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Abstract. In this work, it is presented the performance of the RBF aaltion method to predict the
unknown field variable in non-homogeneous and variableficteit boundary value problems. The
local RBF collocation approach differs of the classicalbglloRBF collocation approach in the way that
a radial basis function (RBF) interpolation function is defi. The former chooses to represent the
meshless approximation by an expansion around a few supp@uaints (it constitutes a computational
molecule). Any Lagragian or Hermitian RBF Hardy’s interggidn can be used to construct the meshless
locally supported shape functions which can reconstrutidid variable in each point into the molecule.
In this way, several strategies have been proposed to php$siprove the imposing of the derivative
boundary conditions in a strong-form approach. Three sgmative linear examples are solved by
means different RBF collocation approaches and its resoltspared. It is found that all local RBF
approaches performed very well. In addition, the RBF shavameter affects the computed solution
differently for each method.
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1 INTRODUCTION

In many problems of engineering interest governed by fdatifi@rential equations (PDES),
variable coefficients and non-homogeneities are preseatexample, in treating of nonlinear-
ities or the time derivative term, the transformed origiegliations can generate those problem
types. Hence any intended numerical method should be ablgpimximate such more general
problems.

In this paper, we focus on the use of the radial basis fun¢iRBF) method to solve linear
second order boundary value problems. We consider bothltialgRBF approach (known
as symmetric RBF method}asshaue(2007); La Rocca et al(2005; La Rocca and Power
(2008 and the recently proposed local RBF approach seen as dappig multi-domain ap-
proach Zuppa and Cardon@003; Lee et al(2003; Wright and Fornber@g200§. It be should
point out that pioneereduppa and Cardong2003’s work uses an Optimal Point Interpolant
instead classical Hardy’s interpolant. The RBF method iseshfree scheme which has be-
come very popular for the solution of PDEs because it is a &ecyrate and powerful technique
which was initiated in 1990 biansa(1990 using a global supported Hardy's interpolant. Here
the RBF method combines a meshless RBF approximation withrd pollocation discretiza-
tion of the governing PDEs (known as a strong-form appraadije main drawback of the
global RBF collocation method is that, as the number of nade®ases, the resulting system
of equations becomes ill-conditioned and computatioretlyensive. Several procedures have
been proposed to overcome the difficulties mentioned. A peoynising one is the local ap-
proach proposed. Although the collocation technique gatestactory results for a large class
of problems, some instability issues are observed at theaday specially when it involves
singularities Bernal et al.2008 or derivative boundary conditiongppa and Cardon2003
Kee et al, 2007).

Several techniques have been intended to improve the ressbf the RBF method. At
a global RBF frameworki-edoseyev et al2002 proposed an improved Kansa—MQ method
by using an additional set of collocation points beyond & loundary (at the exterior) and
corresponding additional set of equations obtained vi@cation of the governing equation on
the boundary, e.i., two equations are imposed, one equonthe boundary condition and
one from PDE. Recently, following similar idea of FedoseyevRocca and Pow&R008 sug-
gested an improved symmetric RBF method by using a doubledsoy collocation approach
but without additional fictitious points beyond of the boang e.i., not additional meshing
work is needed.

At a local framework, loss of accuracy is observed when timstcaction of the meshless lo-
cal RBF interpolation is involved without any special treant specially when itis concerned a
derivative boundary condition. An improvement was obsefveZuppa and Cardong2003,
when a double collocation approach is performed at the banyrnubints. To achieve they fol-
lowed and compared two procedures, one based on troubldsdimeus point beyond of the
boundary and other on additional degrees of freedom cayrebpg to normal derivative of
the solution to the derivative boundary. lliu et al. (2005, a similar local interpolation (using
Hermite RBF interpolation) has been used for the constvoadf local RBF shape functions
which include the known gradient information at the bougda@his Hermite interpolation can
deal with one or more interpolation conditions per data pdim addition, they close the sys-
tem of equation by using PDE collocation on the boundary satituracy and stability on the
Neumann boundary were improved. Recenilright and Fornberd2006 proposed a local
Hermite-type interpolation to built local RBF shape funas but including the known linear
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PDE information. This approach is referred as RBF-HFD. Tolegerved a remark improve-
ment of the order of accuracy when solving constant-coefficPoisson-type problems along
with Dirichlet boundary conditions. Unlikeiu et al. (2005’s procedure, this approach does
not generate additional degrees of freedom. In a previouk {utierrez and Flore2008),
we can extend successfully the ideas framght and Fornberg@2006 to linear constant coef-
ficient convective-dominated problems subject to demaioundary conditions. Besides we
compare local vs global RBF collocation approaches anduidathat the former outperforms
the second one.

