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Abstract. A numerical approach for topology optimization of orthotropic potential problems using the 
boundary element methods (BEM) is introduced. The method is based on the evaluation of 
topological derivative, adopting the total potential energy as the cost function. A hard-kill algorithm is 
devised to progressively remove material where it is less necessary. This developed procedure is an 
alternative to the homogenization technique, avoiding the use of intermediary density material. The 
topology optimization of non-isotropic media is addressed using conformal mapping techniques. The 
method preserves BEM features, such as boundary-only discretization, reducing significantly the 
computational cost. Results obtained with the technique for Robin, Neumann and/or Dirichlet 
boundary conditions are compared and discussed with those available in the literature. 
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1 INTRODUCTION  

Most of the research on shape and topology optimization has focused on elasticity 
problems (BendsØe, 1995). The thermal conducting solid issue has received relatively less 
attention in spite of its significance. In this point of view, it makes necessary to investigate 
solids submitted to multiple flux loading, convection, with non-isotropic behavior, due its 
practical significance in the manufacturing industrial, such as, thermal molding-die, printed 
circuit boards (PCB) and diffusers. In recent years, a great deal of effort has been devoted to 
the development of various numerical techniques. Finite Element analysis associated with 
well known optimization methods (homogenization technique, evolutionary optimization) has 
become a widely used tool for engineers of many disciplines (BendsØe, 1995 and Li et al., 
1999). Generally typical drawbacks are very common in optimization problems, such as, 
intermediary density, remesh, check-board instability. These drawbacks must be controlled, 
and sometimes, the final result does not discard a pos-processing which results an increase of 
computational cost. 

Recently, a new family of methods based on topological derivative (DT) estimates or 
topological-shape sensibility (Sokolowski and Zochowski, 1997; Feijóo et al. 2003) has been 
proposed as an alternative to the homogenization methods. The main advantage of DT 
methods lies on the use of a constant density (avoiding intermediary materials) and easy 
implementation. On the other hand, it is quite difficult to be extended to more general cost 
functions and including problem dependent restrictions, as well (Garreau et al., 1998; Céa et 
al., 2000; Sokolowski and Zochowski, 2001; Feijóo, 2002; Novotny et al., 2003). 

Significant reduction of computational costs has been attained by using BEM as solver in 
computational process, as optimization for example, since there is no mesh in the domain. So 
far, the BEM has been used mostly for shape optimization problems. Marczak (2005) 
introduced the application of a DT method using the boundary element method (BEM) 
applied to the topological optimization of linear isotropic potential problems.  

The objective of the present work is to extend the proposed methodology in a previous 
work (Anflor and Marczak, 2006) which dealt with anisotropic solids submitted to heat 
transfer using DT, BEM and linear coordinate transformation. Now the idea concerns to apply 
that numerical methodology to study of the behavior of the solid design when a multi heat flux 
loading is introduced in the domain. 

Firstly, the DT formulation focused on the Poisson equation is presented. Next, the heat 
source transfer treatment in BEM is briefly reviewed. Finally, a number of linear heat transfer 
problems are presented, being these results compared with those available in the literature. 
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2 TOPOLOGICAL DERIVATIVE REVIEW 

Topological derivative for Poisson Equation is applied in this work. A simple example of 
applicability consists in a case where a small hole of radius (ε) is opened inside the domain. 
The concept of topological derivative consists in determining the sensitivity of a given 
function cost (ψ) when this small hole is increased or decreased. The local value of DT at a 
point ( x̂  ) inside the domain for this case is evaluated by: 
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Where ψ(Ω) and ψ(ε) are the cost function evaluated for the original and the perturbed 
domain, respectively, and “f” is a regularizing function. With equation (1) was not possible to 
establish an isomorphism between domains with different topologies. Feijóo et al. (2002) 
modified the equation introducing a mathematical idea that the creation of hole can be 
accomplished by single perturbing an existing one whose radius tends to zero. With this new 
way to state the problem it is possible to establish a mapping between each other (Novotny, 
2003). 
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Where δε is a small perturbation on the radius of  the hole. 
In the case of linear heat transfer, the direct problem is stated as: 
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Equation (5) is a function which takes into account the type of boundary condition on the 

holes to be created ( ,
u

u q
n
ε

ε ε
∂

=
∂

 are the temperature and flux on the hole boundary ( Bε∂ ), 

while uε∞  and chε  are the internal convection parameters of the hole, respectively). 

