Asociacion Argentina AMCL

de Mecanica Computacional

Mecéanica Computacional Vol XXVII, pags. 3093-3115 (articulo completo)
Alberto Cardona, Mario Storti, Carlos Zuppa. (Eds.)
San Luis, Argentina, 10-13 Noviembre 2008

A ROBUST ALGORITHM TO DETERMINE SURFACE/SURFACE
INTERSECTION IN BOTH PARAMETRIC SPACES

Fabio G. Teixeira® and Guillermo J. Creus®

Grupo Virtual Design, Pgdesign — Programa de P6s-Graduacéo em Design da Universidade Federal
do Rio Grande do Sul, Osvaldo Aranha, 99/408, Porto Alegre, Brasil, fabiogt@ufrgs.br
http: //www.vid.ufrgs.br

Grupo CEMACOM, Universidade Federal do Rio Grande do Sul, , Osvaldo Aranha, 99/408, Porto
Alegre, Brasil, creus@ufrgs.br

Keywor ds:. Intersection, Parametric Surfaces, CAGD, Subdivision.

Abstract. An agorithm providing the intersection curves in the parametric space of both involved
surfaces is presented allowing the correct union of trimmed patch surfaces to represent complex
models and the generation of finite element meshes. The algorithm has four steps. On the first one, a
subdivision method is used to obtain an adaptive quadtree structure of surface regions where
potentially intersection curves segments can be contained. On the second one, each element of this
guadtree structure is approximated by triangles; the intersection segments of triangle pairs are
determined as an initial approximation of intersection curves in 3D space. On the third step, a
refinement process and parametric mapping of coordinates provides the intersection points on the
parametric and real spaces. In the last step, the intersection segments are reordered to obtain
intersection curves in parametric form. Several examples are included to check the robustness and
efficiency of the algorithm.

Copyright © 2008 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar

3094 F.G. TEIXEIRA, G.J. CREUS

1 INTRODUCTION

Intersection between surfaces is a recurrent subject in computer graphics, three-
dimensiona geometric modeling (solids and surfaces) and computer aided design (CAD). In
many applications in computer aided geometric design (CAGD) it is necessary to determine
the intersection curves between two surfaces: finite element mesh generation over surfaces
and solids, determination of silhouette curves of surfaces, Boolean operations, construction of
blend surfaces, interference and collision detection and scientific visualization. Intersection
determination has specia importance in engineering, especialy in automotive and aerospace
industries, where computational simulation is massively used in all project stages.

This paper presents an intersection algorithm for C* parametric surfaces that provides the
intersection curves with high precision and maps them into the parametric space of each
surface. This facilitates the manipulation of trimmed surfaces using parametric sub-domains
and can be used to assemble complex models and to generate finite el ement meshes on them.

The content of the paper is as follows. In Section 2 a critical review of previous works is
given. The proposed agorithm is described in Section 3 and its four steps are detailed in
Section 4 to 7. In Section 8 examples are presented to show the versatility and efficiency of
the method and, in Section 9, the conclusions are given.

2 PREVIOUSWORKS

The intersection problem between surfaces is a complex subject that has been an active
research field for more than three decades. Severa approaches exist: some are dependent on
the type of surfaces involved, while others are intended for special applications. According
Hoschek and Lasser (1993), a good intersection algorithm should have the following
characteristics:

e Numerical Precision — compatible with the application;

e Robustness — to determine all intersection curves, loops and singularities,

independently of the surface type and position;

e Speed — compatible with the application;

e Self-control — the algorithm should not require any help from user for the correct

execution.

These are conflicting characteristics. Thus, in the development of a surface intersection
algorithm, an appropriate balance should be sought among these requirements in agreement
with the intended application and practical usefulness. In their works, Hoschek and Lasser
(1993), Krishnan et al. (1994) and Andrade (1998) describe five groups of algorithms typesto
compute intersection curves between surfaces. analytical, lattice, continuation, marching, and
subdivision algorithms. Techniques that combine characteristics of different categories are
designated hybrid algorithms.

Analytical methods try to solve the intersection problem through the analytical solution of
the equation:

IF-G =0 (01)

where F and G are given surface equations in vectorial form. When the surfaces are described
through implicit formulations, the problem leads to a system of nonlinear equations, which
can be solved by a numerical method, as Newton-Raphson, differential geometric methods
(Asteasu, 1988) or algebraic techniques (Owen et al., 1987). In the case of parametric
formulations, it is necessary to do the conversion to the implicit formulation through algebraic

Copyright © 2008 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecéanica Computacional Vol XXVII, pags. 3093-3115 (2008) 3095

transformations (Sederberg, 1987). Except for the simplest surfaces, these algorithms have
high computational cost, hindering practical applications (Hoschek and Lasser, 1993).

L attice evaluation techniques reduce the degree of complexity of the intersection problem
by finding the intersections of isoparametric lines on one of the surfaces with (determined
using constant values of the parametric coordinates) the other surface (Barnhill et al., 1987).
Points on the intersection curve are calculated by the solution of a nonlinear system of the
type F(u,v)=G(st), using numerical techniques. The parameter v=v; should define a
sufficiently dense set of isoparametric lines on the surface F(u,v) (Hoschek and Lasser, 1993).
The accuracy of these methods depends on increment applied in v; and the numerical
techniques applied to solve the nonlinear systems.

Continuation methods use systems of differential equations, obtained from the parametric
eguations of the surfaces and their geometric characteristics, the equations are solved by
numerical technigques. Performance of the method depends on the initial approximation and
the complexity of the intersection curves. Problems as singularities and ramifications should
be treated by specific means. Patrikalakis (1991) and Abdel-Malek and Yeh (1996) use
continuation techniquesin their work.