In present work, an attempt has been made to extend the apbpbg&Vright and Fornberg
(2006 to non-homogeneous and variable coefficient boundaryevadablem subject to mixed
boundary conditions. This approach will be referred asdballRBF PDE collocation approach
(known as RBF-HFD approach MWright and Fornberg2006). Besides we compare its per-
formance with other RBF approaches in which are includedsgimmetric RBF collocation
method Fasshauer2007), the local RBF single collocation approach (known as thé-fiD
approach inVright and Fornberg2006) (Lee et al, 2003 Shu et al.2003 and the local RBF
double boundary collocation approad¢h et al, 2005. All of them based on the early Hardy’s
interpolation. An excellent review is provided Basshaugi2007) which concern with the sim-
plest form of RBF interpolation and present alternativeisiprove.

Like the governing differential equation, the derivativ@aindary condition can be also dis-
cretized by cited RBF approaches. Howeu@hu et al.(2003 also confirmed that the local
RBF pure Hardy’s collocation approach yields to a less ateuwspproximation when involves
Neumann boundary condition then they followed a differggraach where using locally or-
thogonal point layers adjacent to the boundary and comgithie RBF method with one sided
finite difference method (it is only used to implement the Mann boundary condition). This
approach belong with the local RBF double boundary coliocapproach have been specially
suited to treat the derivative boundary conditions. Maybe is the first demonstration of the
numerical features for the different RBF approaches forisglmore general boundary value
problems. We have chosen three representative problemBim2olving non-homogeneities,
variable coefficient and mixed boundary conditions. Thecegalutions are available and used
to check computed results.

2 IMPLEMENTATION OF THE RADIAL BASIS FUNCTION METHOD

Solving PDEs by collocation of radial basis functions isalty a common practice. We
briefly introduce the procedures here. Consider the PDEnlgedth boundary conditions: for
giveng(z), f(z) find u(x) (the field variable) from

Lu(z) = f(x) inQ 1)
Bu(z) = g(x) onoQ 2)
where(? is a bounded domain with the bounddif2, £ is a linear variable coefficient second
order partial differential operator arttlis a linear boundary operator.
2.1 The symmetric RBF approach

Here the following global supported meshless RBF exparfsioapproximate the unknown
functionu is proposedKasshaue2007, pag. 348):

a<x>=ZAiB€¢>(Hx—@H>+ > MiLéo(llz - &l 3)

i=NB+1
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where the notatioq, . .., £y is used for the centers of radial basis functibnThese centers
will usually be selected to coincide with the collocatiorigsetd, = {x;}¥ ,. However the
following equations are clearer if there is a formal distioie between centets and collocation
pointsz;. MoreoverN B represents the number of collocation points on the bound&afy,
N — N B the number of the internal collocation point¥, andB¢ are the differential operators
of governing equation but acting ahviewed as a function of the second argument (center).
The coefficients\;, < = 1,..., N are going to be determined by solving a linear collocation
system of equations.

After enforcing the conditions relating to governing egoias$ (point collocation technique):

Li(z;) = f(x;), x; €2\ (4)
Bi(x;) = g(x;), x; € 00 (5)

We end up with a symmetric collocation matrix of siXex N that is of the same type as the
generalized Hermite interpolation matrices and thereitdeenon-singular as long asis cho-
sen appropriately. We would like to point out that the diszegion of the boundary condition
at boundary points precludes discretization of the PDE atsponding points. Once the co-
efficients)\; are found, the approximate solutiamat anyz € € is given by the interpolation
formula Eq. B).

In Fasshaue(2007), it is stated that a symmetric RBF collocation implementator the
variable coefficient problem solution, while theoretiggdossible, is very cumbersome and is
not clear how to deal with non-linear problems. Any more infation about this approach can
find in referencesKasshauge007 La Rocca et a).2005 La Rocca and PowgR008.

