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Abstract. An h-adaptive unstructured mesh refinement strategy to solve unsteady problems by the finite
element method is described. Key features of the strategy are the non-conformity and both a prescribed
updating frecuency and a maximum level of refinement for the adapted meshes. The 1-irregular node
refinement constraint is extended to tetrahedral meshes to ensure a smooth grading in the elements size.
A particular 1:8 partitioning sequence, which shows to keep bounded the quality decrease, is applied to
tetrahedral elements. The type of element is not changed and no transition templates are used, therefore
hanging nodes appear in the adapted mesh. The elements’ refinement algorithm is described in some
detail. The adaptivity strategy is implemented in C++ code using both the STL (Standard Template Li-
brary) and Boost Multiarray (http://www.boost.org/) libraries for the managment of the data structure.
This code is used to solve the Taylor-Sedov spherical blast wave problem on an unstructured mesh of
tetrahedra.
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1 INTRODUCTION

Nowadays, the benefits of mesh adaptivity in the solution of computational fluid dynamics
problems by the finite element method are well recognized. Mesh enrichment (h-adaptivity)
and nodes relocation (r-adaptivity) are common procedures to achieve this. Not to modify the
fluid dynamic solver is one of the advantages of the former procedure.

In this work, an h-adaptive element-based unstructured mesh strategy to solve unsteady com-
pressible flows by the finite element method is briefly described. Then it is applied to solve a
three dimensional blast wave problem. The refinement algorithm has been already used to
solve steady 2-D and 3-D problems and an axisymetric unsteady compressible flow problem in
Ríos Rodriguez et al. (2005, 2006). Here, it is the first time that it is used to solve a 3-D un-
steady problem using tetrahedral elements. To keep bounded the quality decrease of the mesh
is the main driving force of the refinement strategy. It has been shown in a previous work by
Ríos Rodriguez et al. (2008), that the best choice (from both the quality and computing cost
points of view) to regularly refine a tetrahedron in 8 sub-tetrahedra is to choose the shortest
diagonal of the inner octaedron that arises in the regular 1:8 partitioning process. So, this is the
element refinement pattern being used in this work.

Besides, the adaptivity strategy has to manage hanging nodes since no transition elements
are used to match zones with different levels of refinement. Therefore the solution must be
constrained on these nodes. The 1-irregular node constraint amongst neighbouring elements
extended for tetrahedral elements and is applied to ensure a smooth transition in the elements
size. The mesh adaptation stage is sequentially performed on a single processor of a Beowulf
cluster (but not the server node) while the fluid dynamic problem solver (PETSc-FEM, Storti
et al. (1999-2007)) runs on several nodes. The spherical blast wave problem of Taylor-Sedov is
described and solved.

2 REFINEMENT ALGORITHM

For unsteady problems the mesh must be refined and derefined every few time steps to track
the structures of the flow through the computational domain. Therefore adaptivity algorithms
for this kind of problems must be computationally inexpensive. An element-based technique is
used to refine the elements of the mesh (i.e., both the selection and refinement are applied in
an element-wise fashion). Only a regular 1:8 refinement pattern is used for 3-D elements and
the type of element is conserved. Regarding element quality, it is decided not to use transition
templates such as those developed by Staten (1996) to match zones with different levels of
refinement because they produce low quality elements and they involve a computational effort
to be handled. As a consequence: a) the adapted mesh has hanging nodes b) the 1-irregular
node refinement constraint must be applied to ensure a gradual transition in the element size, c)
mesh quality is degraded up to a certain value, d) there is no need to use compatibility rules for
refinement / coarsening, and finally e) the solution must be constrained on the hanging nodes.

2.1 Extension of the 1-irregular node refinement constraint

The 1-irregular node constraint says that no more than 1 hanging node should be shared
amongst neighbouring elements through the common edge (2-D and 3-D) or face (3-D) to which
the node belongs. These kind of mesh refinemement was first proposed by Babuska and Rhein-
boldt (1978) for 2-D elements and here it is extended and used on 3-D meshes. To this end, face
and edge entities are managed within the data structure of the mesh.

It is said that an edge or face is active if not all the elements that share it are refined, otherwise
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it is inactive. The parent of an edge is the edge from which it derives by insertion of a midpoint.
The parent of a face is the face from which it derives by joining the midpoints (and centre point
on quadrilateral faces) with edges. As a consequence, the faces and edges that appear inside
refined elements have no parents.

Refined elements are always deactivated. Finally, edges has two childs, faces has four and
elements can have either 4 (2-D) or 8 (3-D) childs. These geometrical entities are organized in
a hierarchical manner, so we say that an entity belongs to a low level of refinement if it has a
higher hierarchy, and conversely.

The refinement function that applies the 1-irregular refinement constraint is recursive. Given
a list of elements to be refined eles2ref, created at the error estimate stage, the function can
be described as follows:

1. Find the edges that belong to eles2ref. Call these ones edges2ref_tmp.

2. Find in the set edges2ref_tmp those that have not been refined yet. Call them edges2ref.

3. Search the parents of the edges2ref. If some of them are still active, put them in the list
ParentEdges2ref.

4. Find the elements to which these ParentEdges2ref belong and build a new list
eles2refNEW.

5. If eles2refNEW is not empty, call the function with eles2refNEW as an argument. Else
start to refine the elements in eles2refNEW.