Marching methods use incremental progression along the intersection curve. These
methods need starting points on the intersection curve to obtain new points evaluating the
tangent direction of the curve. One of the critical stages in these methods is the search for
starting points that can be found through other intersection methods, such as the subdivision
method (Barnhill and Kersey, 1990; Andrade, 1998), or through specific algorithms. The
marching process is another critical stage. Some works use an approximation of the tangent
vector of the intersection curve to determine the marching direction. Stoyanov (1992)
approximates the intersection curve localy by a parabola, which represents a Taylor
expansion of the intersection curve about the current point up to the second order, generating
linear equations systems. Another approach is the use of an osculating circle (Wu and
Andrade,1999).

Subdivision agorithms (Lane and Riesenfeld, 1980) divide the two surfaces in parts to
determine which among them intersect. The intersection points can be found by linear
approximation, considering that the resultant subdivision patches are amost flat. So, the
intersection problem is reduced, locally, to the case of plane/plane intersection. Proposals
differ according to how subdivisions are made, and how the intersections are computed on
each patch. The ending criteriafor the subdivision process constitute another important aspect
of the subdivision algorithms. These algorithms involve three steps: recursive subdivisions of
surfaces to reach a certain level (that depends on the process), determination of the points of
intersection curves, and reordering of these points to form the intersection curves. Each step
has specific characteristics. Several approaches for the subdivision stage can be found in the
literature. The first algorithms of this type made uniform subdivisions along all of the surfaces
(Griffiths, 1975). It was expensive and difficult to use. To reduce memory and time
processing, non-uniforms quadtrees are used to subdivide the surfaces in the parametric space
and bounding boxes (bounding volumes) that involve each corresponding patch in 3D space.
Patches whose bounding volumes intersect can contain segments of the intersection curve;
other patches can be discarded, restricting the search places of the intersection curves. Thisis
the divide-and-conguer principle. Patches where there is overlapping of bounding volumes are
subdivided in the two surfaces and the process is repeated: the interference is verified and the
patches without occurrences are eliminated. This process is denominated non-uniform
adaptive subdivision. After several successive subdivisions, the group of remaining bounding
volumes involves tightly and completely the intersection curves. Some agorithms use the size
of the remaining bounding volumes as an ending criterion for the subdivision process. Other

Copyright © 2008 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

3096 F.G. TEIXEIRA, G.J. CREUS

algorithms use the local curvature of surfaces as an ending criterion (Houghton et al., 1985).
The subdivision process continues, for those patches where there is interference, until the
ending criteria are satisfied.

The way to compute the bounding volumes varies. Gleicher and Kass (1992) use interval
arithmetic (I1A). Figueiredo (1996) adapts the algorithm proposed by Gleicher-Kass using
affine arithmetic (AA) (Comba and Stolfi, 1993). The convergence speed is higher and the
number of subdivisions is lower as compared with 1A. The bounding volumes can be,
basically, of two types:. parallel to the global axes, min/max boxes (Houghton et al., 1985), or
oriented by the corresponding patch on surface (tight bounding volumes). Construction and
interference computing for min/max boxes are smple. Tight bounding volumes (Houghton et
al., 1985; Barth and Huber, 1999; Huber, 1998) can improve the convergence speed, but have
high computational cost; the work of Barth-Huber (1999) mentions a reduction of only 7% in
the total processing time. The intersection curve can be obtained by alinear approximation of
the patches remaining after the subdivision process. These patches are divided in triangles that
are alwaysflat.

Intersections between triangles from patches whose bounding volumes overlap determine
segments that are a piecewise approximation of the real intersection curves; some additional
refinement may be necessary to obtain the desired precision. It is also possible to obtain the
intersection points directly on the patches, joining its central points, once the precision criteria
have been satisfied. Such criterion uses the distance between the centers of closest patches of
the two surfaces (Andrade, 1998).

The main advantage of the subdivision algorithms is its total independence of surface type
as adaptive subdivision satisfies the local geometric properties for any surface type; moreover
starting points are not needed. These reasons were decisive in the choice of this agorithm
type for the first step of the proposed algorithm.

3 THE PROPOSED ALGORITHM

The intersection method adopted in this work uses adaptive subdivision controlled by the
local curvature of the surfaces, which are subdivided in successive steps until no patch has
flatness lower than a chosen tolerance. In this way it is possible to reduce the intersection
problem, locally, to the intersection between two planes. This method is independent of type
and shape of involved surfaces, and shape and complexity of the intersection curves. These
factors are important to ensure the robustness and generality of the method, important
characteristicsin CAGD. The processing time, that is pointed as a negative factor for thistype
of method (Andrade, 1998), can be optimized with the use of appropriate criteria in the
subdivision, in the interference computation, and in the intersection points determination, as
described below.

On the other hand, the use of adaptive subdivision does not ensure an appropriate and
uniform accuracy level aong the intersection curves, problem that is critical when the
surfaces possess variable curvature, as usual in freeform surfaces. Such limitation is solved
using a refinement algorithm, to provide uniform precision along all of the intersection
curves. The algorithm provides the points of the intersection curves mapped in parametric
coordinates on the two involved surfaces. The precision, relative to the maximum dimension,
used in the examples is 102, The definition of the intersection curves in the parametric space
turns possible the determination of sub-domains on the surfaces, making easier the process of
mesh generation on trimmed surface patches.

The algorithm developed involves four steps:

e Adaptive Subdivision — the surfaces are subdivided successively until all active

Copyright © 2008 Asociacion Argentina de Mecéanica Computacional http://www.amcaonline.org.ar

Mecéanica Computacional Vol XXVII, pags. 3093-3115 (2008) 3097

patches become almost flat;

e Intersection between patches — the intersection segments are calculated in the 3D
Space;

e Refinement of the results — the results are refined and mapped on the surfaces in the
parametric space;

e Segments reordering — the consecutive segments are connected to create continuous
curves of intersection.