After an intensive analytical work, Feijóo et al. (2002) have developed explicit expressions 
for DT for problems governed by Eq.(3). Table 1 presents these final expressions for 
topological derivative, considering the three classical cases of boundary conditions on the 
holes. 
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Boundary condition on the hole Topological derivative Available at 

Neumann boundary condition 
(α = 0, β =1 , γ = 0) 

ˆ( )
T

D x k u u bu= ∇ ∇ −  x̂ ∈Ω ∪ Γ  

Neumann boundary condition 
(α = 0, β =1 , γ = 0) 

ˆ( )
T

D x q uε= −  x̂∈Ω ∪Γ  

Robin boundary condition 
(α = 1, β = 0, γ = 0) 

( )ˆ( ) 2T cD x h u u
ε

ε ε∞= −  x̂∈Ω ∪Γ  

Dirichlet boundary condition 
(α = 1, β = 0, γ = 0) 

( )1
ˆ( )

2
T

D x k u uε= − −  x̂∈Ω  

Dirichlet boundary condition 
(α = 1, β = 0, γ = 0) 

ˆ( )
T

D x k u u buε= ∇ ∇ −  x̂∈Γ  

Table 1: Analytical expressions for topological derivatives in Poisson problems. 

3 NUMERICAL METHODOLOGY 

Since eq.(3) and its ˆ( )
T

D x  counterparts of Table 1 are valid only for isotropic domains, 

conformal mapping techniques can be used to reduce a steady state anisotropic field in an 
isotropic equivalent. The advantage of this method relies in the fact that the coordinate 
directions of the mapped domain remain straight. The method is very well known and has 
been applied along with numerical methods like the FEM and the BEM before. Poon (1979) 
investigated the heat conduction problems in layered composites with orthotropic materials, 
while Poon et al. (1979) extended the work for anisotropic media. Shiah and Tan (1997) 
applied the coordinate transformation to map an initial anisotropic heat transfer field to an 
equivalent isotropic domain using the BEM. Hsieh and Ma (2002) introduced a linear 
coordinate transformation method to solve heat conduction on a thin layer of anisotropic 
medium subjected to arbitrary thermal loadings applied inside the domain or on the boundary 
surfaces. Ma and Chang (2004) studied two-dimensional steady-state thermal conduction 
problems on anisotropic multi-layered media. They have used the linear coordinate 
transformation to simplify the governing equation without complicating the boundary and 
interface conditions. Shiah and Tan (2004) extended their earlier work (Shiah and Tan, 1997) 
to three-dimensional anisotropic field problems. 

The differential equation for anisotropic two-dimensional heat conduction in a Cartesian 
coordinate system (Arpaci et al., 1990) is given by: 
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where,  kxx, kyy and kxy  are the thermal conductivity coefficients, while T represents the 
temperature field. The corresponding heat fluxes are expressed as: 
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The following linear coordinate transformation is used (Poon, 1979): 
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where k is the equivalent thermal conductivity. Equation (9) now resembles eq.(3), i.e. an 

equivalent isotropic problem. It is interesting to point out that when 0
xy

k = , the 

transformation of eq.(8) is merely a rotation of the constitutive coordinate system to its 
principal directions. Neumann boundary conditions also must be transformed accordingly: 
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By inverting the eq.(10), the Neumann boundary conditions are promptly recovered as a 
function of the original domain boundary conditions. 
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In the present work, the boundary element method was used as numerical method to solve 
the governing equations. The boundary integral equation for problems governed by eq.(3) is 
given by (Kane, 1994): 

 * * *ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( )c x T x q x y T y d T x y q y d T x y b y d
Γ Γ Ω

+ Γ = Γ + Γ∫ ∫ ∫  (12) 

where c is the geometric factor of the boundary point x̂ , T and q are the temperatures and 

the fluxes on the boundary Γ, respectively, and b is the heat generated inside the domain Ω. 

