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Abstract. In this work, we have performed a global sensitivity analysis through variance-based 
techniques to identify which parameters have the largest impact on model output and which of them 
account for most of the uncertainty in that output. Sensitivity indices have been calculated for each 
parameter, based on Sobol’s approach (2001), which makes use of Monte Carlo methods. The global 
sensitivity analysis has been carried out on a dynamic model for the Embden-Meyerhof-Parnas 
pathway, the phosphotransferase system and the pentose phosphate pathway of Escherichia coli K-12 
strain W3110. The model comprises eighteen dynamic mass balance equations for extracellular 
glucose and intracellular metabolites, twenty nine kinetic rate expressions and seven additional 
algebraic equations to represent the concentration of co-metabolites. The model involves around one 
hundred parameters. Each parameter has been considered to have a normal probability distribution 
centered on its nominal value and sample sizes of one thousand scenarios have been considered. The 
preceding analysis has allowed identification of less than twenty parameters as the most influential 
ones on the complex metabolic network under study. 
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1 INTRODUCTION 

The interest to develop new products and processes using renewable resources through the 
discovery and optimization of new strains has been growing since the past few years. At this 
point, metabolic engineering plays an important role because it deals with the improvement of 
cells, considering the possibility of introduce a new pathway, delete or modify existing ones 
in cells, using genetic tools to achieve a specific goal (Stephanopoulos 2002). Nowadays it is 
possible to obtain data characterizing the status of microorganisms over time at genomic, 
proteomic, metabolomic and physiological levels. It means that intracellular and extracellular 
metabolites concentrations, measurements of protein levels and activity are available, in most 
cases. The advances on experimental techniques and the consequent increase on the amount 
of accessible data on the dynamics of functioning cells allow the building of dynamic models 
for metabolic networks, which can predict the microbial behavior and constitute important 
tools in metabolic engineering.  

Dynamic models provide time profiles for the concentration of metabolites involved in the 
metabolic network under study. They comprise a non-linear differential algebraic system of 
equations which arise from mass balances of metabolites and have a large number of kinetic 
parameters that must be estimated for a specific growth condition. However, uncertainty in 
input parameters has different effect on model outputs. Thus the first step to solve the inverse 
problem is to carry out a sensitivity analysis, which provides knowledge about the parameters 
that have the largest impact on model outputs. There are local and global sensitivity analysis 
methodologies. The first ones study the effect of small changes of parameters on model 
outputs assuming linearity of variables around the nominal trajectory (Pastres and Ciavatta, 
2004; Borgonovo and Peccati, 2007). Global methods are based on exploring the whole range 
of variation of model parameters and on performing repeated simulations to obtain the output 
distributions. Therefore, computational cost is much higher in global sensitivity than in local 
sensitivity methods. Mauch et al. (1997) proposed a local sensitivity method to determine 
stationary and time-dependent flux control coefficients and concentration control coefficients 
for a generic metabolic network and applied it to a metabolic network represented by two 
ordinary differential equations, with twelve parameters. Also, Noack et al. (2008) applied 
local sensitivity analysis to a metabolic network.  However, to our knowledge, there is no 
global sensitivity analysis report on metabolic networks in the literature. 

In this work, we have performed a global sensitivity analysis for a large-scale differential 
algebraic (DAE) system representing a complex metabolic netwok. Sensitivity indices have 
been calculated for each parameter based on Sobol’s method (2001), which is a variance-
based method. The global sensitivity analysis has been performed on a dynamic model for the 
Embden-Meyerhof-Parnas pathway, the phosphotransferase system and the pentose phosphate 
pathway of Escherichia coli K-12 strain W3110 (Chassagnole et al., 2002). 

. 

2 MATHEMATICAL MODELING OF METABOLIC NETWORKS 

Dynamic models for metabolic networks comprise a nonlinear differential algebraic 
system of equations that arises from mass balances for extracellular and intracellular 
metabolites and co-metabolites involved in the metabolic pathways. In this work the dynamic 
model for the Embden-Meyerhof-Parnas pathway, the pentose-phosphate pathway and 
phosphotranferase system of Escherichia coli K-12 W3110 (Chassagnole et. al. 2002) has 
been studied. The model consists of eighteen differential equations that represent dynamic 
mass balances of extracellular glucose and intracellular metabolites, thirty kinetic rate 
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expressions and seven additional algebraic equations for co-metabolites and involves around 
one hundred parameters. The set of differential equations is shown by equations 1 to 18, and 
algebraic equations (for co-metabolites) are shown by equations 19 to 25. 
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Equations 26 to 29 show kinetic expressions for phosphotransferase system, pyruvate 
dehydrogenase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase 
respectively, which are involved in the above mentioned differential equations system (there 
are thirty kinetic equations included in the present model). A large amount of experimental 
data is required to estimate all parameters included in the model. However, uncertainty in 
some parameters may cause a slight variation in process variables and, on the other hand, 
uncertainty in others, can produce a large variation in model outputs. Therefore, 
determination and ranking of the most influential parameters in model outputs and their 
subsequent estimation are fundamental in developing a reliable predictive model. In this 
sense, global sensitivity analysis plays an important role in appropriately ranking input 
parameters, allowing the reduction of the number of parameters to be estimated through 
experimental data.  