For simplicity reasons the procedure has been described only for the edges, but a similar one is
applied to the faces. In fact, eles2refNEW is a unique list containing the elements to be refined,
obtained from applying the procedure to both the edges and faces of the mesh. edge and face
are C++ classes/structures, and the edge/face class objects are stored in STL vector<...>
containers. For example, the edge structure declaration is as follows

#ifndef EDGE_CLASS_H
#define EDGE_CLASS_H
#include<cstdlib>
#include<vector>
class edge{
public:
edge();
~edge();
int middle_node; //middle node in the edge
std::vector<int> nodes_parent; //nodes of the edge
int parent; //parent’s edge number
std::vector<int> child; //child edges numbers
int flag; //property flag
int state; //alive = 1 , inactive = 0
};#endif // EDGE_CLASS_H ///:~

and a vector of edges v_edges is declared as vector<edge> v_edges.
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2.2 Strategy for unsteady problems

The strategy for applying the refinement algorithm to unsteady problems is developed con-
sidering that the adapted mesh has to be updated every few time steps. The updating frequency
is constant and prescribed by the user for the whole run. The adapted mesh is obtained from
applying refinement iterations to a base mesh, as it shown in Fig.1. For each one of these
adaptivity steps (except for the first one) elements are marked to be refined, based on the error
estimate chosen for the problem and the computed solution on the last adapted mesh. Elements
to be refined are always selected at the maximum level of refinement. Since no higher level of
refinement than that prescribed by the user is desired, a parents search algorithm is used. If ele-
ments which do not belong to the base mesh are selected, it is required to search for the parents
of these elements in the data structure. Then, the elements selected for refinement are replaced
by their parents and the process is recursively repeated until none of the elements in the list of
elements to be refined has parents. In this way, preliminary lists of elements to build the next
adaptivity step are stored. This process is represented by blue arrows in the diagram of Fig.1.
Then, the next adaptivity step begins to be built. Since the elements numbering scheme of the
adapted meshes at the same level of refinement changes from one adaptivity step to the next,
the numbering of the elements to be refined in the preliminary list needs to be updated. Once
this list is updated, the refinement process can go on. The updating and refinement processes
are shown in the diagram as green and red arrows, correspondingly. Finally, the problem solver
is restarted using the most refined mesh. Only for the first adaptivity step, the problem solver is
run a few time steps on the base mesh. Then, elements are marked and refined as many times
as it is required by the error estimates or until the maximum level of refinement is reached. The
strategy does not consider the coarsening of the base mesh. An initial state to restart the flow
computation is obtained as the linear interpolation of the solution belonging to the last adapted
mesh, at the nodes of the base mesh. The boundary conditions are also updated. To this end,
geometrical entities of the mesh have a property flag attached to them. This flag is associated
with a special property, such as a fixation, a periodic or a slip constraint, dynamical boundary
conditions for compressible flows developed by Storti et al. (2008), an element-wise property
or maybe a combination of properties. Those properties are inherited from parents to childs at
the refinement stage by inheritance of the flag (Fig.2), and updated lists of geometrical entities
with that properties are built in a post-refinement stage within the adaptivity step.

2.3 Error indication

Error estimates are used to identify the zones of the mesh that need to be refined in order
for the error of the approximate solution to be smaller than a prescribed tolerance. The choice
of the right error indicator depends on multiple factors, such as the relative cost to compute
the error estimate in regards to that of the rest of the adaptivity process, the affordable error
estimate precision and the mathematical character of the equations. Although mathematically
rigurous error estimate methods have been devised, most of them are usefull for elliptic prob-
lems. Heuristic gradient-based methods are frecuently used in hyperbolic problems since they
are computationally unexpensive, they let the zones to be refined be properly identified and be-
cause of the lack of a more rigurous theory development for this kind of equations. Despite of
these advantages, success in using these methods depends on the user’s experience to choose
the right variable or combination of flow variables that better suit the problem being solved. For
non-viscous compressible flows the gradient of the density and/or pressure fields are often used.
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Then, an element is marked to be refined when the element-wise computed gradient |∇eu| of a
flow variable u times a measure of its size he (ie. the circumradius or the length of its longest
edge) is greater than a prescribed tolerance value for the element error ε∗e

|∇eu| ·he ≥ ε
∗
e (1)

3 THE TAYLOR-SEDOV SPHERICAL BLAST WAVE

The Taylor-Sedov shock solution describes what happens if a point-like explosion occurs
in a uniform density gas. After some short time the explosion will have ‘swept up’ more
than the mass of the material ejected in the explosion, and subsequently one expects to find
a spherical shock wave propagating radially outward, with the shock front position a function
of R = R(E,ρ0, t) where E is the energy of the explosion, ρ0 = 1.225kg/m3 is the resting density
of the ambient gas and t is the time since the explosion.