The symbols *
T  and *

q  refer to the temperature and flux fundamental solutions for an infinite 

medium: 

 ( )* 1
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2
T x y x y
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−
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π
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 * *ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( )q x y k T x y y= − ∇ ⋅n   

where t is the thickness of the medium and n is the outward normal of the boundary Γ at 
ŷ . In the cases where there are n  heat sources of intensity s  inside the domain, placed at 

coordinates ẑ , the last term of eq.(12) can be particularized by replacing b for a concentrated 
heat source (Kamiya and Sawaki, 1985): 
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and eq.(12) is rewritten as: 
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where x̂ ∈Γ . After the usual discretization of the boundary Γ in boundary elements, and 

parameterization of the temperature and fluxes through interpolation functions, eq.(15) is 
applied to each boundary nodal point x̂ , generating the system of equations: 

 = +HT GQ f  (16) 

where the vectors T and Q contains the temperature and fluxes of the boundary nodes, 
while the last term on the right side contains the heat sources contribution. Since at each 

nodal point on Γ whether the temperature or the normal heat flux is known, the columns 

of eq.(16) can be exchanged to group the boundary unknowns in a single vector X: 

 AX = B  (16) 

Once the system of equations (16) is solved, all the boundary variables are known, and the 
temperature on interior points can be recovered as a post-processing step, using the integral 
equation for temperatures are internal points (Kane, 1994): 

 * * *

1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( , ) ( ) ( , ) ( )
n

i

i

T x T x y q y d q x y T y d T x z s z
=Γ Γ

= Γ − Γ +∑∫ ∫  (17) 

where x̂ ∈Ω .  

In order to adapt a BEM code based on eqs.(15) and (17) for topology optimization of 
orthotropic media, the following algorithm was implemented (see fig.1): 

 
1. Start with the orthotropic domain mesh and a suitable grid of internal points. 
2. Transform an orthotropic domain into an equivalent isotropic one by the linear 

coordinate transformation given by eq.(8). The Neumann b.c., the coordinates of 
internal points and the heat sources inside the domain also must be transformed. 
Solve the problem by the BEM as an isotropic case. 

3. The variables are evaluated on all interior points. The points with the lowest 
values of 

T
D  are selected. 

4. Apply the inverse mapping. Holes are created by punching out disks of material 
centered on the previously selected points. Check stopping criteria, rebuilt the 
mesh and return to step 1, if necessary. When the process is halted, an optimal 
topology is expected. 

The grid of internal points is generated automatically, taking into account the radius of the 
holes created during each iteration. Different patterns of internal points can be generated, as 
discussed by Marczak (2007). In addition, the analyst can restrict the grid to the design areas 
only, reducing significantly the computational overhead. The radius of the holes are taken as a 

fraction of a reference dimension of the original domain ( refr l= λ ), where 

ref min(height,width)l =  is generally adopted. The current area of the domain (
f

A ) is checked 

at the end of each iteration until the target value is achieved ( 0f
A A= ξ , where 0A  is the initial 

area). 
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 Figure 1: BEM iterative scheme for material removal. 
 

