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Abstract. The Stabilized Boundary Penalty Method (SBMPM) enforces Dirichlet boundary conditions
though a penalty function related to the mesh-size. We derive a priori error estimates for this method,
and we prove that they always give, at least theoretically, an optimal rate of convergence. We also derive
an a posteriori error estimate and we propose an adaptive loop. Numerical examples show that SBPM is
highly flexible, produces accurate results and it is a very efficient adaptive method.
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1 INTRODUCTION

Let Ω be a bounded domain in Rd , d ≥ 2, with Lipschitz boundary ∂Ω. We consider the
model problem with homogeneous Dirichlet boundary conditions

−∆u = f in Ω, (1)
u = 0 on ∂Ω,

with exact solution uL . The boundary penalty method (BPM) for approximating solution uL

has been used for a while. The basic idea of BPM is to impose Dirichlet boundary conditions
weakly by using Robin type boundary condition with a penalty positive parameter φ ∈R. Given
a finite element space VT , the weak formulation using BMP now reads: find UT ,φ ∈VT such
that ∫

Ω

∇UT ,φ ·V +
∫

∂Ω

φ UT ,φ V =
∫

Ω

f V, ∀V ∈ VT . (2)

We immediately note that this method is not consistent in the sense that uL does not solve
equation (1).

The continuous version of (2) is:
Find uφ ∈ H1(Ω) such that∫

Ω

∇uφ · v+
∫

∂Ω

φ uφ v =
∫

Ω

f v, ∀v ∈ H1(Ω). (3)

The error analysis of
||uL −UT ,φ ||1

could be separated into the problems:

1. Estimate
||uL −uφ ||1.

2. Estimate
||uφ −UT ,φ ||1.

There are various reasons for studying BMP. One of then is that it allows us to impose
Dirichlet boundary conditions even with more general finite element spaces where this task is
expensive. Other authors choose this method in their work on non-matching grids or problems
with interior sub-domain interfaces. A basic issue in numerical applications is the error analysis
of the method. Some of the first works on this subject are (Babuška, 1970, 1973a) and (Barrett
and Elliott, 1986) among others. In all these works φ is a real parameter. On the other hand,
in the two papers (Barboza and Hughes, 1991, 1992), an stabilization technique was proposed
for the Lagrange multiplier theory of Babŭska (Babuška, 1973b). Furthermore, in the classical
method by Nitsche, other authors have introduced stabilizing or penalization functions φ , which
are strongly related to the mesh-size function of the mesh T (Juntunen and Stenberg, 2005;
Stenberg, 1995). These stabilization technique has been thoroughly studied in (Pitkäranta,
1973). Among other things, he showed that the stability and error analysis are more easily
performed using mesh dependent norms.

This paper aims at error analysis of the BPM with penalization functions. In particular, the
stabilized BPM.

Given α > 0, we consider functions φ ∈ L∞
α(∂Ω) := {φ ∈ L∞(∂Ω) | [φ ] := infx∈∂Ω φ(x)≥α}.
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Our first main result is an a priori error estimate for the continuous problem:
Main 1:

||uL −uφ ||1 4 || f ||0 [φ ]−1/2.

Under the assumption uL ∈ H1+r(Ω),r > 0, and ||uL ||1+r 4 || f ||0, our second result is
an a priori error estimate for the discrete approximation:

Main 2:
||uφ −UT ,φ ||1 4 (hr + [φ ]−1/2) || f ||0,

where h is, as usual, the maximum of the mesh-size.
Next, we introduce the stabilized boundary penalty method (SBPM), which is BPM with

penalty functions of the form φ ≈ h−k, where h is the mesh-size function and k is a positive
number. We define an a posteriori error estimator ηT (UT ,φ ) and the adaptive loop. It can be
proved that the adaptive process converges, that is

ηTn(UTn,φn)→ 0.

But we shall not deal with this rather technical result here. It will be proved in a forthcoming
paper.