2.2 Local RBF approaches

The local RBF approaches can be seen as the implementattbe ofassical overlapping
domain decomposition from the RBF formulation in the limgicase of a very large number
of overlapping sub-domains but free of iterations, e.i.,imformation transmission between
sub-domains is required. Even, it could be argued that tb& lmethod is not truly meshless
since for each node it is necessary to knownits 1 neighboring points, which implies some
minor type of connectivity Bernal et al. 2009. In the following, we outline the steps used
for the construction of the local meshless RBF shape funst{seeShu et al(2003; Liu et al.
(2009; Wright and Fornber@2006; Gutierrez and Flore2008 for more details). A locally
supported shape function is required to produce a sparseetied system of equations that
can be solved efficiently which is a key feature for solvingéasystems.

We assume that, where is needed each node= ¢,; we have selected in some way
(Liszka et al, 1996 Wright and Fornberg2006 a subsetS; C 6,, called the computational
molecule ofr; such thats; is the set of surrounding points (centerskofthe star point) which
includesn << N distinct grid-points of whichn < n could be used in a double collocation
way. It assumes that; € §;, and it is the first element. At every molecuig, a locally ap-
proximate solutiorii; is generate by a Hermitian RBF interpolation function augtee with a
constant polinomial term:

ij() =Y Mo (lz =&l + > ary* o (lr — &ll) + x (6)
=1 k=1

or in a vector-matrix notation:

() = ol —&l) ¥o(le—&l) 1A a x| 7)
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which interpolates both value functian(x) on all points and derivative informatiofu(x)

at the double collocation points. Note that this interpbuarantees reproduction of constant
functions. Ifm = 0 (a Lagrange interpolation) it interpolates functionalies only, and ifn #

0 then a RBF double collocation is possible to exploit, e.ith@se locations, two interpolation
conditions are simultaneously satisfied. The latter canvgyeto increase the accuracy, without
increasing the size of the molecule, whether there is inébion about the derivatives of the
unknown function at some data points. The interpolatiorifaoents \;, «;, andy are going to
determined.

By evaluating the different interpolation conditions on.@}at the corresponding support-
ing points () from the molecule, this leads to+ m + 1 linear equations; equations by value
function, m equations by derivative value plus one homogeneous camstiathe polinomial
term. The block matrix form of these equations is:

d(lz =&l Fod(lz—£ll)  el|A u
1o (lz =&l e (lz =&l el |a| = |yu (8)
e’ vel 01x 0

. >
~~

AH

wheree; = 1, the coefficient matrix4d” is symmetric anck’ as the values of the unknown
field variableu at all n supporting points. Hence the interpolation coefficientgete on the
unknown field variable only. The latter is important bear imda

Using Eq.6) belong with the linear system E8)( the meshless approximate function can
be expressed in term of shape functions as:

ij(z) = Z P (z)u; + Z D;(z)yuy (9)

and any linear partial differential operator can be easggrtized applying it to shape func-
tions, i.e.

Lu;(x) = i LO;(x)u; + i LO;(z)yu; (10)

The derivative termyu(x) in Eq. @) can be assumed in different ways looking for better
approximations. Three options have been proposed

1. Whenm = 0, e.i. not derivative information is assumed known, e.iréhe not a special
treatment for the derivative boundary condition. This fafation is named as the local
RBF single collocation approach. It is very good for wellspd Dirichlet problem only.

2. Whenm # 0 in molecules at and near to the derivative boundary sincelénative
information is assumedu(z) = 2£ = ¢(z), e., if there arem points belong to the
derivative boundary within a molecule, their normal detiies ¢(=) are considered as
the additional unknowns. At derivative star point, the PDifl he normal derivative
boundary condition are satisfied simultaneously; it insesathe number of collocation
equations. This formulation is named as the local RBF dobblendary collocation

approach.

3. Whenm # 0 in all molecules since the derivative information is assdrimecome from
the right hand term of the PDE, edw(z) = Lu(x) = f(z). This formulation is named
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as the local RBF PDE collocation approach. In our tests< n in interior molecules
andm < n in molecules with the star point along the derivative boupdaere as-
sumed. The first condition rejects explicitly the derivatimformation at the star point
(Wright and Fornberg2006. Beside, then nearest points to the star point were chosen.
Note that this formulation can be well applied to DirichleidaDirichlet plus Neumann
problems.

