ BN(R2,hλh,R2,hλh) + [T(R2,hλh),R2,hλh]

≥ C
{

|e(R2,hλh)|20,Ω2
+ ‖R2,hλh‖2

[L2(Γ)]2

}

, (28)

where

|e(R2,hλh)|20,Ω2
:=

2
∑

i,j=1

‖eij(R2,hλh)‖2
L2(Ω2) .

This induces to define the linear and continuous operatorC : [H1(Ω2)]
2 → [[H1(Ω2)]

2]∗ given
by

[[Cu,v]] :=

∫

Ω2

e(u) : e(v) dx +

∫

Γ

u · v ds ∀u,v ∈ [H1(Ω2)]
2 ,
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where[[·, ·]] denotes the duality pairing between[[H1(Ω2)]
2]∗ and[H1(Ω2)]

2. In what follows,
we prove that the operatorC is coercive on[H1(Ω2)]

2.
In fact, we note first that[[Cv,v]] ≥ 0 for all v ∈ [H1(Ω2)]

2. Also, [[Cv,v]] = 0 implies
v = 0. In fact,

[[Cv,v]] = |e(v)|20,Ω2
+ ‖v‖2

[L2(Γ)]2 = 0

shows thatv ∈ [H1(Ω2)]
2 is a rigid body motion withv = 0 onΓ. Moreover, by using Korn’s

inequality (see Ciarlet, 1988),

[[Cv,v]] ≥ |e(v)|20,Ω2

≥ C ‖v‖2
[H1(Ω2)]2 − ‖v‖2

[L2(Ω2)]2

for all v ∈ [H1(Ω2)]
2, which shows thatC satisfies the Gårding inequality.

The above analysis shows thatC is coercive on[H1(Ω2)]
2. Therefore, by using (28), the

coerciveness ofC and the trace Theorem, it follows that

[S2,hλh, λh] + [Tλh, λh] ≥ C
{

|e(R2,hλh)|20,Ω2
+ ‖R2,hλh‖2

L2(Γ)

}

= C [[C(R2,hλh),R2,hλh]]

≥ C ‖R2,hλh‖2
[H1(Ω2)]2

≥ C ‖λh‖2
[H1/2(Γ)]2 (29)

for all λh ∈ Λh.
Now, in virtue of Theorem 3 and the fact that[Tλh, λh] = c ‖λh‖2

[L2(Γ)]2 ≤ c ‖λh‖2
[H1/2(Γ)]2

,
it follows that

[S2,hλh, λh] + [Tλh, λh] ≤ C ‖λh‖2
[H1/2(Γ)]2 ∀λh ∈ Λh . (30)

Then, by using (29) and (30), we deduce the existence of constantsC̃1, C̃2 > 0, independent of
h, such that

C̃1 ‖λh‖[H1/2(Γ)]2 ≤ [S2,hλh, λh] + [Tλh, λh] ≤ C̃2 ‖λh‖[H1/2(Γ)]2 (31)

for all λh ∈ Λh. Finally, by combining (27) and (31) the result follows.

The following Theorem shows that the spectral condition number ofP−1
h Sh is independent

of h.

Theorem 5.There existsC > 0, independent ofh, such thatκ ≤ C.

Proof. By using Theorem 4, the proof is identical to the proof of Theorem 3 in Gatica et. al,
(1988).

5 ITERATION–BY–SUBDOMAIN ALGORITHMS

In this section we deduce the corresponding iteration–by–subdomain algorithms related to
the Steklov–Poincaré problem (19). To do this, we present the Richardson iteration method and
the conjugate gradient method with preconditioning (PCGM). In fact, we consider the discrete
problem:Find λh ∈ Λh such that

Shλh = χh , (32)

whereSh : Λh → Λ∗
h is the discrete Steklov–Poincaré operator,χh ∈ Λ∗

h andΛh is the discrete
trace space.
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Then, given a preconditionerPh : Λh → Λ∗
h, a relaxation parameterα > 0 and an initial

guessλ0
h ∈ Λh, the Richardson method generates the following sequence tofind the solution

λh ∈ Λh of (32):
λn+1

h = λn
h + αP−1

h (χh − Shλ
n
h) ∀n ∈ N ∪ {0} . (33)

Note that, given a small enough parameterα, the invertibility of Ph andSh ensures the
convergence of (33). However, from the computational point of view, it is necessary to show
that this convergence is independent ofh. Indeed, this is true if we can prove thatκ, the spectral
condition number ofP−1

h Sh, is bounded independently ofh (see Quarteroni and Valli, 1999,
p. 126). Therefore, in virtue of Theorem 5, we deduce that theuse of (33) allows to obtain
iteration–by–subdomain algorithms that are independent of h.

It is worth mentioning that the optimum parameterα, i.e., that minimizes the spectral radius
of the iterative matrix(I−αP−1

h Sh), is given byαopt := 2/(σ1 +σm) and note that in this case,
the spectral radius of(I−αopt P

−1
h Sh), well known as the error reduction rate, is(κ−1)/(κ+1)

(Quarteroni and Valli, 1999, p. 127).
On the other hand, in order to accelerate the convergence, usually PCGM is used instead

Richardson. However, PCGM is only applicable to symmetric and positive definite systems.
Following Concus, Golub and O’Leary (see Goluv and Van Loan,1983, p. 540), PCGM can be
written in the following way:

(0) Choose an initial guessλ0
h ∈ Λh.