4 ADAPTIVE SUBDIVISION

The adaptive subdivision implemented uses a non-uniform quadtrees structure to subdivide
the surfaces. The goal is to determine in both surfaces the potentially places where
intersection can exists. As the subdivision level enlarges, the surface elements flathess
increases, allowing approximating locally the surfaces by an appropriate triangulation. Thus,
the first approximation of intersection curves will be the set of intersection segments between
triangle pairs.

The algorithm uses a data structure where information on the surface elements and their
bounding boxes are stored. The overlapping between bounding volumes is computed at each
iteration eliminating parts whose bounding volumes do not overlap. The following present the
basic concepts and main steps of subdivision algorithm.

4.1 Flatness of a surface patch

The flatness of a surface element is a concept that allows evaluating the curvature degree
of the element. The flatness is defined here as the smaller cosine of the angles among the
normal vectorsin the vertices and the center of the patch and is used to control the assembling
of the bounding boxes and the subdivision processes. The flatness of an element i (F;) is
computed by the internal product among normal vectors:

R . N
£, = Min (N _l> (02)
NNl

where N; is the normal vector in the center of element and N;; is the normal vector in each
vertex of the element. F; is the smallest value of the cosines. Therefore, a flat element will
have F; = 1. The largest admissible angle (4,,,,) among normal vectors corresponds to
minimum admissible F;. 4,,,, isfixed angular tolerance and is expressed by

AMax = cos™? ﬁMin (03)
where Fy;,, isthe minimum F; from all elements considered.

4.2 Computing the bounding volume

Bounding volume definition is determinant for accuracy and performance of the
subdivision process. The surface oriented bounding boxes result in fewer subdivisions, but
time for the calculating and detecting non-intersection of surface oriented bounding boxes is
far exceeds the time used by axis aligned bounding boxes (Sabharwal, 1994). Thus, this work
uses axis aligned bounding box (AABB) dueto itslow computational cost.

Each bounding box must enclose the correspondent surface element that is assured by a
local recursive subdivison method that uses the flatness of each sub-element as control
parameter. When an appropriate tolerance is used, this method computes bounding box with
good precision and low computational cost. To compute the bounding box of a surface

Copyright © 2008 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar

3098 F.G. TEIXEIRA, G.J. CREUS

element three steps are followed:
e The surface element is subdivided while the flatness of each sub-element is greater
than atolerance;
e For each sub-element, compute the extreme 3D coordinates of its vertices;

e The fina bounding box is defined by extreme 3D coordinates among al its sub-
elements.

Figure 1: Scheme to build a bounding box. A surface element is subdivided in sub-elements with minimum
tolerable flatness.

The accuracy is controlled by angular tolerance that defines the minimum flatness for
each sub-element of a surface element. For the examples shown in this work 2.5° angular
tolerance is used. Thisis half of the angular tolerance of the subdivision process, which is five
degrees and gives precison enough to compute intersections for there examples with a
performance compatible with interactive applications. Figure 1 shows how the agorithm
builds a bounding box for an element of a parametric surface.

4.3 Bounding box interference verification

The interference test between two axis aligned bounding boxes is a ssimple task. The
bounding boxes are projected as rectangles (see Fig. 2) on each coordinate plane (xy, yz, x2).
The interference on two bounding boxes occurs only when exist interference between its
projections on any projection plane; in fact, only the bounding box coordinate limits need to
be compared:

o [x1,x2]pv1 N [x1, %218y

o [yuy2levi N [yuy2leve

o [z1,23]pv1 N [21, Z2]Bv2

In case of interference, the links to the corresponding surface elements are included in the
guadtree data structure for each surface.

[y;L’ y2]BV1 m[yl’ yZ]BV2

[Xl' XZ]B\/l r\[Xl' XZ]BVZ

Figure 2: Bounding boxes interference computation through its projections. The intersection of interval
coordinates of the two bounding boxes in the three dimensionsis verified.

Copyright © 2008 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecéanica Computacional Vol XXVII, pags. 3093-3115 (2008) 3099

4.4 Subdivision of a surface e ement

Wherever the flatness of an active surface element is lower than the given tolerance, the
element is subdivided. Each subdivided element creates four children with the same
parametric dimensions that inherit the links from their mother. In parametric space the
children elements have half dimensions of their mother patch. Finally, the mother element is
removed from data structure and the children elements dataset is computed and added to the
guadtree data structure.

A cross verification is made between the children elements and the elements linked to their
mother. The child element that interferes with no element linked to its mother is eliminated
avoiding unnecessary verifications between elements with false links; this additional step
increases the convergence rate of the algorithm. Figure 3 shows how this procedure reduces
the number of active cellsin quadtree.

€Y (b)

Figure 3: Surface subdivision in parametric space made: a) without and b) with additional verification of false
links.

4.5 The subdivision algorithm

The subdivision process is controlled by the surface elements flatness and their bounding
box interferences determine whose elements pairs where intersection is potentially possible.
Thus, in the same iteration subdivisions are made in al elements pairs whose bounding boxes
overlap and whose flathess are small than specified tolerance. Then, the quadiree data
structure is updated to compute the new interferences. The process is repeated until the
flatness tolerance is reached for all elements. The algorithm has the following steps:

I. The two surfaces are subdivided, initialy, in 2x2 meshes, resulting in four elements
with the same parametric dimensions. The dataset from each element is added to
database quadtree. In this initia step, all elements from one surface are linked to all
elements from other surface.

Ii. The overlapping bounding boxes are computed following their links and the elements
whose bounding boxes are overlapping are linked, updating database. Only the data for
these elements, which are potential candidates to contain segments of intersection
curves, remain in the database.

lii. The flatness of al elements in the data structure is computed. The elements whose
flatness is less than a given tolerance are subdivided. Their children inherit links to the
elements on the other surface and substitute their mothers in the database. No more
than one level of subdivision difference is allowed between two adjacent elements.