An a posteriori error estimator for BMP (φ ∈ R) was defined in (Eriksson et al., 2004).
There, the adaptive process consists of two stages: refinement and adjustment of parameter φ .
In SBPM, the penalty function adjusts automatically in triangles that are refined.

The hp-Fem spaces F
(m,r)
X are next introduced for its use in numerical experiments (cf.

(Zuppa, 2008; Zuppa et al., 2007)) . Spaces F
(m,r)
X are well suited for experiments because:

• They always produce singular stiffness-matrix as well as other Generalized Finite Ele-
ment methods.

• Imposing Dirichlet boundary conditions is not cheap like in traditional FEM. Then, the
use of a method like SBPM or Nitsche method is mandatory. In (Zuppa et al., 2007)
we have discussed the good behavior of F

(m,r)
X under the Nitsche method, which is

considered the most straightforward approach in this kind of problems. The numerical
experiment confirms that SBPM is a very efficient adaptive method.

2 NOTATION AND PRELIMINARIES

We use standard notation for Sobolev spaces, norms, and seminorms. We denote by 〈., .〉 the
L2-inner product. If no confusion seems likely, the duality pairing between a Hilbert space and
its dual will be also denoted by 〈., .〉. Here and throughout, C denotes a generic constant that
can change in every situation. Sometimes, we hide the constant using instead the symbol 2.

Remark 1 The choice of model (1) is made for ease of presentation, since similar results seem
to hold for the mixed non-homogenous boundary value problem

L u :=−div(A∇u)+ cu = f in Ω, (4)

u = g on ∂ΩD, g ∈ H1/2(ΓD),

A
∂u
∂n

= h on ∂ΩN , h ∈ H−1/2(ΓN).

where ∂Ω = ∂ΩD∪∂ΩN and c≥ 0. However, a main ingredient in our proofs is the possibility
of solving the L -harmonic Dirichlet problem with L2 data (see Theorem 5).
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The bilinear form B : H1(Ω)×H1(Ω)→ R is defined to be

B[u,v] :=
∫

Ω

∇u ·∇v, ∀u,v ∈ H1(Ω).

2.1 Harmonic functions

A coercive scalar inner product [., .]∂ on H1(Ω) is defined by

[u,v]∂ := B[u,v]+
∫

∂Ω

ΓuΓv ∀u,v ∈ H1(Ω),

where Γ : H1(Ω)→ H1/2(∂Ω) is the trace operator. The associated norm is

||u ||∂ := ([u,u]∂ )1/2 ∀u ∈ H1(Ω).

A function u ∈ H1(Ω) is harmonic if

B[u,v] = 0 ∀v ∈ H1
0 (Ω). (5)

The subspace of H1(Ω) of all harmonic functions will be denoted by H .
Subspaces H1

0 (Ω) and H are ∂ -orthonormal and

H1(Ω) = H1
0 (Ω)⊕∂ H . (6)

The restriction of the trace map
Γ : H → H1/2(∂Ω) (7)

is a linear isomorphism with inverse E := Γ−1. Furthermore, for every u ∈H , Dnu := ∂u
∂n

exists as an element of H−1/2(∂Ω) and

B[u,v] = 〈Dnu,v〉 , ∀u,v ∈H . (8)

Notation 2 For every v ∈ H1(Ω), we write u = u0 + û, u0 ∈ H1
0 (Ω) and û ∈H , according to

(6).

3 THE PENALTY METHOD

Given α > 0, the space L∞
α(∂Ω) is defined to be

L∞
α(∂Ω) := {φ ∈ L∞(∂Ω) | [φ ] := inf

x∈∂Ω

φ(x)≥ α}.

For φ ∈ L∞
α(∂Ω), we define the continuous symmetric bilinear form

Bφ [u,v] := B[u,v]+
∫

∂Ω

φ ΓuΓv, ∀u,v ∈ H1(Ω).

