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Abstract. An algorithm providing the intersection curves in the parametric space of both involved 
surfaces is presented allowing the correct union of trimmed patch surfaces to represent complex 
models and the generation of finite element meshes. The algorithm has four steps. On the first one, a 
subdivision method is used to obtain an adaptive quadtree structure of surface regions where 
potentially intersection curves segments can be contained. On the second one, each element of this 
quadtree structure is approximated by triangles; the intersection segments of triangle pairs are 
determined as an initial approximation of intersection curves in 3D space. On the third step, a 
refinement process and parametric mapping of coordinates provides the intersection points on the 
parametric and real spaces. In the last step, the intersection segments are reordered to obtain 
intersection curves in parametric form. Several examples are included to check the robustness and 
efficiency of the algorithm. 
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1 INTRODUCTION 
Intersection between surfaces is a recurrent subject in computer graphics, three-

dimensional geometric modeling (solids and surfaces) and computer aided design (CAD). In 
many applications in computer aided geometric design (CAGD) it is necessary to determine 
the intersection curves between two surfaces: finite element mesh generation over surfaces 
and solids, determination of silhouette curves of surfaces, Boolean operations, construction of 
blend surfaces, interference and collision detection and scientific visualization. Intersection 
determination has special importance in engineering, especially in automotive and aerospace 
industries, where computational simulation is massively used in all project stages. 

This paper presents an intersection algorithm for C1 parametric surfaces that provides the 
intersection curves with high precision and maps them into the parametric space of each 
surface. This facilitates the manipulation of trimmed surfaces using parametric sub-domains 
and can be used to assemble complex models and to generate finite element meshes on them.  

The content of the paper is as follows. In Section 2 a critical review of previous works is 
given. The proposed algorithm is described in Section 3 and its four steps are detailed in 
Section 4 to 7. In Section 8 examples are presented to show the versatility and efficiency of 
the method and, in Section 9, the conclusions are given. 

2 PREVIOUS WORKS  
The intersection problem between surfaces is a complex subject that has been an active 

research field for more than three decades. Several approaches exist: some are dependent on 
the type of surfaces involved, while others are intended for special applications. According 
Hoschek and Lasser (1993), a good intersection algorithm should have the following 
characteristics:  

• Numerical Precision – compatible with the application;  
• Robustness – to determine all intersection curves, loops and singularities, 

independently of the surface type and position;  
• Speed – compatible with the application;   
• Self-control – the algorithm should not require any help from user for the correct 

execution.  
These are conflicting characteristics. Thus, in the development of a surface intersection 

algorithm, an appropriate balance should be sought among these requirements in agreement 
with the intended application and practical usefulness. In their works, Hoschek and Lasser 
(1993), Krishnan et al. (1994) and Andrade (1998) describe five groups of algorithms types to 
compute intersection curves between surfaces: analytical, lattice, continuation, marching, and 
subdivision algorithms. Techniques that combine characteristics of different categories are 
designated hybrid algorithms. 

Analytical methods try to solve the intersection problem through the analytical solution of 
the equation:  ‖F - G ‖=0  (01)

where F and G are given surface equations in vectorial form. When the surfaces are described 
through implicit formulations, the problem leads to a system of nonlinear equations, which 
can be solved by a numerical method, as Newton-Raphson, differential geometric methods 
(Asteasu, 1988) or algebraic techniques (Owen et al., 1987). In the case of parametric 
formulations, it is necessary to do the conversion to the implicit formulation through algebraic 
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transformations (Sederberg, 1987). Except for the simplest surfaces, these algorithms have 
high computational cost, hindering practical applications (Hoschek and Lasser, 1993). 

Lattice evaluation techniques reduce the degree of complexity of the intersection problem 
by finding the intersections of isoparametric lines on one of the surfaces with (determined 
using constant values of the parametric coordinates) the other surface (Barnhill et al., 1987). 
Points on the intersection curve are calculated by the solution of a nonlinear system of the 
type F(u,vi)=G(s,t), using numerical techniques. The parameter v=vi should define a 
sufficiently dense set of isoparametric lines on the surface F(u,v) (Hoschek and Lasser, 1993). 
The accuracy of these methods depends on increment applied in vi and the numerical 
techniques applied to solve the nonlinear systems. 

Continuation methods use systems of differential equations, obtained from the parametric 
equations of the surfaces and their geometric characteristics; the equations are solved by 
numerical techniques. Performance of the method depends on the initial approximation and 
the complexity of the intersection curves. Problems as singularities and ramifications should 
be treated by specific means. Patrikalakis (1991) and Abdel-Malek and Yeh (1996) use 
continuation techniques in their work.  