Copyright © 2008 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

3100 F.G. TEIXEIRA, G.J. CREUS

iv. If thereis an element whose flatness is less than the tolerance, the algorithm returns to

the step ii otherwise the algorithm stops.

The angular tolerance used in the examples is five degrees (5°). Numerical experiments
performed show that smaller angular values turn the computational cost high without
significant increase in accuracy and increase the number of intersection points. Besides, it is
necessary to do a refinement process to assure precision and homogeneity to the results, asis
described in Section 6. This tolerance (5°) is smaller than that used by Houghton et al. (1985),
which was 20°, and it is enough for a good initial precision and also to find all the intersection
curve segments.

Figure 4: Example 1: Sweep surface and revolved surface. Figure shows subdivision process with bounding
boxes along seven iterationsin 3D space.

Copyright © 2008 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecéanica Computacional Vol XXVII, pags. 3093-3115 (2008) 3101

Figure 4 shows the example 1 where two surfaces have intersection and seven steps of the
recursive subdivision process in 3D space. The bounding volumes of both surfaces and their
overlaps are shown for each iteration step.

Figure 5 illustrates how the subdivision algorithm works for this example showing the
quadtrees for each surface in parametric space along the same seven iterations. The patches
shaded are overlapping; only these will remain in the database for the next iteration. The
number of iterations depends on the surface shapes but in general, five to nine iterations are
enough. At the end of this step two groups of patches linked with each other are obtained. In
the next step, the intersection curve segments will be computed.

1% Iteration 2" |teration 3 |teration 4" |teration 5" |teration

Figure 5: lllustration of the subdivision process along seven iterations in parametric spaces of the two surfaces.

5 COMPUTING INTERSECTION SEGMENTSIN 3D SPACE

In this step a first approximation of the intersection segments is computed. To this effect,
the intersections in 3D space between the two linked element groups are determined. Each
element is divided in triangles to guarantee the surface local flathess. The pattern of triangular
division will depend on the quadtree topology of each surface that should be appropriate to
assure the continuity of the intersection curves. The intersection between two elements is
computed by the intersection among all triangles from one and all triangles from the other
element.

Figure 6: Linked elements are divided in triangles according quadtree topology to determine the intersection
segmentsin 3D space.

Copyright © 2008 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar

3102 F.G. TEIXEIRA, G.J. CREUS

5.1 Division in triangles

The domain subdivision obtained in the previous stage is not uniform and elements with
different number of neighbors can occur. In this case, gaps could arise between the calculated
segments (Fig. 6). Thus, before an element is subdivided into triangles, it is necessary to
compute the number of neighbors for each edge to determine the correct topology for the
triangulation. This number is restricted to one and two, because the subdivision algorithm
does not allow transitions of more than one level. Five different configurations exist
according to element neighborhood topology.

When the four edges of an element have one neighbor, it is subdivided in two triangles
(figure 7a). When one edge of the element has two neighbors, it is divided in three triangles.
In this case, avertex is created in the middle of the edge that has two neighbors (figure 7b). If
two edges have two neighbors, these can be adjacent or opposed. In both cases four triangles
are created, but the topological configurations are different (figure 7c-d). Finaly, if three
edges have two neighbors, five triangles are created with three new intermediary vertexes
(figure 7€). The situation where the four edges have two neighbors doesn’'t happen here
because in this case the element is already subdivided in the previous step. These five
configurations assure a mesh without gaps.

Each segment of the intersection curve results from the intersection between two
triangles from two surface elements. A single element can have several segments depending
on the number of linked elements and the number of triangles in each one (the quadtree
topology). As each element can contain up to five triangles, the number of intersections
among triangles can rise to twenty-five. If an element has four links, the number of
intersections between triangles can increase up to one hundred.

(@ (b)

(©) (d)

()

Figure 7: Topologies of triangle subdivision. a) All edges have only one neighbor. b) One edge has two
neighbors. ¢) Two adjacent edges have two neighbors. d) Two edges opposed have two neighbors. €) Three
edges have two neighbors.

5.2 Intersection of two trianglesin the 3D space

The intersection between two triangles (T, and T,) in 3D space is computed by two basic
stages. First, the algorithm determines the intersection points of the triangle T2 with the T1
plane. The second stage uses topology criteria to compute a valid segment between the two
triangles.

Copyright © 2008 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecéanica Computacional Vol XXVII, pags. 3093-3115 (2008) 3103

Yo
z P2 V3
Vi
XL \
valid
segment
P; T,
T,
V,

Figure 8: Intersection between two triangles (T, and T,) in 3D space.

The main steps are described for triangles T, and T, (see Fig. 8):

i. A Cartesian coordinate system (x., Y.,) is attached to T;. The plane of the triangleis
coincident with the local xy plane.

ii. Thevertexesof T, arereferred to this new coordinate system.

lii. If the sign of z. coordinates of T, vertexes are different, then T, has intersection with
the T, plane, but not necessarily with T.

iv. The intersection points between T, and the T, plane should have z coordinates equal
to zero. Two points, P; and P», result from intersection of the two edges of T, with the
T, plane (or local xy).

v. If any part of the segment defined by points P; and P, is inside Ty, then there is
intersection between T; and To.

vi. A valid segment is computed.

5.3 Determination of the two pointswith z= 0 (step iii)

The parametric representations of the two edges of T,, which cross xy plane, are used to
compute P; and P:

L(t) = (1 —1t).Vy +tV, (04)

Ly(w) =(1—-u).Vy +uVs (05)

where t where P; and P, are found with values of t and u that make z=0. This operation is
shown below:

Z

0=>10-1t)z; +tz,, -t = (06)

Z —Z

z
0=(1—-wz +uzs—u=—u

(07)

Z1_Z3

Copyright © 2008 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar

3104 F.G. TEIXEIRA, G.J. CREUS

where z;, z,, and zz are the local z of T, vertexes. Valid values of t are in the [0,1] interval due
the parameterization chosen. The x_ and y, coordinates are computed with the t and u values
in the corresponding parametric equations. Thus, P, and P, are obtained analytically with
exact values.

