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Abstract. Topological optimization provides a powerful framework to obtain the optimal domain 
topology for several engineering problems. The topological derivative is a function which 
characterizes the sensitivity of a given problem to the change of its topology, like opening a small hole 
in a continuum or changing the connectivity of rods in a truss. 
A numerical approach for the topological optimization of three-dimensional linear elastic problems 
using boundary elements is presented in this work. The topological derivative is computed from strain 
and stress results which are solved by means of a standard boundary element analysis. Models are 
discretized using linear or constant elements and a periodic distribution of internal points over the 
domain. The total potential energy is selected as cost function. The evaluation of the topological 
derivative is performed as a post-processing procedure. Afterwards, material is removed from the 
model by deleting the internal points and boundary nodes with the lowest values of the topological 
derivate. The new geometry is then remeshed creating “holes” at those positions where internal points 
and boundary points have been removed. The procedure is repeated until a given stopping criterion is 
satisfied. 
The proposed strategy proved to be flexible and robust. A number of examples are solved and results 
are compared to those available in the literature. 
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1 INTRODUCTION 

Structural optimization is a major concern in the design of mechanical systems. The 
classical design problem consists in finding the optimum geometric configuration of a body 
that maximizes or minimizes a given cost function while it satisfies the problem boundary 
conditions. The typical approaches for solving this problem are size and shape techniques 
(Cea et al., 2000). In size optimization only the cross sections of the structure are optimized, 
making this approach specially suited for the optimization of beam/bar structures. On the 
other hand, in shape optimization techniques the optimal geometry is searched within a class 
of domains having the same topology as the initial design, that is, no holes are introduced in 
the optimization domain. 

Topology optimization is a relatively new and growing field of structural optimization 
which has widespread in both academic and real-life industrial problems (Bendsøe y 
Sigmund, 2004). The goal in topology optimization is to find the material distribution that 
minimizes some objective function subject to given constraints on the amount of material 
available. The shape and the connectivity of the domain are both design variables; so that the 
introduction of new boundaries is permitted (and expected). This versatile approach is 
capable of delivering optimal designs with a priori poor information on the optimal shape of 
the structure, and it possess the ability of producing the best overall structure (Tanskanen, 
2002). Thus, topology optimization features a larger space of feasible solutions and can play 
an important role in the conceptual design phase of the engineering life cycle (Vegamenti et 
al., 2005).  

Homogenization methods are possibly the most used approach for topology optimization 
(Bendsøe and Kikuchi, 1988). In these methods a material model with micro-scale voids is 
introduced and the topology optimization problem is defined by seeking the optimal porosity 
of such a porous medium using one of the optimality criteria. In this way, the homogenization 
technique is capable of producing internal holes without prior knowledge of their existence. 
However, the homogenization method often produces designs with infinitesimal pores that 
make the structure not manufacturable. A number of variations of the homogenization method 
have been investigated to deal with these issues, such as penalization of intermediate densities 
and filtering procedures (Sigmund and Peterson, 1998). On the other hand, there exist the so-
called level set methods which are based on the moving of free boundaries (Wang and Wang, 
2004;Wang and Wang, 2006). Although very effective, the main drawback of level set 
methods is that they require of pre-existent holes within the model domain in order to conduct 
a topology optimization. 

The topological derivative provides an alternative approach for shape optimization. It was 
firstly introduced by Ceá et al. (1974) by combining a fixed point method with the natural 
extension of the classical shape gradient. The basic idea behind the topological derivative is 
the evaluation of cost function sensitivity to the creation of a hole. In this way, wherever this 
sensitivity is low enough (or high enough depending on the nature of the problem) the 
material can be progressively eliminated. Topological derivative methods aim to solve the 
aforementioned limitations of the homogenization methods. 