We note that

Bφ [u,u]≥B[u,u]+α

∫
∂Ω

(Γu)2 ≥C2 ||u||21, ∀u ∈ H1(Ω), C > 0. (9)

Therefore, the form Bφ is φ−uniformly coercive.
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It follows that the variational problem:

Bφ [u,v] = 〈 f ,v〉 , ∀v ∈ H1(Ω), (10)

admits a unique solution uφ ∈ H1(Ω) .
From (10) we observe that

Bφ [uφ ,uφ ]≤ || f ||0 ||uφ ||1,

and from (9), we get
Bφ [uφ ,uφ ] 4 || f ||0 2, ∀φ ∈ L∞

α(∂Ω). (11)

In particular, ∫
∂Ω

φ (Γu)2 = ||φ 1/2
Γuφ ||20,∂Ω

4 || f ||20, ∀φ ∈ L∞
α(∂Ω). (12)

Remark 3 It is clear that uφ is the weak solution of the Robin boundary value problem

−∆u = f in Ω, (13)
Dnu+φu = 0 on ∂Ω. (14)

The main idea of the penalty method is to use this perturbed variational problem with the
hope that uφ → uL if [φ ]→ ∞ .

Using the ∂ -orthogonality we notice that (10) can be rewritten as

B[uφ ,0,v0]+B[ûφ , v̂]+
∫

∂Ω

φ Γûφ Γv̂ = 〈 f ,v0〉+ 〈 f , v̂〉 . (15)

First at all, setting v̂ = 0, we get

B[uφ ,0,v] = 〈 f ,v〉 , ∀v ∈ H1
0 (Ω).

Corollary 4 For all φ ∈ L∞
α(∂Ω), we have uφ ,0 = uL .

On the other hand, setting v0 = 0 in (15), we obtain

B[ûφ , v̂]+
∫

∂Ω

φ Γûφ Γv̂ = 〈 f , v̂〉 , ∀v̂ ∈H . (16)

Now, recalling (8), we can rewrite this inequality as〈
Dnûφ ,v

〉
1/2 +

〈
φ Γûφ , v

〉
= 〈 f ,Ev〉 := F∂ (v), ∀v ∈ H1/2(∂Ω). (17)

A difficult result of harmonic analysis (Dahlberg, 1977) gives that F∂ : H1/2(∂Ω)→ R can
be extended in a appropriate way to a continuous application over L2(∂Ω):

Theorem 5 The operator E can be extended to a continuous operator Ẽ : L2(∂Ω)→ L2(Ω),
such that Ẽ(v) is harmonic for every v ∈ L2(∂Ω).

As a consequence, we obtain that the application F̃∂ : L2(∂Ω)→ R defined by F̃∂ (v) :=∫
Ω

f Ẽ(v) is continuous.
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Corollary 6 There exists a constant C = C(Ω) such that

|F∂ (v) | ≤C || f ||0 ||v ||0,∂Ω, ∀v ∈ H1/2(∂Ω). (18)

Theorem 7 There exists a constant C = C(Ω) such that

||uL −uφ ||1 = || ûφ ||1 ≤C || f ||20 [φ ]−1/2, ∀φ ∈ L∞
α(∂Ω). (19)

Proof. To see this, we insert ûφ in (16). Then, by (18)

|| ûφ ||21 ≤B[ûφ , ûφ ]+
∫

∂Ω

φ (Γûφ )2 ≤C || f ||0 ||Γûφ ||0,∂Ω. (20)

For the other hand, using (12) we obtain

[φ ]
∫

∂Ω

(Γûφ )2 ≤
∫

∂Ω

φ (Γûφ )2 4 || f ||20.

and
||Γûφ ||0,∂Ω 4 || f ||0 [φ ]−1/2. (21)

Putting together (20) and (21) the assertion follows.

4 DISCRETE APPROXIMATION AND A PRIORI ESTIMATES

We suppose from now on that Ω is a polyhedral domain that is triangulated by a conforming
triangulation T = {T}. We assume also

Condition 8 The exact solution satisfies

• uL ∈ H1+r(Ω), for some r > 0.