4 NUMERICAL RESULTS 

The following examples are used to demonstrate the capabilities of the proposed 
topological derivative optimization method. It is assumed that all examples are submitted to 
steady state heat transfer. Some examples were inspired on those proposed by Li et al. (1999) 
in order to compare the actual results obtained with DT methodology. The first example is an 
isotropic square plate with only one heat flux loading placed at the center of the plate while 
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the second one refers to an isotropic rectangular plate with two heat fluxes loading in the 
domain. The third example consists in an isotropic PCB (printed circuit board) with four heat 
flux loading, what represents some electronics components who generates heat. The fourth 
example presents a comparative between the final design provided by an isotropic and an 
orthotropic media. All examples are compared with those available in the literature. The 
material removal history is analyzed and illustrated for each case. The iterative process was 
halted when a given amount of material is removed from the original domain, regardless the 
type of material medium. This provided a basis to compare the topologies generated for 
isotropic, orthotropic and anisotropic media under the same initial geometry and boundary 
conditions. In all cases the total potential energy was used as the cost function. A regularly 
spaced grid of internal points was generated automatically, taking into account the radius of 
the holes created during each iteration. The radius was taken as a fraction of a reference 
dimension of the domain (r = α lref). Usually lref = min(height,width) was adopted. The 
objective in all cases is to minimize the material volume. The current area of the domain (Af) 
was checked at the end of each iteration until a reference value is achieved (Af = βA0, where 
A0 represents the initial area). Linear discontinuous boundary elements integrated with 4 
Gauss points were used in all cases. 

Example 1 – A heat conductor field with the dimension of 50 × 50 mm is meshed with 80 
boundary elements. The temperature along the boundary (edges AB, BC, CD and DA) is 
maintained at 0 °C. A heat flux loading with 1 kW/mm2 is positioned at the center’s plate, 
(see fig.2). During the optimization process the open cavities in the domain were prescribe as  
0°C, while the material remove was set as cut-off = 0.03. The process is halted when the 
minimum volume is attained.  

 

Figure 2: Initial design with one heat flux loading. 
 
Figure 3 shows the topology’s behavior as the process evolves along the iterations. It is 

clear to see that the final design represents a circle, what describes a radial heat transfer due to 
a heat flux loading placed at the center of the domain. 

 

   F1 = 1 kW/mm2 

 
   AB = BC = CD = DA = 0°C 
 
    kx/ky = 1 

50 

50 

F1 

  
A   B 

C D 
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Figure 3: Historic evolution: one heat flux loading. 
 

Example 2 – This case is similar to the previous one, except that kx/ky = 2 is imposed. In 
Figure 4 is possible to accomplish the iterative process and verify that an elliptical profile is 
obtained as a final result. An elliptical profile as a final shape is justified due to a non-
isotropic feature of the material. It is interpreted as the heat transfers faster in direction x, and 
the material remained in this direction is of higher conductivity efficiency.  

 

 

Figure 4: Historic evolution for orthotropic case with one heat flux loading. 

 

Iteration #5 

Iteration #16 Iteration #11 

Iteration #9 

Iteration #18 Iteration # 32 

Iteration # 45 Iteration # 56 
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Figure 5 depicts a comparative between the final topologies obtained by present method, 
considering orthotropy and isotropy behavior. The same cases were studied by Li et al. (1999), 
but instead of a heat flux loading at the center of the domain, a square cavity with prescribed 
temperature was adopted. The authors adopted Finite Element Method (FEM) analysis and a 
Weighting Factor Scheme (WFS) as optimization process and the final shapes obtained for 
isotropic and orthotropic cases are depicted in Figure 5 (b) and Figure 5 (d), respectively. In 
spite of the difference of statement between both problems, such as the heat flux loading and 
square cavity, the sensibility behavior is very similar since the main objective relies in to 
eliminate material with low flux level. As a final result the optimal shapes demonstrates good 
agreement (Figure 5). 

  

Figure 5: Comparative between the final topologies: (a) isotropic: DT, (b) isotropic: WFS (Li 
et al. 1999), (c) orthotropic: DT and (d) orthotropic: WFS (Li et al. 1999). 

 

Example 3 - Two heat fluxes loading are applied to a rectangular plate with a dimension of 
30×50 mm (Figure 6). The boundary conditions are prescribed as 0°C for the cavities to be 
open and for the external boundary too, while the heat flux loading are F1 = F2 = 1 kW/mm2, 
each one.  