A numerical approach for the topological optimization of three-dimensional elastic 
problems using boundary elements is presented in this work. The formulation of the problem 
is based on recent results by Novotny et al. (2007), who introduced a new procedure for 
computing the topological derivative for three-dimensional problems which allows 
overcoming some mathematical difficulties involved in its classical definition. The boundary 
element analysis is done using a standard direct formulation. Models are discretized using 
constant quadrilateral elements and a periodic distribution of internal points over the domain. 
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The total strain energy is selected as cost function. The problem is solved incrementally. In 
every step, material is removed from the model by deleting the internal points with the lowest 
values of the topological derivate. The new geometry is automatically remeshed using an 
algorithm capable of detecting “holes” at those positions where internal points have been 
removed. In this way, the procedure avoids using intermediate densities, the classical 
limitation of the homogenization methods. The procedure is repeated until a given stopping 
criterion is satisfied. The performance of the proposed strategy is illustrated for a number of 
examples and their results compared to solutions available in the literature. 

Although the finite element method has been the main numerical tool for the 
implementation of topology optimization techniques, there are implementations using the 
Boundary Element Method (BEM) (Marckerle, 2003) and free boundary parameterization 
methods (Wang and Wang, 2006). The antecedent in the implementation of the Novotny et al. 
(2003) approach for the computation of the topological derivative using BEM is two-
dimensional. These are the works by Marczak (2007) and Cisilino (2006) for potential 
problems and by Marczak (2006) and Carretero and Cisilino (2008) for elastic problems. Both 
implementations, those due to Marczak (2006, 2007) and those due to Cisilino (2006) and 
Carretero and Cisilino (2008) use similar procedures for the computation of the topological 
derivative results. However, they differ in the strategy proposed for the creation of the holes 
and the model update and remeshing. The procedures introduced in the work by Carretero and 
Cisilino (2008) for two-dimensional elasticity are extended here to three-dimensional 
problems. 

2 GENERAL SPECIFICATIONS 

The classical definition of the topological derivative relates the sensitivity of a cost 
function ( )ψ Ω  when the topology of the optimization domain  is altered by creating a 
small cavity or hole. Consider with this purpose a bounded three-dimensional domain  with 
smooth boundary ∂Ω . The domain is perturbed by introducing a small spherical hole of 
radius ε at an arbitrary position x. Therefore, we have the original domain without hole and 
the new perturbed domain  with boundary , where and  
denote the domain and the boundary of the hole respectively (see Figure 1). The topological 
derivative,

Ω
Ω

BεΩ = Ω − ε Bε ε∂Ω = ∂Ω ∪ ∂ Bε Bε∂

TD , associated to a given cost function ψ defined in both domains is given by 

( ) ( ) (
( )

)
0

limTD
f

ε

ε

ψ ψ
ε→

Ω − Ω
=x , (1) 

where is a negative function that decreases monotonically so that with 
. 

( )f ε ( ) 0f ε →
0ε +→

However, the direct application and implementation of equation (1) comprises some 
mathematical difficulties because it is not possible to establish a homeomorphism (or 
mapping) between the domains with different topologies (domains with and without the hole). 

Novotny et al. (2007) proposed an alternative definition of the TD  that overcomes the 
problem. They developed the so-called topological-shape sensitivity method which based on 
the mathematical framework developed for shape sensitivity analysis. Novotny et al. (2007) 
demonstrate that if ( )f ε  is chosen in order to ensure ( )0 TD< <x ∞  the topological 

derivative given in (1) can be written as 
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where is real positive number used to parameterize the domain  such that  τ τΩ

0 0
, ,τ τ ττ ττ

= =
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The symbol in equation (3) defines the shape change velocity which is a smooth vector 
field in  with the following values on the boundary  

v
εΩ ε∂Ω

on

0 on

Bε= − ∂

= ∂
⎧
⎨
⎩

v n

v Ω
 (4) 

where n stands for the outward normal unit vector (see Figure 1). 
Finally, the shape sensitivity of the cost function in relation to the domain perturbation 

characterized by velocity field is given by v

( ) ( ) ( )
0

0

lim
d
d

τ ε
τ τ

τ

ψ ψ
ψ

τ τ→
=

Ω − Ω
Ω = . (5) 

The topological-shape sensitivity method presented above provides an effective means for 
computing the topological derivative. Since it is possible to associate the domain perturbation 
with the parameter ,  such that τ x xτδε = −  so that , the domain  with  can 
be seen as the material configuration while the domain  can be regarded as the spatial 
configurations. In fact, the domains  and  have the same topology, and so it is now 
possible to establish a homeomorphic map between them. 