• ||uL ||1+r 4 ||| f |||, where ||| . ||| is some norm such that || f ||0 ≤ ||| f |||.

Remark 9 Constant r depends on Ω and the data (r = 1 if Ω is convex).

Let hT stand for the mesh-size of T ; namely hT := maxT∈T {hT}, where hT := |T |1/d

and |T | is the Lebesgue measure of T . We define also the mesh-size at the boundary by

hT ,∂ := max
T∈T ,T∩∂Ω 6=∅

{hT}.

We suppose all meshes considered here satisfy a uniform shape-regularity condition.

Now, let VT ⊂ H1(Ω) be a finite dimensional space of functions that will be used for
approximating problem (10). The requirement for VT is the existence of a Scott-Zhang inter-
polation operator (Scott and Zhang):

Condition 10 There exists a continuous linear map P : H1(Ω)→ VT which satisfies:

• There exists a constant C depending only on Ω and the mesh-quality of T such that

||u−Pu ||s ≤C h1+r−s
T |u |1+r, ∀u ∈ H1(Ω), 0≤ s < 1+ r.
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• P preserves homogeneous boundary values. That is, Pu ∈ V0,T := VT ∩H1
0 (Ω) if

u ∈ H1
0 (Ω) .

We also assume, as it is usual, the conditions:

• VT ⊂C(Ω)

• For all V ∈ VT , V |T is a polynomial of degree ≤ p, for some fixed positive integer p.

Remark 11 VT can be a standard finite element space or the hp-fem spaces F m,r
X defined

in (Zuppa, 2008), for example, for which the use of a penalty method is more suitable These
spaces will be used in the numerical experiments bellow.

Given φ ∈ L∞
α(∂Ω), the discrete formulation of the penalty method is:

Find Uφ ∈ VT such that

Bφ [Uφ ,V ] = 〈 f ,V 〉 , ∀V ∈ VT . (22)

By a standard coercivity argument the solution Uφ exists and is unique.
The main objective of this section is to estimate the error

||uL −Uφ ||1 .

First of all, we write

||uL −Uφ ||1 ≤ ||uL −uφ ||1 + ||uφ −Uφ ||1.

We notice that the first term of the sum is already estimated. By (19) we have

||uL −uφ ||1 ≤C || f ||20 [φ ]−1/2 ≤C | || f |||2 [φ ]−1/2.

Now, we shall proceed to estimate the second term . Using orthogonality of the error and Cea’s
lemma, we obtain

Bφ [uφ −Uφ ,uφ −Uφ ] ≤ C inf
V∈VT

Bφ [uφ −V,uφ −V ]

≤ C inf
V∈V0,T

Bφ [uφ −V0,uφ −V0].

Therefore, setting V0 = PuL , writing uφ = uL + ûφ , and using the property that

B[ûφ ,V ] = 0, ∀V ∈ H1
0 (Ω),

we have

Bφ [uφ −PuL ,uφ −PuL ] = B[uL −PuL ,uL −PuL ]
+Bφ [ûφ , ûφ ] .

Using now (8), (10), and the equivalence of norms, we can estimate the first term as follows:

B[uL −PuL ,uL −PuL ] ≤ C h2r
T ||uL ||21+r

≤ C h2r
T ||| f |||2.

For the other hand, we know already that

Bφ [ûφ , ûφ ]≤C ||| f |||4 [φ ]−1.

Putting together all these estimates, we have obtained
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Theorem 12 Assuming the regularity condition (8), there holds

||uL −Uφ ||1 4 (hr
T ||| f |||+[φ ]−1/2 || f ||20), ∀φ ∈ L∞

α(∂Ω). (23)

The hidden constant depends only on the mesh-quality and other constants related to equiva-
lence of the involved norms.

5 THE STABILIZED BOUNDARY PENALTY METHOD (SBPM)

A useful particular class of weight functions is related to the stabilized penalty method. Let
R be the union of the internal sides of the triangulation. That is,

R := (∪T∈T ∂T )∩Ω .