5.4 Determination of a valid inter section segment (step vi)

If there is intersection between the planes, it is still necessary to verify if there is
intersection between the two triangles. A valid intersection segment must belong to both
triangles. Again, the parametric equations of the segments are used to solve the problem. Four
segments are analyzed: the three edges of T; and the segment defined by P; and P,. The
intersections between the segment (P1P) and the edges of T; are computed. The result is a
parameter t of the intersection point for each segment. This allows the evaluation of the
segment position in relation to Ts. ri(t) and rj(t;), with j varying from 1 to 3, are respectively
the parametric equations of the intersection segment and the edges of T;. The intersection
between r; and rj is expressed by

tik = Int(ri, rk), and = Int(ri, r|) (08)
and the intersection between r; and r; is expressed by
i = Int(rk, ri), and b= Int(r|, ri) (09)

where Int(.,.) is afunction that determines the value of the parameter at the intersection point
andryand ry arethetwo edgesof T for 0 < t,; < 1 and 0 < t;; < 1; thisisthe necessary but
not sufficient condition to exist an intersection between the two triangles. When two values of
tj are out of the interval [0,1], which is the parametric bounds, there is no intersection
between T, and T, (Fig. 9). The same occurs when two values of t;; are out of bounds [0,1]
(Fig. 9b).

(b)

Figure 9: When the values of t; and t;; are out of bounds [0,1] there is no intersection.

Still, t; and tic are analyzed to determine if the segment intersection is out of T, totally
inside Ty or partidly inside it. If there is intersection, one of the three following situations
take place:

i. t;>0andt; >1-Thesegmentisinside T, (Fig. 10.a);

li. 0<tp<landO<t; <1 —Twoendpointsoutof T, (Fig. 10.b);

li. 0 <ty <1land(t; > 1out; < 0)—Oneendpoint out of T (Fig. 10.c).

Copyright © 2008 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecéanica Computacional Vol XXVII, pags. 3093-3115 (2008) 3105

\Z:

(b)

Figure 10: Three situations where intersection exists between T, and T,: a) the segment istotally inside Ty; b)
the segment is partially inside T, but the two endpoints are out; c) the segment is partially inside T, with one
endpoint out.

The final intersection segment corresponds to that part that isinside T;. Therefore, the next
step is to compute the endpoint coordinates of the valid segment using the parametric
coordinate tj. For situation i (Fig. 10a) nothing changes and P, and P, remain. In situation ii
(Fig. 10b), the two points should be adjusted: P; = ri(ti) and Po=ri(ti). In situation iii (Fig.
10c), it is necessary to adjust one of the extremities: Py=ri(t;)). In this case, k is the endpoint (1
or 2) that isout of T; and tj; should be between 0 and 1.

Once computed all segments of intersection, the endpoints coordinates are referred to the
global reference system and stored in a specific array. Segments are stored in a connectivity
array that has pointers to the point array. The final result is a set of segments connected by
their extremities that represent an approximation of the intersection curves between two
surfaces in the 3D space (Fig. 11). These results must be refined and mapped in both
parametric spaces what will be explained in the next section.

Figure 11: Intersection curve in 3D space for example 1.

6 REFINEMENT OF RESULTSAND PARAMETRIC MAPPING

The intersection points computed up to here are an approximation of intersection curves
but with heterogeneous and low accuracy due to the approximation by triangulation. Thus, a
refinement process was developed to increase the accuracy of results with uniformity. The
algorithm developed is of Newton-Raphson type and uses the directions of the tangents on the
two surfaces to improve the accuracy of the intersection points obtained in Section 5. It is
based on the work of Houghton et al. (1985), but with important improvement because here
the points are mapped in parametric coordinates in the two surfaces. The accuracy is 10
relative to maximum dimension of the involved surfaces; the points are mapped on the

Copyright © 2008 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar

Fiii

3106 F.G. TEIXEIRA, G.J. CREUS

surfaces with an error of 10 in parametric distance. A procedure was developed to provide
this parametric mapping and assure good precision for any type of parametric surface.

6.1 Parametric mapping

The central step of the refinement process is the parametric mapping algorithm, which
projects a point (P;)) from the space onto a parametric surface. The point projection is
computed in both coordinate systems. parametric and real. A generic analytical solution
would depend on surface type; thus, an iterative numerical procedure that uses the tangent
directions on a point of the surface is employed.

The center Pgs; of the surface element is used as an initia approximation for the iterative
process. The tangents on point Ps; are computed in the parametric directions (u, v) and the
vector V; (where V; =P; — Pg) is projected on these tangents. These projections correct the
initial approximation and the process repeats itself until the tolerance is reached. The core
idea is minimize the projections length of vector V; onto the tangent vectors up to the vector
to coincide with the normal vector.

Considering a point P; in the 3D space and a parametric surface element S close to P;, the
algorithm is asfollows:

i. A local conversion factor (frp) between parametric and 3D space is computed as
frp = Dp/Dg, Where Dp is parametric distance on the surface element and Dr is the
equivalent 3D distance.

ii. The central point of S is computed in parametric space (P4), and in 3D space (P5),).
Thisisthefirst approximation of P; projection on to surface (j=1).

iii. The vector V;iscomputed as Vj = P; — Psg;.

iv. The tangent vectors (T, Ty) on the point Ps; of the surface are computed by finite
differences with relation to u and v and normalized.

v. Thevector V; isprojected on T, and T, and these projections are used to update PS’}:

A= V. Ty (10)

A,=V,. T, (11)

KP: [Au' Av] (12)
vi. If (Ay and A)) < Tolerance then Ps is P; projection otherwise the new approximation is

given by

P.s?j+1 = PSPj + prRP (13)

Pg;., = Fs(PS) (14)

vii. Returntoiii.