δε τ= εΩ 0τ =

τΩ

εΩ τΩ

 

 
Figure 1: The topological-shape sensitivity analysis: (a) Original domain Ω , (b) Perturbed domain and (c) 

Small hole in the perturbed domain . 
εΩ

Bε

3 THE TOPOLOGICAL DERIVATIVE FOR THREE-DIMENSIONAL 
ELASTICITY 

In the present work the TD  is applied to the optimization of three dimensional elastostatics 
considering a mechanical model restricted to infinitesimal strains and displacements with a 
linear isotropic constitutive relation. The basic outline for the derivation of the topological 
derivative expression for three-dimensional elasticity by means of the topological-shape 
sensitivity method is presented next following Novotny et al. (2007).  

The derivation of the topological derivative equations require to state the equilibrium 
equations in the original domain without the hole, Ω , and the perturbed domain  with the 

Ω 

n n 

Ωε 

r=ε 
n 

Bε  

         (a)                                                               (b)                                                         (c)     
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hole, . The mechanical model for the original domain without the hole can be stated via its 
variational formulation as following: given the domain  with boundary  
submitted to a set of surface tractions 

εΩ
Ω N D∂Ω = Γ ∪Γ

t  on the Neumann boundary  and displacements 
constraints 

NΓ
u on the Dirichlet boundary DΓ , find the displacement vector field u such that 

( ) ( )
N

d d
Ω Γ

⋅ Ω = ⋅∫ ∫σ u ε w t Γw , (6) 
 

where stands for the field of admissible displacement variations which satisfies the 

condition  on 

w
0=w DΓ , (1

2
T∇ + ∇= u uε ) is the Green deformation tensor and  is the 

Cauchy stress tensor where C is the elasticity tensor (see for example 

=σ Cε

Gurtin, 1981). 
The Euler-Lagrange equation associated to the variational problem in equation (6) is given 

by the following boundary value problem: 

( )

( )

find such that

div 0 in
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on 

D

N

⎧
⎪
⎪ = Ω
⎪
⎨

= Γ⎪
⎪
⎪ ⋅ = Γ⎩

u

σ u

u u

σ u n t

 

 (7) 

Similarly, the mechanical model for the domain with a hole εΩ Bε  can be stated via its 
variational formulation as following: find the displacement vector field such that εu

( ) ( )
N

d d
ε

ε ε ε ε ε ε
Ω Γ

⋅ Ω = ⋅∫ ∫σ u ε w t Γw . (8) 

In accordance with the variational problem given in equation (8) null tractions, 
, are specified on the hole boundary,  (homogeneous Neumann boundary 

condition). 
( ) 0ε ε ⋅ =u nσ Bε∂

The cost function ψ  is, in a certain way, arbitrary. The total strain energy is adopted as 
cost function in this work and the differentiation method will be adopted to compute its shape 
derivative. Considering the total potential energy written in the spatial configuration , then τΩ

( ) ( )τ τψ Ω = ℑ u  with 

( ) ( ) ( )1
2 N

d d
τ

τ τ τ τ τ τ τ
Ω Γ

ℑ = ⋅ Ω − ⋅ Γ∫ ∫u σ u ε u t u τ ,  (9) 

where the domain integral in the right represents the total strain energy stored in the body and 
the boundary integral represents the external work. This objective function is equivalent to 
optimize the mean compliance of the problem. 