Finally, choosing the point to be located at the star point of each molecule and subsgtut
Eqg. ©) in the governing equations EqL,2), we end up with a formulation that couple the
field variable at the star point with the corresponding fiedtle of neighbouring points (point
collocation technique). By an assembling process on alirtbkecules in the domain a global
closed system of the equations fors obtained. To impose the Dirichlet boundary condition,
the Kronecker delta property is always used, but additiegahtions relating to the given field
variable value are not seen as further rows in the globaésysf equations. It is considered in
the other equations on the corresponding right hand terms.

Once the molecules have been established in a preprocesamy the overall cost of the
different above approaches can be summarized as follows:

1. The cost of the computations of the shape functions at&aclpoints which has an order

of n+m. We use a direct solver in order to the inversion of the snyaliraetric equation
system.

The cost of the assembly process of a large global sparsexnteor example, this cost

could be critical when the global system has to be assembésth step from a nonlinear
iteration loop when solving a strongly nonlinear problenerélan efficient data structure
is needed.

. The cost of the linear solver in order to the global systeveiision. Here we could use a

preconditioned conjugate gradient algorithm or employraalisparse solver.

Our code is still in an earlier stage of development so itddod quite improved. However
we felt that it is much faster than the global approach.

3 NUMERICAL RESULTS

----- Cleesssorfflsersss flosses

""" e JR P
! i ! !POINT

----- I
AN S e
e L s 7 7 g
: L | . : :

STAR POINT

Figure 1. Computational molecules assumed on derivativatiary and internal star points, respectively including
nine supporting points.
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To gain some insight into the numerical characteristicsiféér@nt radial basis function col-
location approaches and to assess their stability usingtiars of RBF shape parameter, global
and local frameworks and various strategies for handlirrgyalitve boundary conditions; nu-
merical experiments have been performed for three repiasen boundary value problems
with analytical solutions: A non-homogeneous mixed boupdandition problem, the forced
heat equation with an exponential decay of the heat souteasity from an incident bound-
ary and a convection-diffusion equation with variable edlpfield. In all computations, the

multiquadric RBF (MQ), /r]? + c? plus a constant polinomial term have been used.

In this earlier stage of our code development, the molealkrton around each star point
is easily accomplished by a distance criterion. This praoeds considered in a preprocess-
ing stage. Figl show computational molecules for internal and boundarytgoivhen nine
supporting points are chosen. The marked squares are agssmealouble collocation points
in the local RBF PDE collocation approach. Uniform disttibas of points and two sizes of
molecules: = 5 (only marked squares in Fi@) andn = 9 have been used.

3.1 Example 1l

Viu+u= f(x,y) (12)
and the boundary conditions given:

N

Y ony=0,land0 <z <1

=g(z,9)
“=h(r,y) onzr=0,land0 <y <1 (12)

Q>|Q3

with analytical solution given:
u(z,y) = wexp (zy) (13)

The non-homogeneous parts have been taken from the givértieaasolution. In computa-
tions, two uniform distributions of pointsl x 11 and41 x 41 discretise the unitary square
domain.

Fig. 2 shows the r.m.s. relative errors of the field variable al¢vegdenter line of the domain
using four RBF approaches: The results based on the globahsyric RBF single collocation
method (a Rocca and Powg200§ are refereed ameth 1 the ones using the local RBF single
collocation method aseth 2 the ones using local RBF double boundary collocation neb#so
meth 3and the ones using local RBF PDE collocation methothath 4 Moreover, the errors
are studied by changing the MQ shape parameter, the derslonmain points and the size of
the computational molecule. In Fig, it is exhibited evidences of the effects of the parameter
on the error in all RBF collocation approaches. The smootresations of the errors with the
shape parameter are observed when using the coarserwdistibf points in both numbers of
supporting points. On the finer distribution of points, tmeecurves in the global symmetric
and local PDE collocation methods, emeth landmeth 4 exhibit a critical point (a minimum),
after which instabilities of the error are noted. The ndtreand is that local RBF method yields
to less accurate solutions than the global counterpartiwisia known behavior when solving
a problem that has a smooth solution (8nal et al.(2008). However, in some cases the
method refereed ameth 4is very competitive in comparison with the global methodseraed.
Clearly, changing the density of the domain points, thetswig are more accurate on a wide
range ofc values. Now changing the molecule size of five a nine pointsaloeport apparently
more accurate solutions in all local RBF approahces.
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meth 1