We define the mesh size function HT ∈ L∞(Ω) by

HT (x) :=
{

0, x ∈R,
hT T is unique triangle such that x ∈ T.

Remark 13 Note that h−1
∂

:= H−1
T |∂Ω belongs to L∞

α(∂Ω), where α = hT ,∂ .

Given β ,k > 0, we define

φ = φ(T ,β ,k) := β
−2 h−k

∂
. (24)

For this class of functions we have

[φ ]−1 ≤ β
2 hk

T ,∂ , (25)

and estimate (23) can be written

||uL −Uφ ||1 4 (hr
T ||| f |||+β hk/2

T ,∂ || f ||
2
0) . (26)

Remark 14 The last estimate shows that the stabilized penalty method gives, at least theoret-
ically, the right rate of convergence as long as k ≈ 2r. From the computational point of view,
however, we notice that the contribution to the stiffness matrix of B[U,V ] in a triangle T is
proportional to hd−2

T , while the contribution of
∫

T∩∂Ω
U V is of order hd−1

T . Then, the choice
k = 1 gives the same order of contribution in both terms. Numerical experiments show that
k = 1 is the optimal choice, whereas k > 1 can degrade the condition number of the stiffness-
matrix and the quality of the results. Furthermore, SBMP outperforms the rather pessimistic
rate of convergence of (26) if k = 1.

6 AN A POSTERIORI ERROR ESTIMATOR AND ADAPTIVITY

In this section we introduce an error estimator for the error e := uL −Uφ .

Notation 15 For the sake of notational simplicity, we shall omit the symbol of the domain of
integration when the domain is all Ω or ∂Ω. Furthermore, we shall omit the symbol of the
trace operator Γ for functions on the boundary. The context should clarify any confusion.
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The procedure for obtaining the residual error estimator is standard, and we shall omit some
details. Here, we shall only deal with penalization functions of the form φ ≈ h−k

T .
For all v ∈ H1(Ω), we write

Bφ [e,v] = Bφ [uL ,v]+ 〈DnuL ,Γv〉−Bφ [Uφ ,v] = f v+ 〈DnuL ,v〉−Bφ [Uφ ,v].

Now,

Bφ [Uφ ,v] = B[Uφ ,v]+φ Uφ v

= ∑
T∈T

[∫
T

∇Uφ ·∇v+
∫

T∩∂Ω

φ Uφ v
]

= ∑
T∈T

[
−
∫

T
∆Uφ v+

∫
∂T

DnUφ v+
∫

T∩∂Ω

φ Uφ v
]
.

Separating the internal sides from those in the boundary, and introducing the standard jump
operator J, we get

Bφ [e,v] = ∑
T∈T

∫
T
[∆Uφ + f ]v+

〈
DnuL −DnUφ ,c

〉
+ ∑

T∈T

∫
∂T∩R

J(∇Uφ )v− ∑
T∈T

∫
∂T∩∂Ω

φ Uφ v.

Summing up the relation
Bφ [e,Pv] = 0,

we obtain

Bφ [e,v] = ∑
T∈T

∫
T
[∆Uφ + f ] [v−Pv]+

〈
DnuL −DnUφ ,v−Pv

〉
+ ∑

T∈T

∫
∂T∩R

J(DnUφ ) [v−Pv]− ∑
T∈T

∫
∂T∩∂Ω

φ Uφ [v−Pv].

Then,

Bφ [e,v] 4 ∑
T∈T
||∆Uφ + f ||0,T ||v−Pv||0,T

+ ∑
T∈T
||J(DnUφ ) ||0,∂T∩R ||v−Pv||0,∂T∩R

+ ∑
T∈T

h−k
T ||Uφ ||0,∂T∩∂Ω||v−Pv||0,∂T∩∂Ω.