In addition, τu is the solution of the variational problem defined in the configuration , 
that is: find the displacement vector field such that 

τΩ
τu

( ) ( )
N

d d
τ

τ τ τ τ τ τ
Ω Γ

⋅ Ω = ⋅∫ ∫σ u ε w t Γw . (10) 

The Reynolds’ transport theorem (Gurtin, 1981) and the concept of material derivatives 
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of spatial fields is used to compute the shape derivative of the cost function ( τ )ψ Ω  at . 
That is 

0τ =

( ) ( ) ( ) ( )
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It is worth noting that the stress-strain constitutive relationship  is constant in relation 
to .  

=σ Cε
τ

Taking into account that  
( ) ( )

fixed

d
d

τ
τ τ

∂ ⋅ ⋅
=

∂
x

, (12) 

and considering that is the solution of equation (8) (and consequently of the associated 
Euler-Lagrange equation) and that its derivative 

εu
d dε τu can be written as 

( )d
d

ε ε
ετ τ

∂= + ∇ ⋅
∂

u u u v , (13) 

the expression in equation (11) can be written as (for further details please see Novotny et al. 
(2007)): 

( ) ( ) ( ) ( ) ( ) ( )
0

1
2

Td d
d ε

τ ε ε ε ε ε ε ε
ττ ∂Ω=

⎧ ⎫ℑ = ⋅ − ∇ ⋅⎡ ⎤⎨ ⎬⎣ ⎦⎩ ⎭∫u σ u ε u I u σ u n v Γ , (14) 

which becames an integral defined on the boundary . The symbol I in equation (14) is 
the second order identity tensor. Besides, it is worth noting that the expression into {} 
corresponds to that of the Eshelby energy-momentum tensor (see for instance 

ε∂Ω

Gurtin (1981)).  
From the definition of the velocity field in equation (4) and taking into account the 

homogeneous Neumann boundary condition on , equation (14) can be written as Bε∂
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( ) ( )

0

1
2

1 .
2

d d
d

d

ε

ε

τ ε ε ε ε ε ε ε
τ

ε ε ε ε

τ ∂Ω=

∂Ω

⎡ ⎤ℑ = − ⋅ − ⋅ ∇⎢ ⎥⎣ ⎦
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 (15) 

The expression for the topological derivative results after replacing equation (15) into 
equation (2): 

( ) ( ) ( ) ( )
0

1 1lim
2 ´TD d

f ε
ε ε ε εε ε ∂Ω→

= − ⋅ Γ∫x σ u ε u . (16) 

The calculation of the limit in equation (16) requires of an asymptotic analysis in order to 
know the behavior of the stress and strain fields when .  This behavior is obtained from 
the analytical solution for a stress distribution around a spherical void (

0ε →
Sadowsky, 1949). 

Besides, and in accordance with resulting the asymptotic behavior of expression (16), the 
function ( )f ε  must be chosen such that 
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( ) 24f ε πεε = − ∂Ω = − . (17) 
in order to take the limit . 0ε →

Then, the final expression for the topological derivative becomes a scalar function which 
depends on the solution of displacement field solution, , associated to the original domain 

. This expression can be written in terms of the stress tensor σ :  
u

Ω

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ){ }23 1

10 1 1 5 tr
4 7 5TD

E
ν

ν ν
ν

−
= + ⋅ − + ⎡ ⎤⎣ ⎦−

x σ u σ u σ u , (18) 

or in terms of the stress σ and strain  tensors: ε

( ) ( )
( ) ( ) ( ) ( ) ( )3 1 1 510 tr tr

4 7 5 1 2TD
E

ν ν ε
ν ν

− −⎡ ⎤= ⋅ −⎢ ⎥− −⎣ ⎦
x σ u ε u σ u u , (19) 

where and E ν are the Young modulus and the Poisson ratio respectively. It is worth noting 
that equations 18 and 19 are only valid for the linear elastic case. 

