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Abstract. In this work, it is presented the performance of the RBF collocation method to predict the
unknown field variable in non-homogeneous and variable coefficient boundary value problems. The
local RBF collocation approach differs of the classical global RBF collocation approach in the way that
a radial basis function (RBF) interpolation function is defined. The former chooses to represent the
meshless approximation by an expansion around a few supporting points (it constitutes a computational
molecule). Any Lagragian or Hermitian RBF Hardy’s interpolation can be used to construct the meshless
locally supported shape functions which can reconstruct the field variable in each point into the molecule.
In this way, several strategies have been proposed to possibly improve the imposing of the derivative
boundary conditions in a strong-form approach. Three representative linear examples are solved by
means different RBF collocation approaches and its resultscompared. It is found that all local RBF
approaches performed very well. In addition, the RBF shape parameter affects the computed solution
differently for each method.
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1 INTRODUCTION

In many problems of engineering interest governed by partial differential equations (PDEs),
variable coefficients and non-homogeneities are presents.For example, in treating of nonlinear-
ities or the time derivative term, the transformed originalequations can generate those problem
types. Hence any intended numerical method should be able toapproximate such more general
problems.

In this paper, we focus on the use of the radial basis function(RBF) method to solve linear
second order boundary value problems. We consider both the global RBF approach (known
as symmetric RBF method),Fasshauer(2007); La Rocca et al.(2005); La Rocca and Power
(2008) and the recently proposed local RBF approach seen as an overlapping multi-domain ap-
proach,Zuppa and Cardona(2003); Lee et al.(2003); Wright and Fornberg(2006). It be should
point out that pioneeredZuppa and Cardona(2003)’s work uses an Optimal Point Interpolant
instead classical Hardy’s interpolant. The RBF method is a meshfree scheme which has be-
come very popular for the solution of PDEs because it is a veryaccurate and powerful technique
which was initiated in 1990 byKansa(1990) using a global supported Hardy’s interpolant. Here
the RBF method combines a meshless RBF approximation with a point collocation discretiza-
tion of the governing PDEs (known as a strong-form approach). The main drawback of the
global RBF collocation method is that, as the number of nodesincreases, the resulting system
of equations becomes ill-conditioned and computationallyexpensive. Several procedures have
been proposed to overcome the difficulties mentioned. A verypromising one is the local ap-
proach proposed. Although the collocation technique give satisfactory results for a large class
of problems, some instability issues are observed at the boundary specially when it involves
singularities (Bernal et al., 2008) or derivative boundary conditions (Zuppa and Cardona, 2003;
Kee et al., 2007).

Several techniques have been intended to improve the robustness of the RBF method. At
a global RBF framework,Fedoseyev et al.(2002) proposed an improved Kansa–MQ method
by using an additional set of collocation points beyond of the boundary (at the exterior) and
corresponding additional set of equations obtained via collocation of the governing equation on
the boundary, e.i., two equations are imposed, one equationfrom the boundary condition and
one from PDE. Recently, following similar idea of Fedoseyev, La Rocca and Power(2008) sug-
gested an improved symmetric RBF method by using a double boundary collocation approach
but without additional fictitious points beyond of the boundary, e.i., not additional meshing
work is needed.

At a local framework, loss of accuracy is observed when the construction of the meshless lo-
cal RBF interpolation is involved without any special treatment specially when it is concerned a
derivative boundary condition. An improvement was observed by Zuppa and Cardona(2003),
when a double collocation approach is performed at the boundary points. To achieve they fol-
lowed and compared two procedures, one based on troublesomefictitious point beyond of the
boundary and other on additional degrees of freedom corresponding to normal derivative of
the solution to the derivative boundary. InLiu et al. (2005), a similar local interpolation (using
Hermite RBF interpolation) has been used for the construction of local RBF shape functions
which include the known gradient information at the boundary. This Hermite interpolation can
deal with one or more interpolation conditions per data point. In addition, they close the sys-
tem of equation by using PDE collocation on the boundary so the accuracy and stability on the
Neumann boundary were improved. Recently,Wright and Fornberg(2006) proposed a local
Hermite-type interpolation to built local RBF shape functions but including the known linear
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PDE information. This approach is referred as RBF-HFD. Theyobserved a remark improve-
ment of the order of accuracy when solving constant-coefficient Poisson-type problems along
with Dirichlet boundary conditions. UnlikeLiu et al. (2005)’s procedure, this approach does
not generate additional degrees of freedom. In a previous work (Gutierrez and Florez, 2008),
we can extend successfully the ideas fromWright and Fornberg(2006) to linear constant coef-
ficient convective-dominated problems subject to derivative boundary conditions. Besides we
compare local vs global RBF collocation approaches and it found that the former outperforms
the second one.