At the end of the process, Ps is the orthogonal projection of P; on the surface and P? its
parametric coordinates. The tolerance adopted in the parametric space is 10*. This high level
of accuracy is needed for the convergence and precision of the refinement algorithm. Figure
12 shows how the projection is made.

Copyright © 2008 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecéanica Computacional Vol XXVII, pags. 3093-3115 (2008) 3107

VA Pa‘+2

P$+l

Figure 12: Projection of apoint on asurface. a) Vector V; being projected on tangentsin Ps. b) Correction by
iteration of the coordinates of Psin parametric space.

6.2 Therefinement algorithm

A point in the real space projected on two surfaces, gives rise to two projections. If the
point is on the intersection curve of the surfaces, the distance between these two projections
vanishes. In the algorithm it is considered that a point is on the intersection if the distance
between its two projectionsis less than a given tolerance. Whenever the distance is larger than
the tolerance, an iterative process that uses the projections of the point on the two surfaces and
the tangents to the surfaces in these points has to be employed.

Pi1
T1 T
st_ PS2
(P2) (P&)

Pio

Figure 13: Refinement scheme: P, is the intersection point, Ps; and Ps, are the projections on the surfacesand T,
and T, are the tangent vectorsin Pg; and Ps, in the plane defined by Py, Ps; and Ps,.

The algorithm is described below:

i. Point P; is projected on the two surfaces resulting in Pf, and P&, in parametric
coordinates and in Ps; and Ps, in real coordinates.

ii. The distance (APs) between Ps; and Ps; is computed. If APs is smaller than the
tolerance, go to step v.

lii. The two surface tangent vectors (T, at Ps; and T, at Psy) are computed in such a way
that they lie on the plane defined by P;, Ps; and Ps,.

Copyright © 2008 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar

3108 F.G. TEIXEIRA, G.J. CREUS

iv. The new position P;; of point P; is the intersection between lines defined by T, and To.
Returntoii.

v. The parametric points Pf; and P£, are stored in arrays specific for each surface. The

connectivity arrays for the two surfaces remain unchanged.

Figure 13 shows how the refinement algorithm works. The convergence is very fast when
the surfaces have a uniform curvature. When the surfaces have variable curvature, the
iterations increase, but generaly it is less than four. A tolerance of 10 relative to the
maximum dimension of the involved surfaces was adopted in this work, providing the
precision needed in CAGD. The processing time in this step is dominant among the four that
compose the intersection algorithm because of the great number of floating-point operations.

Following the application of the refinement algorithm, only the parametric coordinates of
the intersection points on each surface are retained. The segments that are determined by these
points constitute the solution of the intersection problem. Figure 14 represents, in both
parametric spaces, the intersection segments obtained after the refinement with parametric
mapping for Example 1 (seefigures4, 5 and 11).

Figure 14: Intersection segments in the parametric space of two surfaces. The patches shaded are those that
correspond to overlapping bounding volumes. The intersection curve is represented in the parametric spaces of
both surfaces.

7 SEGMENTSREORDERING AND PARAMETRIC REPRESENTATION

The objective of this stage is to transform the set of segments into a set of successive
points that defines a continuous intersection curve. The agorithm determines topology of the
intersection curve based on segments topology. Thus connectivity of segments are analyzed to
find the intersection curves endpoints and to identify adjacent segments. Open curves have
two endpoints and closed curves have none. A point that belongs to a single segment is an
endpoint. Points that belong to more than two segments are also endpoints. These endpoints
are used as starting points in the assemblage of a curve. In closed curves the starting point is
chosen arbitrarily.

Each point added to a curve is called pivot. The first pivot is an endpoint. The algorithm
finds the point connected by a segment to this pivot. Such point is the new pivot. The process
repeats until the other endpoint.

After reordering, the intersection curves are given by an ordered set of points that define
straight segments in the parametric space. However, this is not the best representation for an
efficient manipulation of the intersection curves, a parametric representation f(t) being more
useful. Such representation is obtained using the real lengths of the curve in 3D space. As the

Copyright © 2008 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecéanica Computacional Vol XXVII, pags. 3093-3115 (2008) 3109

curve f(t) is unique in the 3D space, it is possible to use the same parametric representation
for the curve in both surfaces. The parametric representation is determined in the following
way:
i. The length of the curve (LT) is calculated by adding the distances between consecutive
points in the 3D space.
ii. The accumulated length (LA;) at a given point is calculated by adding the distances
between all of the previous points.
LA;

iii. Parametric coordinate of a point is calculated by t; = -

iv. The parametric function uses a linear interpolation in the parametric space to calculate
the points on the intersection curve:

fe(t) = B (1~ tm) + Pt (15)

tm =4 (16)

Eq. 15 provides the parametric coordinates (u, v) for the curve on the corresponding
surface. All the intersection curves are represented in parametric form on the both surfaces.
This allows the independent manipulation of the two surfaces.

8 EXAMPLES

In this section, examples involving several types of surface are studied to test the
efficiency and versatility of the proposed algorithm. Table 1 shows a summary of results for
examples 1 to 15.

Example 1 (Fig. 4) was used in the description of the method.

Example 2

@

(b)

Figure 15: Example 2: two revolved surfaces. a) Proposed algorithm: S1: 568 patches and S2: 352 patches. b)
Barth and Huber work: S1: 3264 patches and S2: 2947 patches.