 

4 BOUNDARY ELEMENT IMPLEMENTATION 

The implemented algorithm solves the optimization problem incrementally by 
progressively removing a small portion of the domain per step (usually known as hard kill 
algorithm (Eschenauer and Olhoff, 2001). The algorithm was implemented as a framework in 
C++, which includes the class BEMSolver for the boundary element analysis. 

It is worth noting that since the TD  is a function of the stress and strains only, its 
evaluation does not require any special BEM implementation. With this purpose a three-
dimensional BEM solver with constant quadrilateral elements was implemented. The solver is 
based on the standard BEM formulation for elasticity (see for instance Aliabadi and Wrobel, 
2002).  The models are discretized using a regular mesh like that illustrated in Figure 2a. The 
boundary mesh is accompanied by a regular array of internal points where the local TD  
values are computed in a post-processing procedure. Every internal point represents a cubic 
cell of material which can be removed during the optimization (see Figure 2b). 

The incremental algorithm consisting in the progressive removal of material from the 
model will lead to extinction of the optimization domain if no stopping criterion is specified. 
Two stopping criteria used in this work: a goal minimum material volume fraction, 

( ) ( )final 0vol volminγ = Ω Ω , or  a maximum limit displacement for given point.  

 
The algorithm can be summarized as follows (the index  stands for the step number): j

i. Provide an initial domain 0j=Ω  and the stopping criterion. 
ii. Solve the BEM model for the jΩ domain. Compute the stress σ and strain ε fields at 

internal and boundary points. 
iii. Compute the ( )TD x  using the formulas (18) or (19). 

iv. Select the points with the minimum values of TD  (a few percent of the total number of 
points). 

v. Create holes by removing the points selected in step iv. 
vi. Remesh BEM model and validate its geometrical integrity. If necessary, fix the model 

geometry. 
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vii. Check stopping criterion. If necessary, make 1j j= + , define a new domain jΩ , and 
go to step ii. 

viii. At this stage the desired final topology is obtained. 
 
Model discretization and remeshing 

The strategies for the model discretization and remeshing are key issues for the 
performance of the implemented algorithm. The BEM mesh is constructed in every 
optimization step from the spatial distribution of internal points. As it has been mentioned 
earlier, every internal point represents a cubic material cell. The optimization algorithm 
eliminates a number of internal points in every step, what results in the deactivation of the 
cells they are associated to. In this way the material is progressively removed from the model. 
The boundary for the new model geometry is constructed in every step by identifying the 
faces of the active cells (that is, those cells associated to the internal points which are still 
present in the model discretization) which belong to one cell only (faces shared by two cells 
do not belong to the model boundary). Finally, each of the boundary faces is assimilated to a 
quadrilateral constant boundary element with the geometry given by four geometrical nodes 
and the functional node in the centroid (see detail in Figure 2a). 

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: BEM discretization strategy: (a) Initial discretization using constant quadrilateral elements and internal 
points, (b) Modified domain after the removal of internal points. 

 

 

Internal point and the associated 
material cell 

         (a)                                                                          (b)                     

Removed material 

 

Functional node Geometry node 

Quadrilateral constant 
boundary element 
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Disconnected model portion 

 

Portion of the model 
connected in a single vertex. 

(a) (b) 

(c) (d) 

(e) (f) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: (a) Problems arising during the automatic model remeshing, (b to e) Geometry verification and fixing 
process via the identification of neighbour internal points, (f) Suitable model discretization after the deletion of 

the conflicting cubes. 
 
 
Depending on the spatial distribution of the internal points, two problems may arise in the 

new boundary discretization (see Figure 3a): i) there are portions of the model defining 
“islands” disconnected from the main model boundary; and ii) there are portions of the model 
which are connected to the main model boundary via a single vertex or edge only. The 
disconnected cubes represent parts of model without loading carrying capacity which will 
lead to fatal errors in the BEM solution. Therefore, disconnected and not properly connected 
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portions of the model should be removed from the model. Cubes have to be connected via 
faces to the main model domain in order to be a valid one. This means, in order to represent a 
valid cube the distance of the associated internal point to its nearest neighbour has to be equal 
to the length of the cube edge.  