 

(26) 
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3 GLOBAL SENSITIVITY ANALYSIS 

Sensitivity analysis methods can be classified into two categories: local and global ones. 
Local techniques study the behavior of model outputs when input parameters vary one at a 
time, keeping the remaining ones constant at their nominal value. These methods are based on 
a Taylor series expansion around the nominal trajectories. The assumption of linearity is valid 
only within a narrow range of variation of the parameter, around its nominal value. Therefore, 
when the whole range of variation of the model parameters are considered and for nonlinear 
models, results obtained with local sensitivity analysis are not representative (Pastres et. al. 
2004). Local methods compute sensitivity indices as the first partial derivative of the outputs 
respect to the parameter of interest and the advantage of these techniques is that estimation of 
the indices has a low computational cost.  

On the other hand, global sensitivity analysis is based on exploring the total range of 
variation of model parameters, sampling from the distribution function associated to each 
input parameter and on performing repeated simulations of the model taking into account the 
sampled values of input parameters.  These methods have a higher computational cost than 
local techniques, but they provide more realistic results, since parameter interactions can be 
identified. Besides global methods do not require the assumption of linearity or additivity of 
the model, so they are model-independent methods. There are many techniques for global 
sensitivity analysis, such as Morris method, Fourier Amplitude Sensitivity Test (FAST), 
Sobol’ method and others. 

3.1 Variance-based methods: Sobol’s method 

Given a function Y= f(X), where Y is a model output and X is a vector of k model input 
parameters, this function may be decomposed into terms of increasingly dimensionality 
(Sobol’, 2001): 
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From (31), the summands in equation (30) are orthogonal and can be expressed as integrals 
of f(X). 

Suppose, f(X) is squared integrable in its domain of existence, then squaring (30) and 
integrating, the following relation is obtained 
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siiV ...1
 are called unconditional and conditional variance respectively. 

The unconditional variance can be written as the variance-decomposition scheme, as 
proposed by Sobol’ (Sobol’ 1990), as follows: 
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Equations (30) and (32) are unique if the input parameters are orthogonal and the 

summands in (30) are square integrable in the domain of existence. 
Despite the input factors are orthogonal or not, the unconditional variance can be 

decomposed as  
( )( ) ( )( )ii xYVExYEVYV +=)(                     (33) 
( )( ) ( )( )ii xYVExYEVYV −− +=)(                     (34) 

where 
 
- ( )( ) ii VxYEV =  computes the effect on the model output when all parameters except xi 

vary and it is called the first-order effect of the parameter xi. 
- ( )( ) ii VxYEV −− =  compute the effect on the model output when xi varies and the other 

parameters are kept constant.  
- ( )( ) TOT

ii VxYVE =−  compute the effect on the model output when all parameters except xi 
are fixed, i.e., it takes into account all the terms in equation (32) that include xi, for the case of 
orthogonal input factors. 

 If equations (33) and (34) are divided by the unconditional variance, the following 
expressions are obtained   
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The first-order sensitivity index, Si is defined as follows: 
 

( )( )
( ) )(YV

V
YV

xYEV
S ii

i ==                                                                                        (37)             

            
Si gives the reduction on the unconditional variance that is possible to obtain if xi can be 

fixed. Sobol’s (2001) has proposed a methodology to compute sensitivity indices, based on 
Monte Carlo simulations, with a minimum amount of function evaluation. Main steps are as 
follows: 

  
1. Two different random sets of model parameters are generated: ),( ζηξ =  and 

),( ''' ζηξ = , which could be called sample and re-sample matrices respectively. Each 
matrix has dimensions N × k, where N is the sample size for the Monte Carlo method and 
k is the number of parameters. In the previous nomenclature η is a vector of dimensions 
N×1, which contains the N random values of the parameter xi whose sensitivity indeces 
want to be calculated and ζ is a matrix of dimensions N×(k-1) and contains the random 
values of the k-1 remaining input parameters. 