We have omitted the term
〈
DnuL −DnUφ ,v−Pv

〉
because, by (??), it can be absorbed in the

other terms.
Now, it is well known that the following interpolation estimate for the Scott-Zhang operator

holds for all v ∈ H1(Ω)

∑
T∈T

h−2
T ||v−Pv||20,T +h−1

T ||v−Pv||20,∂T 4 |v |1,

where the hidden constant depends only on the mesh-quality of T .
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Using this estimate, the fact that | . |1 4 (Bφ [., .])1/2, other standard inequalities, and setting
v = e, we finally obtain

Bφ [e,e] ≤ ∑
T∈T

h2
T ||∆Uφ + f ||20,T

+ ∑
T∈T

hT ||J(DnUφ ) ||20,∂T∩R

+ ∑
T∈T

h−k+1
T ||Uφ ||20,∂T∩∂Ω

.

For each T ∈T , we define the local estimator by

η
2
T (Uφ ,T ) : = [h2

T ||∆Uφ + f ||20,T +hT ||J(DnUφ ) ||20,∂T∩R (27)

+h−k+1
T ||Uφ ||20,∂T∩∂Ω

],

and the total error estimator by

ηT (Uφ ) :=

(
∑

T∈T
η

2
T (Uφ ,T )

)1/2

. (28)

We have proved then:

Theorem 16 There holds

Bφ [uL −Uφ ,uL −Uφ ] 4 η
2
T (Uφ ).

The hidden constant depends only on the mesh-quality and several constants appearing in the
equivalence of norms.

Adaptivity methods are now widely used in numerical simulation of partial differential equa-
tions to achieve better accuracy with minimum degrees of freedom. Recently, several conver-
gence and optimality results have been obtained for adaptive FEM on elliptic PDEs, which
justify the advantage of local refinement over uniform refinement of the triangulations.

Given an initial mesh T0 with associated finite element space V0, a typical loop of adaptivity
for stationary problems through local refinement involves

SOLVE→ ESTIMATE→MARK→ REFINE,

and produces a sequence of successive meshes T0 ≥ ...≥ Tn ≥ Tn−1 ≥ ... and finite elements
spaces Vn := VTn .

Module SOLVE:
Given β ,k fixed, for n≥ 1, we apply the stabilized penalty method to solve

Bφn[Uφn,V ] = 〈 f ,V 〉 , ∀V ∈ Vn,

where
φn = β

−2 h−k
∂ ,n .

Module ESTIMATE:

C. ZUPPA2314
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We calculate the error estimator
ηTn(Uφn).

Module MARK:
Elements where the local error indicator (27) are high must be selected for refinement. A

standard methodology relies on Dörfler marking: given a parameter θ ∈ (0,1], the set of marked
elements Mn ⊂Tn satisfies the property

ηTn(Uφn,Mn)≥ θ ηTn(Uφn).

In general, we assume:

Condition 17 Mn contains at least an element T ∗ where ηTn(Uφn,T
∗)= maxT∈Tn{ηTn(Uφn,T )}.

Module REFINE:
We suppose that a function REFINE is at our disposal which implements iterative or recur-

sive bisection. In our 2-dimensional numerical experiments we have used the standard newest
vertex bisection.

Remark 18 Observe that in this adaptive procedure, the penalization function φ adjust auto-
matically. This is one of the differences with the method in (Eriksson et al., 2004).

It can be shown that the sequence of functions HTn converge in the L∞-norm to a function
H∞ that can be nonzero. Generally speaking, adaptivity theories rely on the issue of showing
the convergence of the adaptive iteration, that is:

ηTn(Uφn)→ 0,

instead the convergence HTn → 0 (see (Morin et al., 2007)).
It can be proved that there holds:
Assuming the mark condition 17, the adaptive stabilized penalty method converge. That is,

ηTn(Uφn)→ 0,

and, as a consequence,
||uL −Uφn ||1→ 0.

The rather technical arguments of the proof of this result, as well as other studies on the rate
of convergence of the adaptive process will be presented in a forthcoming paper.