Copyright © 2008 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar

3110 F.G. TEIXEIRA, G.J. CREUS

Example 2 (Fig. 15a) was taken from Barth and Huber (1998) (Fig.15.b). The subdivision
obtained is comparable, graphically, to that obtained by Barth-Huber. Their work does not use
angular tolerances, but the condition: Ap; = Ape/10000, where Ap; is the area of element i in
parametric space and App IS the surface area in parametric space that leads to a great
subdivision density (2947 elements). The algorithm proposed in this paper solves this
intersection problem with 568 surface elements working with axis aligned bounding boxes
(AABB).

Example 3

@)

(b)

Figure 16: Example 3: two bi-cubic patches. a) Proposed algorithm: S1: 411 elements (173 remaining elements),
and S2: 325 elements (133 remaining elements). b) Figueiredo algorithm: total: 3066 and remaining elements:
1280.

Example 3 (Fig. 16.a) was taken from Figueiredo (1996), Fig. 16.b, which uses affine
arithmetic to compute the bounding volumes in the subdivision process. Figueiredo algorithm
uses a total of 1786 elements; of those, 728 remaining elements are used to compute the
intersection curve. It is mentioned that the original algorithm proposed by Gleicher-Kass
(1992) needed 8038 total elements and 5508 remaining elements for same example. The
algorithm described in the present paper uses 736 total elements and 306 remaining el ements
to compute the intersection curve for example 3.

The next examples, 4 to 15 (Fig. 17, 18), show the versatility of the proposed algorithm.
Examples 4 to 7 show intersections between two cylinders. Examples 3 to 6 are typical
junctions of industrial pipes. Example 7 checks the algorithm robustness solving a surface
tangent problem. Examples 8 to 10 show the intersection between cylinders and other three
geometric surface types: cone, torus, and sphere. Examples 12 to 15 (see Figs. 18 — 19) show
i ntersections between surfaces with complex geometry.

Copyright © 2008 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar

Mecéanica Computacional Vol XXVII, pags. 3093-3115 (2008) 3111

Example 4

Example 5

Example 6

Example 7

Example 8

Figure 17: Example 4: two perpendicular cylinders with different diameters. Example 5: two perpendicular
cylinders with same diameter. Example 6: two oblique cylinders with same diameter. Example 7: two parallel
cylinders. Example 8: cone and cylinder with perpendicular axes.

Copyright © 2008 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar

3112 F.G. TEIXEIRA, G.J. CREUS

Example 9

Example 10

Example 11

Example 12

Example 13

Figure 18: Example 9: cylinder and torus with same diameter. Example 10: cylinder and sphere. Example 11:
plane and sweep surface. Example 12: two revolved surfaces, one is atruncated cone and the other isa spline
revolved. Example 13: revolved and sweep surface. Example 14: two revolved surfaces, oneis acylinder and the
other isaspline revolved. Example 15: Coons and ruled surface.

Copyright © 2008 Asociacién Argentina de Mecanica Computacional http://www.am

Mecéanica Computacional Vol XXVII, pags. 3093-3115 (2008) 3113

Table 1 shows the mean and maximum errors in the computed intersection points (error is
defined as the relative distance between the points on the two surfaces that correspond to a
single intersection point). In all examples the maximum error was less than 102 and the mean
error less than 10 (except in example 3 where the mean error was less than 10™). As the
usual accuracy in CAD applications is 10° to 10°® the precision of the proposed algorithm is,
in general, greater. The CPU time given corresponds to a Pentium 1V 2.4 GHz with 512MB.
Refinement is the most time-consuming step. Processing speed increases when tolerance is
reduced. Example 13 needs 36 sec with tolerance 10™? and 25 sec with tolerance 107,
Tolerance can be customized on implementation for the required applications, according to
the needed accuracy.

S1 patches S2 patches Inters. Curves Relative Error CPU
Ex. Total Rem. Total Rem. points S1 S2 Max Med. Time (sec)
1 986 348 516 222 608 1 1 2.157009e-11 2.088392e-12 7
2 1116 568 1178 352 832 2 2 3.443295e-11 2.759666e-12 5
3 411 173 325 133 372 1 1 1.288117e-10 4.007308e-11 13
4 536 260 468 144 616 3 2 1.788262e-11 3.192538e-13 2.05
5 2471 1339 951 334 1242 6 6 2.154993e-11 2.166294e-12 4.57
6 658 235 1031 523 541 1 1 2.027047e-11 2.766512e-12 2.21
7 508 256 252 128 129 1 1 4.898425e-16 4.898425e-16 0.60
8 55H2 209 1004 442 679 3 2 2.426449e-11 1.156698e-12 3.13
9 1789 690 1772 922 1488 12 14 2.509866e-11 2.162789e-12 8.39
10 1195 416 1604 872 890 1 1 1.738579e-11 2.159538e-12 4.93
11 346 134 434 165 329 1 1 2.047152e-11 1.067454e-12 3.82
12 1468 690 2634 1412 1225 2 3 4.471619%e-11 2.518051e-12 11
13 1721 622 2017 936 1472 4 3 7.022341e-10 2.883347e-11 36
14 1250 538 2856 1576 1216 2 3 1.918307e-05 7.844887e-08 11
15 1036 566 1004 544 510 1 1 4.239043e-12 7.908833e-13 5

Table 1: Results obtained with proposed a gorithm applied on examples 1 to 15.

9 CONCLUSIONS

An algorithm that provides the intersection curves of two surfaces in parametric space has
been described. The algorithm uses a subdivision process together with a refinement
procedure. The adaptive subdivision process uses a sample points technique to compute the
bounding volumes and it is controlled by the flatness tolerance; this assures that the number
of intersection points will be adequate. The subdivisions converge very fast to the
neighborhood of the intersection curves, as shown by the examples. The initial approximation
in 3D space is refined with an algorithm that increases accuracy and projects the curves onto
the two surfaces in their parametric spaces; the results are parametric curves in the parametric
gpaces of the two involved surfaces. The curves in the parametric space can be used to
manipulate the surface geometry through sub domains. In this way, it is possible to build
complex models with great number of trimmed patches to use in mesh generation (see Fig.
19), numerical analysis, CAGD, and general computer graphics applications.