(1) Solve
r0 = χh − Shλ

0
h ,

z0 = P−1
h r0 ,

α0 =
[Phz

0, z0]

[Shz0, z0]
,

λ1
h = λ0

h + α0 z0 ,

w1 = 1 ,

n = 1 .

(2) Solve
Phz

n = rn := χh − Shλ
n
h ,

αn =
[Phz

n, zn]

[Shzn, zn]
,

1

wn+1

= 1 − αn

αn−1

[Phz
n, zn]

[Phzn−1, zn−1]

1

wn

,

λn+1
h = λn−1

h + wn+1(αnz
n + λn

h − λn−1
h ) .

(3) If any specified stopping criteria is not satisfied, setn = n + 1 and go to (2).
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In what concerning this method, we have the following estimate in energy norm (see Quar-
teroni and Valli, 1999, p. 127),

‖λh − λn
h‖Sh

≤ 2

(√
κ − 1√
κ + 1

)n

‖λh − λ0
h‖Sh

.

The above estimate shows that the use of PCGM to solve the discrete Steklov–Poincaré problem
leads to an algorithm with a convergence independent ofh.

Strictly speaking, the iteration–by–subdomain algorithms must be written in terms of the
bilinear forms associated to the discrete problems generated either by the Richardson method
or PCGM. However, in order to see exactly what kind of problems must be solved, we use the
continuous notation. Then, it is very important to note thatthe discretization of the correspond-
ing boundary value problems must be consistent with the discrete analysis already presented in
this paper.

To deduce the iteration–by–subdomain algorithms generated by the Richardson method, we
first start with two subdomains and then we extend to an arbitrary number of subdomains. In
fact, by replacingP = S2 + T in the continuous version of (33), it follows that

λn+1 = (1 − α) λn + α βn ,

whereβn satisfies
P βn = χ − (S1 − T) λn .

Then, by using integration by parts, it follows that

σ(un
N,2)ν2 + T βn = −σ(un

N,1)ν1 + T λn en Γ ,

whereun
N,1 := uN,1(λ

n) = w̃1 + R1λ
n andun

N,2 := uN,2(β
n) = w2 + R2β

n. This, together
with the fact thatun

N,1

∣

∣

Γ
= λn andun

N,2

∣

∣

Γ
= βn, leads to the following iterative scheme to

updateλn:

(0) Choose an initial guessλ0 ∈ Λh and setn = 0.

(1) Solve the Dirichlet problem

− div σ (un
N,1) = f in Ω1 ,

un
N,1 = g0 on ΓD ,

un
N,1 = λn on Γ .

(2) Solve the Robin–type problem

− div σ (un
N,2) = f in Ω2 ,

σ(un
N,2)ν2 + Tun

N,2 = −σ(un
N,1)ν1 + T λn on Γ ,

σ(un
N,2)ν = T̃N(un

N,2) on ΓN .

(3) Updateλn by means ofλn+1 = (1− α) λn + α βn whereβn := un
N,2

∣

∣

Γ
. If any specified

stopping criteria is not satisfied, setn = n + 1 and go to (1).
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In what follows, we extend this algorithm to an arbitrary number of subdomains. In fact,
given an integerp > 2, let Γj , j = 1, p − 1, be polygonal curves contained inΩ, such that the
interior region toΓj containsD̄ and also the interior region toΓj−1, and such that they splitsΩ
into p subdomainsΩj , j = 1, p. In other words,Ωj is the annular region bounded byΓj−1 and
Γj. Also, we use the notationΓ0 := ΓD, Γp := ΓN , λn

0 := g0, λn
j := λn|Γj

andun
N,j := un

N |Ωj
.

Moreover, we definẽΩ1 :=
⋃

odd j

Ωj , Ω̃2 :=
⋃

even j

Ωj andΓ̃ :=

p−1
⋃

j=1

Γj .

Therefore, by using the algorithm in two subdomains but now consideringΩ̃1, Ω̃2 andΓ̃, and
by assuming, without loss of generality, thatp is even, we get the following iterative scheme:

(0) Choose an initial guessλ0 ∈ Λh and setn = 0.

(1) Solvein parallel , for all oddj, j ≤ p − 1, the Dirichlet problems

− div σ (un
N,j) = f in Ωj ,

un
N,j = λn

j−1 on Γj−1 ,

un
N,j = λn

j on Γj .

(2) Solvein parallel , for all evenj, j ≤ p − 2, the Robin–type problems

− div σ (un
N,j) = f in Ωj ,

σ(un
N,j)νj + Tun

N,j = −σ(un
N,j−1)νj−1 + T λn

j−1 on Γj−1 ,

σ(un
N,j)νj + Tun

N,j = −σ(un
N,j+1)νj+1 + T λn

j on Γj

and

− div σ (un
N,p) = f in Ωp ,

σ(un
N,p)νp + Tun

N,p = −σ(un
N,p−1)νp−1 + T λn

p−1 on Γp−1 ,

σ(un
N,p)ν = T̃N (un

N,p) on ΓN .

(3) Updateλn by means ofλn+1
i = (1 − α) λn

i + α βn
i , i = 1, p − 1, where

βn := (un
N,2|Γ1

,un
N,2|Γ2

,un
N,4|Γ3

,un
N,4|Γ4

, . . . ,un
N,p|Γp−1

) .

If any specified stopping criteria is not satisfied, setn = n + 1 and go to (1).

Analogously, one can deduce the iteration–by–subdomains algorithms for PCGM. For the sake
of compactness, it will be presented separately in a forthcoming paper.
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