—»— meth 2
107k —8—meth 3 107'F
- —6— meth 4

meth 1
—»— meth 2
—8— meth 3
—— meth 4

r.m.s rel error in u
r.m.s. rel error in u

0 0.5 1 15 0 0.5 1 15
Cc c

Figure 2: Comparison between the r.m.s. relative erroreefield variable regarding to shape parameter for the
example 1. Five and nine supporting points form the molexxgspectively on the left and on the right. The black
and blue lines are for distributions of poirits x 11 and41 x 41, respectively.

It is worth noting that the local RBF double boundary collbma method (neth 3 can yield
to any more accurate solution than the simplest local RBI6calion methodrfieth 3. Hence,
the former can be viewed a feasible strategy for imposinglérevative boundary condition.

3.2 Example 2

V2u + Bexp (—yz)u = 0 (14)

This simplified model equation governs the microwave heagirocess of an isotropic body
(Sladek et a].2004). It is assumed that the thermal absorptivity of materiayoéa lineal model
in v and an exponential decay of the electric field is thdirection only wherey is a decay
constant. A thermal runaway is possible if a certain matedenoted by a criticab, value, is
exposed to a corresponding energy levwd! (

On all boundaries of the square plate, an uniform unity teatpee is prescribed to analyze
the thermal runaway. In referen&adek et al(2004), the 5, value was obtained analytically
for v = 4 which is86.1. In our numerical calculations, an unity side length of thkegpand an
uniform distribution of pointd1 x 11 are used.

In Fig. 3, we show our way of predict the thermal runaway. We ran theldbwal RBF single
and PDE collocation approaches in the vicinity of theknown value and clearly it is seen a
tremendous peak of the field variable in thevalues predicted by our schemes. This procedure
was used to observe the accuracy of our schemes with vary@@gihdpe parameterand the
number of neighboring points. It can be observed in Tdbéegood agreement between our
results and analytical one for the criticd value on a wide range of MQ shape parameters.
However, the local RBF PDE collocation methddgth 2 show less sensitive with variations
of MQ shape parameter. We notice any accuracy improvemevieth 2when pass of five to
nine supporting points. In this example is not apply the l&&F double boundary collocation
method due to the boundary conditions are Dirichlet typg.onl
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25

max(u)

87 87.5 88

Figure 3: The field variable maximum as function®¥alues in the vicinity of the criticab, value. The triangle
and plus marked curves correspond to Meth 1 and Meth 2, rigplgc

Meth 1 Meth 2
Cc 5-supp | 9-supp | 5-supp | 9-supp
0.25 — — 4.88E-03| 6.27E-03
0.5 | 2.65E-02| 2.18E-02| 6.04E-03| 1.28E-03
1 4.65E-03| 2.44E-03| 5.23E-03| 2.67E-03
1.5 | 1.07E-02| 1.51E-03| 4.99E-03| 2.44E-03
2.5 | 1.28E-02| 3.72E-03| 4.76E-03| 2.44E-03

Table 1: Relative errors respect to 86.1 in numerical sohstiobtained with differentand neighboring points. A
distribution of pointl1 x 11 has been used.

3.3 Example 3
9 ou
Viu— (A+kx)— —ku=0 (15)
ox
whereA = In (%) — k/2 and the boundary conditions given:
u=1u,=300 r=0and0 <y <0.2
w=u; =200 r=1and0 <y <0.2 (16)
Gu—0 y=0,02and0 <z <1
Y
with an analytical solution given as:
k 2
u(z,y) = u,exp 5@+ Az (17)

This convection diffusion equation with a variable velgdield has been chosen by differ-
ent researchers due to strong range of variation of the wmknvariable in computational do-
main which make its numerical solution a non-trivial task.olur computations, a parameter
k = 40 and the domain into the rectangle x 0.2] have been used which were also used
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Figure 4: Comparison between the analytical solution amigwva local RBF collocation method solutions (on the
left) for example 3. A graph of the corresponding relativecpatage errors (on the right).

in La Rocca and Powg20098, but they compared global symmetric RBF single and double
boundary collocation methods.