In present work, an attempt has been made to extend the approach byWright and Fornberg
(2006) to non-homogeneous and variable coefficient boundary value problem subject to mixed
boundary conditions. This approach will be referred as the local RBF PDE collocation approach
(known as RBF-HFD approach inWright and Fornberg(2006)). Besides we compare its per-
formance with other RBF approaches in which are included thesymmetric RBF collocation
method (Fasshauer, 2007), the local RBF single collocation approach (known as the RBF-FD
approach inWright and Fornberg(2006)) (Lee et al., 2003; Shu et al., 2003) and the local RBF
double boundary collocation approach (Liu et al., 2005). All of them based on the early Hardy’s
interpolation. An excellent review is provided byFasshauer(2007) which concern with the sim-
plest form of RBF interpolation and present alternatives toimprove.

Like the governing differential equation, the derivative boundary condition can be also dis-
cretized by cited RBF approaches. However,Shu et al.(2003) also confirmed that the local
RBF pure Hardy’s collocation approach yields to a less accurate approximation when involves
Neumann boundary condition then they followed a different approach where using locally or-
thogonal point layers adjacent to the boundary and combining the RBF method with one sided
finite difference method (it is only used to implement the Neumann boundary condition). This
approach belong with the local RBF double boundary collocation approach have been specially
suited to treat the derivative boundary conditions. Maybe this is the first demonstration of the
numerical features for the different RBF approaches for solving more general boundary value
problems. We have chosen three representative problems in 2-D involving non-homogeneities,
variable coefficient and mixed boundary conditions. The exact solutions are available and used
to check computed results.

2 IMPLEMENTATION OF THE RADIAL BASIS FUNCTION METHOD

Solving PDEs by collocation of radial basis functions is already a common practice. We
briefly introduce the procedures here. Consider the PDE belong with boundary conditions: for
giveng(x), f(x) find u(x) (the field variable) from

Lu(x) = f(x) in Ω (1)

Bu(x) = g(x) on∂Ω (2)

whereΩ is a bounded domain with the boundary∂Ω, L is a linear variable coefficient second
order partial differential operator andB is a linear boundary operator.

2.1 The symmetric RBF approach

Here the following global supported meshless RBF expansionfor approximate the unknown
functionu is proposed (Fasshauer, 2007, pag. 348):

û(x) =

NB∑

i=1

λiB
ξφ (‖x − ξi‖) +

N∑

i=NB+1

λiL
ξφ (‖x − ξi‖) (3)
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where the notationξ1, . . . , ξN is used for the centers of radial basis functionφ. These centers
will usually be selected to coincide with the collocation point setθh = {xi}

N
i=1. However the

following equations are clearer if there is a formal distinction between centersξj and collocation
pointsxi. MoreoverNB represents the number of collocation points on the boundaryof Ω,
N −NB the number of the internal collocation points,Lξ andBξ are the differential operators
of governing equation but acting onφ viewed as a function of the second argument (center).
The coefficientsλi, i = 1, . . . , N are going to be determined by solving a linear collocation
system of equations.

After enforcing the conditions relating to governing equations (point collocation technique):

Lû(xi) = f(xi), xi ∈ Ω \ ∂Ω (4)

Bû(xi) = g(xi), xi ∈ ∂Ω (5)

We end up with a symmetric collocation matrix of sizeN × N that is of the same type as the
generalized Hermite interpolation matrices and thereforeit is non-singular as long asφ is cho-
sen appropriately. We would like to point out that the discretization of the boundary condition
at boundary points precludes discretization of the PDE at corresponding points. Once the co-
efficientsλi are found, the approximate solutionû at anyx ∈ Ω is given by the interpolation
formula Eq. (3).

In Fasshauer(2007), it is stated that a symmetric RBF collocation implementation for the
variable coefficient problem solution, while theoretically possible, is very cumbersome and is
not clear how to deal with non-linear problems. Any more information about this approach can
find in references (Fasshauer, 2007; La Rocca et al., 2005; La Rocca and Power, 2008).