 

Figure 6: Initial design with two heat fluxes loading. 
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AB, BC, CD, DA = 0°C 
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          (d) 
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As depicted in Figure 7, it is possible to accomplish the topologies achievement while the 

optimization process evolves. Figure 8 depicts a comparative between the final topologies 
employing different optimization techniques. The first one is resulting from the topological 
derivative and BEM while the second one was obtained by Li et al. (1999) with FEM and 
Weighting Factor Scheme. It is clear to see that there is no divergence between both final 
designs and the material with low flux level was eliminated. 

 

 

Figure 7: Historic evolution: two heat flux loading. 

 

 

Figure 8: Optimal topology: (a) topological derivative, (b) Weighting Factor Scheme (Li et al. 
1999). 

 

Example 4 - This example was proposed by Li et al. (1999) and refers to a printed circuit 
board (PCB) substrate. One of the functionality of a PCB consists in to dissipate the highest 
amount of thermal energy wit a limited amount of material. This concept justifies employing 
the topology optimization in order to eliminate material with low flux from the design 
domain. Based on this idea the objective is to obtain a more uniform flux distribution by 
reducing the flux variation in the structure. As illustrated in Figure 9 a BEM model of the 

(a) (b) 

Iteration #6     Iteration #11  

     Iteration #28  Iteration #20  
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PCB substrate is designed with a mesh of 32 elements. Four steady heat flux loading F1, F2, F3 
and F4 are set to 1kW/mm2, which are generated by several major electronic components 
mounted on the PCB. The structure consists of design and non-design domains as shown in 
Figure 4.9. The temperature on the boundary (edges AB, BC, CD and DA) is maintained at 
0°C throughout evolution process. For the cavities to be open is prescribed Neumann 
homogeneous as boundary condition. The process is halted when a volume ratio of 68% is 
attained.  

 

 

Figure 9: Initial design for PCB. 

 
Throughout Figure 10, it is possible to accomplish the historical evolution for this PCB 

case. Clearly, the material who presents a low efficiency in heat transfer is gradually removed. 
After an amount of material has done removed at the center, the next areas with low efficiency 
are the rectangle’s corners as depicted at iteration 27 in Figure 10. 
 

 
 

Figure 10: Evolution history. 
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Figure 11 presents a comparative between the final topology obtained using the proposed 
numerical methodology and those obtained by Li et al. 1999, employing the Weighting Factor 
Scheme. Both resulting topologies showed a satisfactory final result. 

 

 

Figure 11: Optimal topology: (a) topological derivative, (b) Weighting Factor Scheme (Li et 
al. 1999). 

 

5 CONCLUSIONS 

 

Topology and shape optimization applied to heat transfer problems are very scarce in the 
literature. It is increased when this topic is focused to problems that consider heat sources in 
non-isotropic media. In order to solve non-isotropic problems a heat transfer BEM code 
developed to isotropic materials was modified to accommodate the linear coordinate 
transformation. The introduction of a map technique also allowed extending DT formulation 
to solids with non-isotropic behavior, since this is not a simple task. This simple approach 
allows the solution of anisotropic heat transfer problems with very few changes in the original 
BEM code or further manipulations of the DT formulas. In addition, in the BEM only the 
boundary nodes have to be transformed, while domain methods like FEM or volume control 
methods would require the transformation of the domain mesh as well. Another advantage of 
the BEM is its characteristic of good accuracy for boundary variables (both temperature and 
heat flux), in comparison to other methods, which results in better estimates for DT. Evolving 
this subject, problems with multiple heat loads were analyzed and the final topologies were 
compared with those presented in the literature showing good agreement. Generally a design 
is submitted to diverse classes of requests, what makes some analysis very simples in face of 
the real applicability. In this context it is important to point out that optimization in solids 
submitted to heat transfer allows the designer to work with lighter components and with 
higher conductivity efficiency. It is encouraged to extend this study to a more complexes 
examples, like involving a multi-criteria optimization, where two objective functions are 
under analysis. 
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