The components not properly connected can have more than one element. The algorithm 
detecting of the disconnected components works by filling the main component with a valid 
flag, in a recursive neighbor-searching subroutine: 

i. Select the internal point with the highest value for the topological derivative (note that 
this internal point always represents a loading carrying cube and thus will never be a 
disconnected one).  

ii. Search for all the valid neighbors to the selected internal point (see Figure 3b). If the 
selected point has neighbors set the flag hasNeighbor=true. 

iii. Select each of the internal points detected as valid neighbors and repeat the process in ii 
(See Figures 3c, 3d and 3e).   

iv. Once the analysis finishes (that means no valid neighbors are detected) all the internal 
points with the value hasNeighbor=false are deleted. The process results in a valid 
BEM model (see Figure 3f). 

The process results in a valid BEM model (see Figure 3f) by removing all the islands. 

5 EXAMPLES 

5.1 Two-dimensional Short Cantilever Beam  

A two-dimensional problem was chosen for the first example in order to validate the 
implemented algorithm. It consists in a short cantilever beam of dimensions 30m×30m×1m 
constrained in the left side edge and with a vertical unit point load P=0.1 N applied at the top 
right vertex (see Figure 4). The problem was solved for two set of boundary conditions along 
the left edge: fully constrained (clamped, see Figure 4a) and with the displacements 
constrained in the x- and z-directions only (the first node has the displacements constrained in 
the y-direction in order to avoid rigid body displacements, see Figure 4b). In both cases the 
model was discretized using boundary elements of dimensions 1m×1m, resulting in a 1,920 
boundary elements mesh and 900 internal points. The material properties are E= 1Pa and 
ν=0.3. The problem was solved using a constant material removal rate η=0.55% of the initial 
model volume, what it is equivalent to removing 5 cubes per step.  

Figure 5 illustrates the evolution of the model geometry together with the topological 
derivative and displacement results for the case of the clamped beam. The final geometry 
results after 159 steps. The optimized geometry contains 95 cubes which accounts for 10.5% 
of the material of the initial model.  

The results of the optimization process for the case of the beam with left end partially 
restrained are depicted in Figure 6. It is interesting to compare these results to those of the 
first case. Since the left end of the beam is now free to displace in the y-direction, the 
optimized geometry develops a vertical arm parallel to the left edge of the beam. It is easy to 
see that this arm replaces the role of the clamped end in the first case, providing the structure 
rigidity in the vertical direction. The final optimized geometry is achieved after 144 steps and 
its volume is only 20% the initial one. 
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Figure 4: The short cantilever beam example: model geometry, boundary conditions and initial 
discretization for the (a) clamped and (b) partially constrained models. 

  

P P 

(a) (b) 

x 

y 

z x

y 

z 

5.2 Simply Supported Block Under Central Vertical Load 

This second example consists in cube with the four vertices in the bottom face 
constrained in the vertical direction and free to slide in the horizontal plane. A load is applied 
in center of the top face (see Figure 7a). Problem dimensions are 40m×40m×10m. Due to the 
symmetry of the structure, only one quarter of the problem was analyzed. The model was 
discretized using elements of dimensions 1m×1m, resulting in a 600 boundary element mesh 
and 1,000 internal points. The load was chosen P=0.1 N and it was applied over one element. 
The displacement boundary condition at the bottom corner was also prescribed over a single 
element. The material properties were set the same to those of the first example. 