2.2 Local RBF approaches

The local RBF approaches can be seen as the implementation ofthe classical overlapping
domain decomposition from the RBF formulation in the limiting case of a very large number
of overlapping sub-domains but free of iterations, e.i., noinformation transmission between
sub-domains is required. Even, it could be argued that the local method is not truly meshless
since for each node it is necessary to know itsn − 1 neighboring points, which implies some
minor type of connectivity (Bernal et al., 2008). In the following, we outline the steps used
for the construction of the local meshless RBF shape functions (seeShu et al.(2003); Liu et al.
(2005); Wright and Fornberg(2006); Gutierrez and Florez(2008) for more details). A locally
supported shape function is required to produce a sparse discretized system of equations that
can be solved efficiently which is a key feature for solving large systems.

We assume that, where is needed each nodexj ∈ θh; we have selected in some way
(Liszka et al., 1996; Wright and Fornberg, 2006) a subsetSj ⊂ θh, called the computational
molecule ofxj such thatSj is the set of surrounding points (centers) ofxj (the star point) which
includesn << N distinct grid-points of whichm ≤ n could be used in a double collocation
way. It assumes thatxj ∈ Sj , and it is the first element. At every moleculeSj , a locally ap-
proximate solution̂uj is generate by a Hermitian RBF interpolation function augmented with a
constant polinomial term:

ûj(x) =

n∑

i=1

λiφ (‖x − ξi‖) +

m∑

k=1

αkγ
ξφ (‖x − ξk‖) + χ (6)

or in a vector-matrix notation:

ûj(x) =
∣
∣φ (‖x − ξi‖) γξφ (‖x − ξk‖) 1

∣
∣
∣
∣λ α χ

∣
∣
T

(7)
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which interpolates both value functionu(x) on all points and derivative informationγu(x)
at the double collocation points. Note that this interpolant guarantees reproduction of constant
functions. Ifm = 0 (a Lagrange interpolation) it interpolates functional values only, and ifm 6=
0 then a RBF double collocation is possible to exploit, e.i. inthese locations, two interpolation
conditions are simultaneously satisfied. The latter can be away to increase the accuracy, without
increasing the size of the molecule, whether there is information about the derivatives of the
unknown function at some data points. The interpolation coefficientsλi, αk andχ are going to
determined.

By evaluating the different interpolation conditions on Eq.(6) at the corresponding support-
ing points (n) from the molecule, this leads ton + m + 1 linear equations,n equations by value
function,m equations by derivative value plus one homogeneous constraint by the polinomial
term. The block matrix form of these equations is:

∣
∣
∣
∣
∣
∣

φ (‖x − ξ‖) γξφ (‖x − ξ‖) e

γφ (‖x − ξ‖) γγξφ (‖x − ξ‖) γe

eT γeT 0

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

AH

∣
∣
∣
∣
∣
∣

λ

α

χ

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

u

γu

0

∣
∣
∣
∣
∣
∣

(8)

whereei = 1, the coefficient matrixAH is symmetric anduT as the values of the unknown
field variableu at all n supporting points. Hence the interpolation coefficients depend on the
unknown field variable only. The latter is important bear in mind.

Using Eq.(6) belong with the linear system Eq.(8), the meshless approximate function can
be expressed in term of shape functions as:

ûj(x) =
n∑

i=1

Φi(x)ui +
m∑

j=1

Φj(x)γuj (9)

and any linear partial differential operator can be easily discretized applying it to shape func-
tions, i.e.

Lûj(x) =
n∑

i=1

LΦi(x)ui +
m∑

j=1

LΦj(x)γuj (10)

The derivative termγu(x) in Eq. (9) can be assumed in different ways looking for better
approximations. Three options have been proposed

1. Whenm = 0, e.i. not derivative information is assumed known, e.i. there is not a special
treatment for the derivative boundary condition. This formulation is named as the local
RBF single collocation approach. It is very good for well-posed Dirichlet problem only.

2. Whenm 6= 0 in molecules at and near to the derivative boundary since thederivative
information is assumedγu(x) = ∂u

∂n
= q(x), e.i, if there arem points belong to the

derivative boundary within a molecule, their normal derivatives q(x) are considered as
the additional unknowns. At derivative star point, the PDE and the normal derivative
boundary condition are satisfied simultaneously; it increases the number of collocation
equations. This formulation is named as the local RBF doubleboundary collocation
approach.