7 HP-FEM

In this section we describe the hp-fem function spaces which will be used in our numerical
experiments. Instead of classical FEM, the imposition of Dirichlet boundary conditions could
be expensive to compute. Therefore, BPM or Nitsche methods are more appropriate for dealing
with these problems (Zuppa et al., 2007; Zuppa, 2008).

hp-fem is a particular version of hp-clouds where functions {Wi} were chosen as a standard
FEM partition of unity of degree m. They were introduced in (Zuppa, 2008) were we can find a
treatment of more general hp-clouds.

We define the standard finite element space

Fm(T ) := {V ∈ H1(Ω) |V|T ∈ Pm(T ),T ∈T },
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where m∈N is a fixed polynomial degree and Pm denotes the space of all polynomials of degree
≤ m. The pair (T ,Fm(T )) is naturally associated with a set of nodes {xT ,i}i=1;...N and the
set of canonical shape-functions {WT ,i}i=1;...N of Fm(T ) such that

WT ,i(xT , j) = δi, j, i, j = 1, ...,N.

Fm(T ) has algebraic precision of degree m; that is, for every P ∈ Pm we have

P(x) =
N

∑
i=1

P(xT ,i)WT ,i(x), ∀x ∈Ω.

For any node xT ,i we denote
ωT ,i :=

⋃
xT ,i∈T

T,

the support of the shape function WT ,i.
Given an integer r ≥ 1, we define the hp-FEM space

F
(m,r)
X ,T :=

{
V |V =

N

∑
i=1

Ti[xT ,i]WT ,i

}
,

where each Ti[xi] is a Taylor polynomial of degree ≤ r

Ti[xT ,i](x) := ∑
|α|≤r

ci,α (x− xT ,i)α .

The space F
(m,r)
X ,T reproduces polynomials of degree m+ r in the following sense.

Theorem 19 There exist constants cα = c(m,r,α),1≤ |α| ≤ r, such that for every P ∈ Pm+r

N

∑
i=1

(
P(xi + ∑

1≤|α|≤r
cαDαP(xi)(x− xi)α

)
Wi(x) = P(x), ∀x ∈Ω .

Remark 20 Constants cα can be effectively calculated (see (Zuppa, 2008)).

Remark 21 We observe that the modified Taylor polynomials expanded at nodes xi contain
polynomials of low degree that are reproduced by the class {Wi}. It was observed by Duarte and
Oden (Duarte and Oden, 1995) that this situation produces singular stiffness matrix because
shape functions in the hp cloud space are not linearly independent. To overcome this drawback,
they propose an enrichment that only uses monomials of degree between m + 1 and m + r.
The approximation space F

(m,r)
D built with this approach is also considered in (Zuppa et al.,

2007), but its numerical behavior in Galerkin schemes is poor. That is why Duarte-Oden also
recommend the use of a 0−reproducing partition of unity and low order Taylor polynomials.

As we have remarked above, the standard Galerkin procedure using shape functions {Wi,α}
leads to a singular stiffness matrix. The bilinear associate form is yet coercive, and the solu-
tion is univocally determined. This is a common feature of most Generalized Finite Element
methods. However, the use of direct solvers like subroutines MA27 and MA47 of Harwell
Subroutine Library was successful even when the nullity of the stiffness matrix was large (cf.
(Strouboulis et al., 2001)). It was also shown there that round-off errors do not play a signifi-
cant role in solving the linear system, i.e., the round-off error is also the same as when a finite
element linear system is solved. An iterative algorithm was also given. Therefore, there exist
nowadays efficient solvers to deal with singular or near singular linear systems. In our numer-
ical experiments at low r we have used the direct solvers of LAPACK without any additional
precautions.
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8 NUMERICAL EXPERIMENTS

We shall consider the adaptive process for the weak formulation of a Poisson model problem

−∆u = f in Ω = (0,1)× (0,1),
u = g on ΓD = [0,1]×{0},
un = h on ΓD = ∂Ω\. ΓD,

where Ω is a bounded, polyhedral domain in R2, all of which present some kind of singularity.