This example is analyzed using two uniform distributiongofnts41 x 9 and71 x 15
totalling 369 and 1065 nodes respectively and two molegaméssncluding five and nine points.
Four different ways of constructing the local meshless RBpraeximations are adopted on a
local framework. They are several strategies that can be taseat the derivative boundary
conditions and these approaches will be tested in this noaiezxample. They are: local
RBF single collocation methodreth 1, local RBF PDE collocation methodngth 3, local
RBF double boundary collocation methaaddth 3 and local RBF single collocation method
combining with one sided finite difference formula to dids®e the homogeneous Neumann
boundary conditionrfieth 4, seeShu et al.(2003 for more details. A comparison between
the analytical solution and different RBF approaches aedctirresponding curves of relative
percentage errors along the longitudinal line of the domaa@shown in Fig4. This figure has
been obtained with the coarser distribution, a parameter).2 and molecules including nine
points. It can be seen from Fig.an excellent agreement between the exact solution andedever
computed solutions and free of visible spurious oscillaio On the right side, it is clearly
shown thatmeth 2is the more accurate of the approaches. We compare preseifisreith
the ones of.a Rocca and PowgP008 and notice that local methods are very more efficient
than the global counterparts. A previous analysis alreadicated this behavior when solving
convective-dominated problemG(tierrez and Flore2008.

In addition, we study in above local methods the effects atti@ns of shape parameter and
two molecule sizes using the finer point distribution. Froabl€2, it is clearly seen that almost
all methods have an error minimum én= 0.2. Changing of five to nine points in molecule
produces the most appreciate improvement of the accuratgnredmeth 2 Notice that other
approaches do not suffer important variations respect tecnte sizes. In the casesmieth 3
andmeth 4which are especially suited for treating derivative bougdanditions, we notice
similar performances although they are dissimilar conggppt The namedneth lis seen as
slightly less accurate of all methods tested.
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5-supp 9-supp

¢ | meth 1| meth 2| meth 3| meth 4| meth 1| meth 2| meth 3| meth 4
0.05| 0.3285| 0.0163| 0.3974| 0.3807| 0.1425| 0.0361| 0.2005| 0.1669
0.10| 0.0666| 0.009 | 0.0849| 0.0815| 0.0243| 0.0026| 0.0378| 0.0308
0.20| 0.0078| 0.0123| 0.0065| 0.0065| 0.0168| 0.0004| 0.014 | 0.0154
0.50| 0.0265| 0.0192| 0.0258| 0.0259| 0.0281| 0.0014| 0.0272| 0.0279
0.80| 0.0289| 0.0231| 0.0286| 0.0286| 0.0291| 0.0018| 0.0286| 0.029
1.00| 0.0294| 0.0255| 0.0292| 0.0293| 0.0332| 0.0444| 0.032 | 0.0331

Table 2: r.m.s relative percentage errors in the obtainddl Vi@riable with a distribution of pointg1 x 15 for
differentc and supporting points.

4 CONCLUSIONS

The RBF collocation method based on the Hardy’s interpmrfeits used to solve three rep-
resentative linear boundary value problems which incluaigable coefficient and nonhomo-
geneous mixed boundary conditions. Five different RBRatrias were tested. Among them,
one with global character and four with local character. Tewal strategies are especially
suited for treating of derivative boundary conditions, tma@sed on a boundary collocation of
the PDE without fictitious points lying beyond of the derivatboundary and other one based
on an one-sided second order finite difference formula. Wende that local methods tested
can dealt with more general second order partial diffeadetjuations with accuracy and effi-
ciency. In some cases the local methods are more accuratglibizal counterparts and when
solving convection-dominated problems, the former areegaly more accurate and stable than
the second ones. It has been found that in the global RBF symernellocation and local RBF
PDE collocation methods, the accuracy of the solution ssiffee amplest variations respect to
MQ shape parameter. Furthermore, it is found that pass ofdiméne supporting points in the
molecules to improve the accuracy it was only appreciategtienocal RBF PDE collocation
method. It can be seen as the best strategy among all appsotested (based on RBF strong-
form) for solving general linear boundary value problem.wdwer, our results are based on
uniform distributions of points, further work in non-unifa distributions is needed. Here the
issue aims in developing a suitable search algorithm fontbkecules.
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