3. Whenm 6= 0 in all molecules since the derivative information is assumed to come from
the right hand term of the PDE, e.i.,γu(x) = Lu(x) = f(x). This formulation is named
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as the local RBF PDE collocation approach. In our tests,m < n in interior molecules
and m ≤ n in molecules with the star point along the derivative boundary were as-
sumed. The first condition rejects explicitly the derivative information at the star point
(Wright and Fornberg, 2006). Beside, them nearest points to the star point were chosen.
Note that this formulation can be well applied to Dirichlet and Dirichlet plus Neumann
problems.

Finally, choosing the pointx to be located at the star point of each molecule and substituting
Eq. (9) in the governing equations Eq. (1,2), we end up with a formulation that couple the
field variable at the star point with the corresponding field value of neighbouring points (point
collocation technique). By an assembling process on all themolecules in the domain a global
closed system of the equations foru is obtained. To impose the Dirichlet boundary condition,
the Kronecker delta property is always used, but additionalequations relating to the given field
variable value are not seen as further rows in the global system of equations. It is considered in
the other equations on the corresponding right hand terms.

Once the molecules have been established in a preprocessingstage, the overall cost of the
different above approaches can be summarized as follows:

1. The cost of the computations of the shape functions at eachstar points which has an order
of n+m. We use a direct solver in order to the inversion of the small symmetric equation
system.

2. The cost of the assembly process of a large global sparse matrix. For example, this cost
could be critical when the global system has to be assembled at each step from a nonlinear
iteration loop when solving a strongly nonlinear problem. Here an efficient data structure
is needed.

3. The cost of the linear solver in order to the global system inversion. Here we could use a
preconditioned conjugate gradient algorithm or employ a direct sparse solver.

Our code is still in an earlier stage of development so it could be quite improved. However
we felt that it is much faster than the global approach.

3 NUMERICAL RESULTS

Figure 1: Computational molecules assumed on derivative boundary and internal star points, respectively including
nine supporting points.
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To gain some insight into the numerical characteristics of different radial basis function col-
location approaches and to assess their stability using variations of RBF shape parameter, global
and local frameworks and various strategies for handling derivative boundary conditions; nu-
merical experiments have been performed for three representative boundary value problems
with analytical solutions: A non-homogeneous mixed boundary condition problem, the forced
heat equation with an exponential decay of the heat source intensity from an incident bound-
ary and a convection-diffusion equation with variable velocity field. In all computations, the

multiquadric RBF (MQ)
√

r2
j + c2

j plus a constant polinomial term have been used.

In this earlier stage of our code development, the molecule selection around each star point
is easily accomplished by a distance criterion. This procedure is considered in a preprocess-
ing stage. Fig.1 show computational molecules for internal and boundary points when nine
supporting points are chosen. The marked squares are assumed asm double collocation points
in the local RBF PDE collocation approach. Uniform distributions of points and two sizes of
moleculesn = 5 (only marked squares in Fig.1) andn = 9 have been used.

3.1 Example 1

∇2u + u = f(x, y) (11)

and the boundary conditions given:

u = g(x, y) ony = 0, 1 and0 ≤ x ≤ 1
∂u
∂x

= h(x, y) onx = 0, 1 and0 < y < 1
(12)

with analytical solution given:
u(x, y) = x exp (xy) (13)

The non-homogeneous parts have been taken from the given analytical solution. In computa-
tions, two uniform distributions of points11 × 11 and41 × 41 discretise the unitary square
domain.