The model was optimized using two different material removal rates: η=0.1% (one cube 
per step) and η=0.2% (two cubes per step). Figures 7b to 7d show the evolution of the model 
topology for the solution using η=0.1%. The final geometry is achieved after 960 steps. It 
consists in a four feet structure in a pyramidal shape joined by four horizontal supports. The 
volume of the optimized geometry is only 4% that of the initial one. Figures 7e and 7f 
illustrate the solutions reported by Ceá et al.(2000) and Novotny et al. (2007), who solved the 
problem using the fixed point and the topological derivative method respectively. In both 
cases the problem was solved using the finite element method coupled with adaptive meshing 
algorithms. It can be seen that although the difference in the problem dimensions (note that 
the reference solutions are for an initial cubic geometry), the optimized geometry computed in 
this work is in excellent agreement to those from the references. 
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Topological derivative Displacements [m] 

    
Initial model, γ=1 

    
Initial model, γ=1 

  
Step #50, γ=0.725 

  
Step #50, γ=0.725 

  
Step #100, γ=0.45 

  
Step #100, γ=0.45 

  
Step #159, γ=0.10 

  
Step #159, γ=0.10 

Figure 5:  The short cantilever beam example: evolution of the model geometry and topological derivative and 
displacement results for the clamped case. 
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Topological derivative Displacements [m] 

  
Initial model, γ=1 

     
Initial model, γ=1 

  
Step #50, γ=0.72 

     
Step #50, γ=0.72 

 
Step #100, γ=0.48 

    
Step #100, γ=0.48 

 
Step #159, γ=0.20 

    
Step #159, γ=0.20 

Figure 6: The short cantilever beam example: evolution of the model geometry and topological derivative 
and displacement results for the partially restrained case.
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(a) Initial model, γ=1 

 
 

 

 

 

 

 

 

(b) Step #200, γ=0.80 
 
 

 

 

 

 

(c) Step #800, γ=0.20 

 
 

 

 

 

 

(d) Step #960, γ=0.04 

  
 

 
(e) Result due to Ceá et al. (2000) γ=0.01 

 

 
(f) Result due to Novotny et al. (2007) 

γ=0.04 

P 

Figure 7: Simply supported block under central vertical load: (a to d) evolution of the model geometry and 
displacement results; (e and f): reference results. 
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Figure 8: Simply supported block under central vertical load: evolution of the normalized cost functions in terms 

of the material volume fraction. 
 

Similar results were obtained after 469 steps when the problem was solved using the 
η=0.2% material removal rate. The behavior of both solutions is compared in Figure 8, where 
the result of the normalized cost function, 0/ψ ψ , is plot as a function of the material volume 
fraction, γ. Note that since the total strain energy equals the work of the external forces, the 
plot in Figure 8 can also be interpreted as the relative increment of the problem compliance 
(the displacement of the load application point) with the decrement of the material volume 
fraction. It can be seen from Figure 8 that both solutions behave almost identically. This result 
suggest that in order to speed up the optimization process larger material removal rates could 
be used with no degradation of the problem solution. 

Finally, an extra loading case with the four bottom corners clamped (displacements 
restrained in the three directions) was solved. In coincidence with the results reported by Ceá 
et al. (2000) the horizontal lattice between the four support disappear, and the optimal design 
is just made by four feet joined in the pyramidal structure. 

 

6 CONCLUSIONS 

An effective BEM implementation for the topological optimization of three-dimensional 
elastic structures was presented in this work using the total strain energy as cost function. The 
problem formulation is based on some recent results by Novotny et al. (2007), who 
introduced a new procedure for computing the topological derivative which allows 
overcoming some mathematical difficulties involved in its classical definition.  

BEM models are discretized using constant quadrilateral elements and a regular array of 
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internal points. Each internal point is associated to a small material cube. The topological 
derivative is computed at internal points from the strain and/or stress results.  

The optimization problem is solved incrementally. In every step the material removal is 
done by deleting from the model the internal points (and consequently the associated material 
cubes) with the lowest values of the topological derivative. The material removal is followed 
by a model remeshing and a checking procedure devised to avoid the occurrence of invalid 
BEM models. The process is repeated until the given stopping criterion (the goal minimum 
material volume fraction) is achieved. 

The proposed method demonstrates the efficiency of boundary elements for topological 
optimization analysis, even when using low order elements. The developed implementation 
proves to be efficient and robust. Its performance is assessed by solving a number of 
examples. 
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