2. Two new matrices are generated combining ξ and ξ’, which are required for the 
computation of the variances, as follows (f0 stands for E(Y|xi)):        
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3. Sensitivity indices are subsequently calculated by the corresponding definitions given 

above. 
 

4 DISCUSSION OF RESULTS 

We have implemented a large scale metabolic network model consisting of eighteen 
differential equations and thirty seven algebraic ones that stand for kinetic expressions and 
co-metabolite concentrations, in g-PROMS (PSE Enterprise, 2007), in which the differential 
algebraic system of equations is solved with DASSL (Brenan et al., 1996). In this 
environment, two different sets of random parameters, ξ and ξ’, have been generated for 
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k=twenty parameters, with sample size of N=2500 scenarios. Normal distribution has been 
assumed for each parameter and their mean values have been taken from the literature 
(Chassagnole et al., 2002), with a 10% standard deviation. Table 1 shows uncertain input 
parameters and their mean values. 
 
Table 1. Uncertain input factors and their distribution parameters 
 

Enzyme Parameter Nominal value 

KPTS,1 3082.3 mM 

KPTS,g6p 2.15 mM 

NPTS,g6p 3.66 
PTS (Phosphotranferase system) 

rPTS,max 389696.028 mM/sec 

PGI (Glucose-6-phosphate isomerase) KPGI,eq 0.1725 

KPFK,f6ps 0.325 mM 

NPFK 11.1 PFK (Phosphofructokinase) 

rPFK,max 0.406 mM/sec 

KGAPDH,gap 0.683 mM 

KGAPDH,pgp 0.0000104 mM GAPDH (Glyceraldehyde-3-phosphate 
dehydrogenase) 

rGAPDH,max 705.917 mM/sec 

PGK (Phosphoglycerate kinase) KPGK,eq 1934.4 

PGluMu (Phosphoglycerate mutase) KPGluMu,eq 0.188 

ENO (Enolase) KENO,eq 6.73 

NPDH 3.68 
PDH (Pyruvate dehydrogenase) 

rPDH,max 4.596 mM/sec 

PEPCxylase (PEP carboxylase) KPepCxylase,fdp 0.7 mM 

G6PDH (Glucose-6-phosphate 
dehydrogenase) rG6PDH,max 1.063 mM/sec 

KPGDH,6pg 37.5 mM PGDH (6-phosphogluconate  
dehydrogenase) rPGDH,max 12.491 mM/sec 

 
 
We have performed the N(2k+1) Monte Carlo simulations in g-Proms and temporal profiles 
for the eighteen state variables have been exported for subsequent conditional and 
unconditional variances calculation according to equations 38 to 41. Temporal profiles of Si 
were calculated within a Fortran 90 environment using the calculated variances profiles, with 
equation (37). 
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Figure 1.  Profiles of Si for glucose-6-phosphate                     Figure 2.  Profiles of Si for phosphoenolpyruvate  
    concentration.                                                                            concentration. 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
Figure 3.  Profiles of Si for pyruvate concentration.         Figure 4.  Profiles of Si for 6-phosphogluconate 
                            concentration.  

 
 
Figures 1 to 4 show profiles for sensitivity indices for glucose-6-phosphate (g6p), pyruvate 

(pyr), phosphoenolpyruvate (pep) and 6-phosphogluconate (6pg), respectively. Figure 3, 
shows that most of the parameters affect the concentration of pyruvate in the first twenty 
seconds, and then Npdh (the exponent for pyruvate concentration in the rPDH kinetic 
expression) is the only parameter which produces variations in this model output. In the case 
of the concentration of 6pg, this model output is sensitive to only four parameters, Nptsg6p, 
RG6PDHmax, KPGDH6pg and RPGDHmax, which are involved in the kinetic expressions 
for phosphotransferase system (rPTS), the glucose-6-phosphate dehydrogenase (rG6PDH) and 6-
phosphogluconate dehidrogenase (rPGDH), as it can be seen in Figure 4.  

5 CONCLUSIONS 

Global sensitivity analysis has been performed to a large-scale metabolic network model, 
which comprises a differential algebraic system of equations. To our knowledge, this is the 
first time a large-scale DAE representing biological systems is studied through this 
methodology. It has allowed both a reduction of the input parameter set and a ranking of most 
influential ones to pave the way to formulation and solution to the dynamic parameter 
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estimation problem for the main parameters ranked in this study. 
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