Fig. 2 shows the r.m.s. relative errors of the field variable along the center line of the domain
using four RBF approaches: The results based on the global symmetric RBF single collocation
method (La Rocca and Power, 2008) are refereed asmeth 1, the ones using the local RBF single
collocation method asmeth 2, the ones using local RBF double boundary collocation method as
meth 3and the ones using local RBF PDE collocation method asmeth 4. Moreover, the errors
are studied by changing the MQ shape parameter, the density of domain points and the size of
the computational molecule. In Fig.2, it is exhibited evidences of the effects of the parameterc
on the error in all RBF collocation approaches. The smoothest variations of the errors with the
shape parameter are observed when using the coarser distribution of points in both numbers of
supporting points. On the finer distribution of points, the error curves in the global symmetric
and local PDE collocation methods, e.i.,meth 1andmeth 4, exhibit a critical point (a minimum),
after which instabilities of the error are noted. The natural trend is that local RBF method yields
to less accurate solutions than the global counterpart which is a known behavior when solving
a problem that has a smooth solution (seeBernal et al.(2008)). However, in some cases the
method refereed asmeth 4is very competitive in comparison with the global method presented.
Clearly, changing the density of the domain points, the solutions are more accurate on a wide
range ofc values. Now changing the molecule size of five a nine points donot report apparently
more accurate solutions in all local RBF approahces.
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Figure 2: Comparison between the r.m.s. relative errors of the field variable regarding to shape parameter for the
example 1. Five and nine supporting points form the molecules respectively on the left and on the right. The black
and blue lines are for distributions of points11 × 11 and41 × 41, respectively.

It is worth noting that the local RBF double boundary collocation method (meth 3) can yield
to any more accurate solution than the simplest local RBF collocation method (meth 2). Hence,
the former can be viewed a feasible strategy for imposing thederivative boundary condition.

3.2 Example 2

∇2u + β exp (−γx)u = 0 (14)

This simplified model equation governs the microwave heating process of an isotropic body
(Sladek et al., 2004). It is assumed that the thermal absorptivity of material obey a lineal model
in u and an exponential decay of the electric field is thex-direction only whereγ is a decay
constant. A thermal runaway is possible if a certain material, denoted by a criticalβo value, is
exposed to a corresponding energy level (γ).

On all boundaries of the square plate, an uniform unity temperature is prescribed to analyze
the thermal runaway. In referenceSladek et al.(2004), theβo value was obtained analytically
for γ = 4 which is86.1. In our numerical calculations, an unity side length of the plate and an
uniform distribution of points11 × 11 are used.

In Fig. 3, we show our way of predict the thermal runaway. We ran the twolocal RBF single
and PDE collocation approaches in the vicinity of theβo known value and clearly it is seen a
tremendous peak of the field variable in theβo values predicted by our schemes. This procedure
was used to observe the accuracy of our schemes with varying MQ shape parameterc and the
number of neighboring points. It can be observed in Table1 a good agreement between our
results and analytical one for the criticalβo value on a wide range of MQ shape parameters.
However, the local RBF PDE collocation method (Meth 2) show less sensitive with variations
of MQ shape parameter. We notice any accuracy improvement inMeth 2when pass of five to
nine supporting points. In this example is not apply the local RBF double boundary collocation
method due to the boundary conditions are Dirichlet type only.
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Figure 3: The field variable maximum as function ofβ values in the vicinity of the criticalβo value. The triangle
and plus marked curves correspond to Meth 1 and Meth 2, respectively.

Meth 1 Meth 2
c 5-supp 9-supp 5-supp 9-supp

0.25 – – 4.88E-03 6.27E-03
0.5 2.65E-02 2.18E-02 6.04E-03 1.28E-03
1 4.65E-03 2.44E-03 5.23E-03 2.67E-03

1.5 1.07E-02 1.51E-03 4.99E-03 2.44E-03
2.5 1.28E-02 3.72E-03 4.76E-03 2.44E-03

Table 1: Relative errors respect to 86.1 in numerical solutions obtained with differentc and neighboring points. A
distribution of point11 × 11 has been used.

3.3 Example 3

∇2u − (A + kx)
∂u

∂x
− ku = 0 (15)

whereA = ln
(

u1

uo

)

− k/2 and the boundary conditions given:

u = uo = 300 x = 0 and0 ≤ y ≤ 0.2
u = u1 = 200 x = 1 and0 ≤ y ≤ 0.2

∂u
∂y

= 0 y = 0, 0.2 and0 < x < 1
(16)

with an analytical solution given as:

u(x, y) = uo exp

(
k

2
x2 + Ax

)

(17)

This convection diffusion equation with a variable velocity field has been chosen by differ-
ent researchers due to strong range of variation of the unknown variable in computational do-
main which make its numerical solution a non-trivial task. In our computations, a parameter
k = 40 and the domain into the rectangle[1 × 0.2] have been used which were also used
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Figure 4: Comparison between the analytical solution and various local RBF collocation method solutions (on the
left) for example 3. A graph of the corresponding relative percentage errors (on the right).

in La Rocca and Power(2008), but they compared global symmetric RBF single and double
boundary collocation methods.