The shock wave comes to an end because the source of pressure also comes to an end,
allowing a rarefaction wave to propagate forward, finally overtaking the shock. When this kind
of phenomena takes place it is said that a blast wave happens. Blast waves are very common
because the release of energy is of limited duration. They appear in processes such as solar
flares release of energy (causing blast waves to form in the solar wind), interactions of jets with
clouds, stellar explosions (supernova remnants develop a blast wave structure which they retain
for much of their evolution), atmospheric nuclear explosion and depth charges.

Following Taylor’s analysis of the problem, the spherical blast wave problem has a self-
similar solution. By dimensional analysis and assuming that the solution has power law depen-
dence on E, ρ0 and t (otherwise it wouldn’t be self-similar) it can be stated that

R ∝ E l
ρ

m
0 tn (2)

Then, equating powers of mass, length and time on both sides of Eq.(2) gives the power law
indices l = 1/5, m =−1/5 and n = 2/5, so the expression for the spherical shock front position
is now given by

R ∝ E
1
5 ρ

−1
5

0 t
2
5 (3)

The constant of proportionality will depend on the equation of state of the gas. Although this
can be computed by solving first the system of ODE’s for the self-similar profiles of the flow
variables, Hutchens (2000) gives the following equation for computing such constant

Const =
[
(N +3)(γ+1)

4

] 2
(N+3)

[
(N +1)

CN

] 1
(N+3)

(4)

where CN = 4π and N = 2 for a spherical geometry and γ = 1.4 is the isentropic coefficient
of the gas (air).

3.1 Problem setup

The Taylor-Sedov spherical blast wave problem is solved on an hemi-spherical domain us-
ing the adaptive strategy. The numerical solution is computed over an unstructured mesh of
tetrahedra. The boundary conditions of the problem are

• Slip condition ~V ·~n = 0 at the planar surface of the computational domain.
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• Fixed pressure p = p0 at the spherical surface of the computational domain, where p0 =
1atm is the ambient pressure.

For the last boundary condition to be correct, it is considered that the blast wave distance to the
spherical boundary is sufficiently great.

The initial conditions of the problem are

• A small hemi-spherical region is at the center of the computational domain. This is the
region of the explosion and its initial radius is Rini = 0.25m.

• The state variables inside the radius of the explosion are pblast = 200 p0, ρblast = ρ0 and
the fluid is at rest in the whole domain.

The three dimensional Euler equations are solved using the advection-diffusion module adv_dif
of the PETSc-FEM multi-physics finite element solver, using 10 nodes on a cluster of PC.
adv_dif is based on a Streamline Upwind Petrov-Galerkin stabilized finite element formula-
tion together with a shock-capturing scheme.

The time step size is computed taking into account the CFL (Courant, Friedrichs and Lewy)
condition and Courant number for the simulation is Cou = 0.6. The elements to be refined are
selected computing the magnitude of the element-wise pressure gradient ∇p(T ), choosing those
whose value are

c1 ·max
Ti∈τ

(∇p(Ti)) (5)

where constant c1 ' 0.1 for the whole run.
Two levels of refinement are used and the frequency of adaption for the mesh is equal to 5

time steps. This means that every 5 time steps the mesh is adapted to the last computed solution.
The final time for the simulation is t f ' 0.04sec. The base mesh for the adaptive simulation has
140.000 elements and 26.400 nodes while the mesh for the final instants of the simulation has
1.350.000 elements and 285.000 nodes, approximately.

3.2 Results

The radial position of the shock front for the finite element solution is compared against that
given by Eq.(3). It is seen that for time instant t ' 0.02sec, the computed position of the shock
front using the finite element method agrees very well with that given by Eq.(3), that is

Rc f d(0.02)' 5.6m (6)

while

RT S(0.02) = 5.4m (7)

The exposed faces of the adapted mesh at time instant t = 0.00885sec. are shown in Fig.(3),
while a cut of the mesh on a vertical plane of simmetry plus a Mach colourmap can be seen in
Fig.(4). It can be clearly seen that the spherical shock front is captured by the mesh adaptivity
strategy. Finally, the Mach number colourmap of Fig.(5) shows that a supersonic flow develops
behind the travelling shock wave.
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Figure 3: Exposed faces of the adapted mesh at t = 0.008853seconds.

4 CONCLUSIONS

An h-adaptive strategy to solve unsteady compressible flow problems over unstructured fi-
nite element meshes has been presented. Here, it is tested for a tetrahedral mesh and it shows
to be able to track the flow features through their displacement in the computational domain.
The strategy, coupled with the advection-diffusion code of PETSc-FEM allows to accurately
compute the shock wave position for the spherical blast wave problem. The capability of the
adaptive code to handle different type of boundary conditions is also tested. Future work in-
cludes efficiency measurements of the code.
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(a) t=0.008853sec

(b) t=0.0203sec

Figure 4: Adapted mesh plus Mach colormap for two time instants.
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(a) t=0.008853sec

(b) t=0.0203sec

Figure 5: Mach colormap for two time instants.
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