This work introduces some important contributions as the practical use of the subdivision
algorithm to solve completely the surface intersection problem for quadric parametric
surfaces. These algorithms are common used only to compute start points to other techniques.
Therefore it is possible to take the main advantage of this method type that is the total
independence of the shape of the intersection curves and its immunity to singularities points.
Other original contribution is the method to compute the bounding volumes, which uses a
local recursive subdivision. Others two important contributions are the method to project a

Copyright © 2008 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar

3114 F.G. TEIXEIRA, G.J. CREUS

point onto surface and the method to reordering the intersection points. These methods
provide the same parametric representation for an intersection curve in the parametric spaces
of the two involved surfaces, what isimportant to geometric manipulation of these curves.

@ (b)

(© (d)

Figure 19: Meshing a sub domain of one surface: (a) and (b) show example 1 after determining the intersection
curve with proposed algorithm; (c) and (d) show the mesh in parametric space and 3D space.

10REFERENCES

Abdel-Malek, K., Yeh, H.J., Determining intersection curves between surfaces of two solids.
Computer-Aided Design 28:6/7, 539 — 549, 1996.

Andrade, L.N., Traco de intersecdo de superficies com passos circulares. Phd thesis, FEEC,
Unicamp, Campinas, Brazil, 1998.

Asteasu, C., Intersection of arbitrary surfaces. Computer-Aided Design 20:9 (1988), 533-538.

Barnhill R., Farin G., Jordan M., Piper B.: Surface/surface intersection. Computer Aided
Geometric Design 4, 3 - 16, 1987.

Barnhill, R., Kersey, S., A marching method for parametric surface/surface intersection.
Computer-Aided Design 7, 257 — 280, 1990.

Barth, W., Huber, E., Computations with tight bounding volumes for general parametric
surfaces. In Proceedings of the 15th European Workshop on Computational Geometry -
CG'99, Antibes, France, 123 — 126, 1999.

Comba, JL.D., Stolfi J., Affine Arithmetic and its Applications to Computer Graphics. In
Proceedings of SBGRAPI '93 — VI Brazlian Symposium of Computer Graphics and
Imaging Processing, Recife, Brazil, 9 — 18, 1993.

Figueiredo, L.H., Surface intersection using affine arithmetic. In Proceedings of Graphics
Interface’96, 161 — 170, 1996.

Gleicher, M., Kass M., An interval refinement technique for surface intersection, in:
Proceedings of Graphics Interface’ 92, 242 — 249, 1992.

Griffiths, J.G., A data structure for elimination of hidden-surface algorithms. Computer-Aided

Copyright © 2008 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecanica Computacional Vol XXVII, pags. 3093-3115 (2008) 3115

Design 11, 71— 78, 1975.

Lane, J.,, Riesenfeld, R., A Theoretica Development for the Computer Generation and
Display of Piecewise Polynomial Surfaces. IEEE Transaction on pattern analysis and
machine intelligence vol. PAMI-2, No. 1, 1980.

Hoschek, J., Lasser, D., Fundamentals of Computer Aided Geometric Design. A K Peters,
Ldt, Wellesley, Massachusetts, 1993.

Houghton, E.G., Emnett, R.F., Factor, J.D., Sabharwal, C.L., Implementation of a divide-and-
conquer method for intersection of parametric surfaces. Computer Aided Geometric Design
2,173 -183, 1985.

Huber, E., Intersecting general parametric surfaces using bounding volumes. In proceedings
of the 10th Canadian Conference on Computational Geometry — CCCG'98, Montreal,
Canada, 1998.

Krishnan, S., Manocha, D., An efficient surface intersection algorithm based on lower
dimensional formulation. Technical Report, Department of Computer Science, University
of North Carolina, 1994.

Owen, J.C., Rockwood, A.P., Intersection of general implicit surfaces. In Geometric
Modeling: Algorithms and New Trends (1987), G. Farin (editor), SIAM, 335 — 346.

Patrikalakis, N.M., Maekawa, T., Intersection Problems. Technical report, MIT Sea Grant
College Program, MIT, 1991.

Sabharwal, C. L., A fast implementation of surface/surface intersection algorithm. In
Proceedings of ACM symposium on Applied computing, Phoenix, Arizona, United States,
pp. 333 — 337, 1994.

Sederberg, T.W., Algebraic geometry for surface and solid modeling. In Geometric Modeling:
Algorithms and Trends, G. Farin (Editor), SIAM, 29 —42, 1987.

Stoyanov, Tz.E., Marching along surface/surface intersection curves with an adaptive step
length. Computer Aided Geometric Design 9, 485 — 489, 1992.

Wu, S.T., Andrade, L.N., Marching along a regular surface/surface intersection with circular
steps. Computer Aided Geometric Design 16:4, 249 — 268, 1999.

Copyright © 2008 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar

	1 INTRODUCTION
	2 PREVIOUS WORKS
	3 THE PROPOSED ALGORITHM
	4 ADAPTIVE SUBDIVISION
	Flatness of a surface patch
	4.2 Computing the bounding volume
	4.3 Bounding box interference verification
	4.4 Subdivision of a surface element
	4.5 The subdivision algorithm

	5 COMPUTING INTERSECTION SEGMENTS IN 3D SPACE
	Division in triangles
	5.2 Intersection of two triangles in the 3D space
	5.3 Determination of the two points with z = 0 (step iii)
	5.4 Determination of a valid intersection segment (step vi)

	6 REFINEMENT OF RESULTS AND PARAMETRIC MAPPING
	Parametric mapping
	6.2 The refinement algorithm

	7 SEGMENTS REORDERING AND PARAMETRIC REPRESENTATION
	8 EXAMPLES
	9 CONCLUSIONS
	10 REFERENCES