This example is analyzed using two uniform distributions ofpoints 41 × 9 and 71 × 15
totalling 369 and 1065 nodes respectively and two molecule sizes including five and nine points.
Four different ways of constructing the local meshless RBF approximations are adopted on a
local framework. They are several strategies that can be used to treat the derivative boundary
conditions and these approaches will be tested in this numerical example. They are: local
RBF single collocation method (meth 1), local RBF PDE collocation method (meth 2), local
RBF double boundary collocation method (meth 3) and local RBF single collocation method
combining with one sided finite difference formula to discretise the homogeneous Neumann
boundary condition (meth 4), seeShu et al.(2003) for more details. A comparison between
the analytical solution and different RBF approaches and the corresponding curves of relative
percentage errors along the longitudinal line of the domainare shown in Fig.4. This figure has
been obtained with the coarser distribution, a parameterc = 0.2 and molecules including nine
points. It can be seen from Fig.4 an excellent agreement between the exact solution and several
computed solutions and free of visible spurious oscillations. On the right side, it is clearly
shown thatmeth 2is the more accurate of the approaches. We compare present results with
the ones ofLa Rocca and Power(2008) and notice that local methods are very more efficient
than the global counterparts. A previous analysis already indicated this behavior when solving
convective-dominated problems (Gutierrez and Florez, 2008).

In addition, we study in above local methods the effects of variations of shape parameter and
two molecule sizes using the finer point distribution. From Table2, it is clearly seen that almost
all methods have an error minimum inc = 0.2. Changing of five to nine points in molecule
produces the most appreciate improvement of the accuracy innamedmeth 2. Notice that other
approaches do not suffer important variations respect to molecule sizes. In the cases ofmeth 3
andmeth 4which are especially suited for treating derivative boundary conditions, we notice
similar performances although they are dissimilar conceptually. The namedmeth 1is seen as
slightly less accurate of all methods tested.
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5-supp 9-supp
c meth 1 meth 2 meth 3 meth 4 meth 1 meth 2 meth 3 meth 4

0.05 0.3285 0.0163 0.3974 0.3807 0.1425 0.0361 0.2005 0.1669
0.10 0.0666 0.009 0.0849 0.0815 0.0243 0.0026 0.0378 0.0308
0.20 0.0078 0.0123 0.0065 0.0065 0.0168 0.0004 0.014 0.0154
0.50 0.0265 0.0192 0.0258 0.0259 0.0281 0.0014 0.0272 0.0279
0.80 0.0289 0.0231 0.0286 0.0286 0.0291 0.0018 0.0286 0.029
1.00 0.0294 0.0255 0.0292 0.0293 0.0332 0.0444 0.032 0.0331

Table 2: r.m.s relative percentage errors in the obtained field variable with a distribution of points71 × 15 for
differentc and supporting points.

4 CONCLUSIONS

The RBF collocation method based on the Hardy’s interpolation is used to solve three rep-
resentative linear boundary value problems which include variable coefficient and nonhomo-
geneous mixed boundary conditions. Five different RBF strategies were tested. Among them,
one with global character and four with local character. Twolocal strategies are especially
suited for treating of derivative boundary conditions, onebased on a boundary collocation of
the PDE without fictitious points lying beyond of the derivative boundary and other one based
on an one-sided second order finite difference formula. We observe that local methods tested
can dealt with more general second order partial differential equations with accuracy and effi-
ciency. In some cases the local methods are more accurate than global counterparts and when
solving convection-dominated problems, the former are generally more accurate and stable than
the second ones. It has been found that in the global RBF symmetric collocation and local RBF
PDE collocation methods, the accuracy of the solution suffers the amplest variations respect to
MQ shape parameter. Furthermore, it is found that pass of fiveto nine supporting points in the
molecules to improve the accuracy it was only appreciated inthe local RBF PDE collocation
method. It can be seen as the best strategy among all approaches tested (based on RBF strong-
form) for solving general linear boundary value problem. However, our results are based on
uniform distributions of points, further work in non-uniform distributions is needed. Here the
issue aims in developing a suitable search algorithm for themolecules.
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