8.1 Models

8.1.1 Model 1

This is a Poisson equation with mixed boundary conditions and high local gradient

−∆u = f in Ω = (0,1)× (0,1),
u = 0 on ΓD = [0,1]×{0},
un = 0 on ΓD = ∂Ω\. ΓD,

where f is chosen such that the exact solution is

u(x,y) = 5x2(1− x)2(e10x2
−1)y2(1− y)2(e10y2

−1).

8.1.2 Model 2

We consider the Dirichlet problem

−∆u = f in Ω = (0,1)× (0,1),
u|∂Ω = u,

with exact solution
u(x,y) = arctan(50y(x−0.5)) .

The boundary Dirichlet condition presents a high tangential derivative which causes oscillatory
behavior in hp-clouds methods.

8.1.3 Model 3

This is the classical L-shape problem

−∆u = 0 in Ω,

u|∂Ω = u,

in the domain Ω = (−1,1)2\[0,1)2 with exact solution

u(r,θ) = r
2
3 sin(

2
3

θ).
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8.1.4 Model 4. A crack problem

We consider the Dirichlet problem

−∆u = 1 in Ω,

u|∂Ω = u,

in the domain Ω = {|x|+ |y|< 1}\{0≤ x≤ 1,y = 0}. The exact solution is

u(r,θ) = r
1
2 sin

θ

2
− 1

4
r2.

8.2 Initial mesh

A really simple minimal mesh is given by hand. Figure 1 shows the mesh T0 for models 3
and 1, 2 respectively.

Figure 1: Initial meshes for models 3 and 1,2

8.3 Other numerical settings

• We summarize results for F 1,1
X ,T (F 1,1), the standard FEM method with F2 ( f e2) .

• A 3−point quadrature formula has been used at interior cells and a 2−point quadrature
formula has been used at boundary cells.

• We shall only summarize results for the absolute energy error

||∇e || := ||∇(u−uTn) ||0,

calculated with a 7−point quadrature formula at interior cells, vs Dof.
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• The algebraic systems have been solved with the slash operator of MATLAB ( c©The
MathWorks) which uses a direct LAPACK solver, without any additional precaution,
since this scheme works well at low order Taylor polynomials.

• For numerical stability reasons, Taylor polynomials Ti[xT ,i] are taken in the normalized
form

Ti[xT ,i](x) := ∑
|α|≤r

ci,α

 1

h|α|
ω,i

(x− xT ,i)α ,

where hω,i := diameter(ωT ,i). Then, we assume that the standard shape functions are
defined by

Wi,α(x) :=

 1

h|α|
ω,i

(x− xT ,i)α Wi(x), (29)

for i = 1, ...,N and 0≤ |α| ≤ r.

• Finally, as we are dealing with the stabilized penalty method (SBMP), we have set β =
0.01,k = 1.

8.4 Results and conclusions of the experiments

Figures 2 and 3 summarize the convergence results for models 1-2 and models 3-4 respec-
tively.

Several computational features are demonstrated in the figures:

• As expected, when the mesh does not capture the fine properties of the solution of singular
problems, we observe the typical snaking behavior of hp-clouds methods: there is a bad-
behavior plateau (sometimes, even worse than 1-FEM). With finer meshes , F 1,1 +SPM
has an optimal decay comparable to standard 2-FEM.

• SBPM handled of Dirichlet boundary conditions is very robust, the accuracy being quite
insensitive to singular problems.

• SBPM and Nitsche’s method, which is reputed as more efficient, give identical results
(see (Zuppa et al., 2007) for a study of the same models under Nitsche’s method).

Summarizing, the numerical experiments show that SPBM is highly flexible, produces accu-
rate results, and is a very efficient adaptive method.

Acknowledgement 22 The author wishes to thank Prof. Carlos Kenig for his kind help on
Theorem 5.
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