Marching methods use incremental progression along the intersection curve. These 
methods need starting points on the intersection curve to obtain new points evaluating the 
tangent direction of the curve. One of the critical stages in these methods is the search for 
starting points that can be found through other intersection methods, such as the subdivision 
method (Barnhill and Kersey, 1990; Andrade, 1998), or through specific algorithms. The 
marching process is another critical stage. Some works use an approximation of the tangent 
vector of the intersection curve to determine the marching direction. Stoyanov (1992) 
approximates the intersection curve locally by a parabola, which represents a Taylor 
expansion of the intersection curve about the current point up to the second order, generating 
linear equations systems. Another approach is the use of an osculating circle (Wu and 
Andrade,1999).   

Subdivision algorithms (Lane and Riesenfeld, 1980) divide the two surfaces in parts to 
determine which among them intersect. The intersection points can be found by linear 
approximation, considering that the resultant subdivision patches are almost flat. So, the 
intersection problem is reduced, locally, to the case of plane/plane intersection. Proposals 
differ according to how subdivisions are made, and how the intersections are computed on 
each patch. The ending criteria for the subdivision process constitute another important aspect 
of the subdivision algorithms. These algorithms involve three steps: recursive subdivisions of 
surfaces to reach a certain level (that depends on the process), determination of the points of 
intersection curves, and reordering of these points to form the intersection curves. Each step 
has specific characteristics. Several approaches for the subdivision stage can be found in the 
literature. The first algorithms of this type made uniform subdivisions along all of the surfaces 
(Griffiths, 1975). It was expensive and difficult to use. To reduce memory and time 
processing, non-uniforms quadtrees are used to subdivide the surfaces in the parametric space 
and bounding boxes (bounding volumes) that involve each corresponding patch in 3D space. 
Patches whose bounding volumes intersect can contain segments of the intersection curve; 
other patches can be discarded, restricting the search places of the intersection curves. This is 
the divide-and-conquer principle. Patches where there is overlapping of bounding volumes are 
subdivided in the two surfaces and the process is repeated: the interference is verified and the 
patches without occurrences are eliminated. This process is denominated non-uniform 
adaptive subdivision. After several successive subdivisions, the group of remaining bounding 
volumes involves tightly and completely the intersection curves. Some algorithms use the size 
of the remaining bounding volumes as an ending criterion for the subdivision process. Other 
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algorithms use the local curvature of surfaces as an ending criterion (Houghton et al., 1985). 
The subdivision process continues, for those patches where there is interference, until the 
ending criteria are satisfied.  

The way to compute the bounding volumes varies. Gleicher and Kass (1992) use interval 
arithmetic (IA). Figueiredo (1996) adapts the algorithm proposed by Gleicher-Kass using 
affine arithmetic (AA) (Comba and Stolfi, 1993). The convergence speed is higher and the 
number of subdivisions is lower as compared with IA. The bounding volumes can be, 
basically, of two types: parallel to the global axes, min/max boxes (Houghton et al., 1985), or 
oriented by the corresponding patch on surface (tight bounding volumes). Construction and 
interference computing for min/max boxes are simple. Tight bounding volumes (Houghton et 
al., 1985; Barth and Huber, 1999; Huber, 1998) can improve the convergence speed, but have 
high computational cost; the work of Barth-Huber (1999) mentions a reduction of only 7% in 
the total processing time. The intersection curve can be obtained by a linear approximation of 
the patches remaining after the subdivision process. These patches are divided in triangles that 
are always flat. 

Intersections between triangles from patches whose bounding volumes overlap determine 
segments that are a piecewise approximation of the real intersection curves; some additional 
refinement may be necessary to obtain the desired precision. It is also possible to obtain the 
intersection points directly on the patches, joining its central points, once the precision criteria 
have been satisfied. Such criterion uses the distance between the centers of closest patches of 
the two surfaces (Andrade, 1998). 

The main advantage of the subdivision algorithms is its total independence of surface type 
as adaptive subdivision satisfies the local geometric properties for any surface type; moreover 
starting points are not needed. These reasons were decisive in the choice of this algorithm 
type for the first step of the proposed algorithm.  

3 THE PROPOSED ALGORITHM  
The intersection method adopted in this work uses adaptive subdivision controlled by the 

local curvature of the surfaces, which are subdivided in successive steps until no patch has 
flatness lower than a chosen tolerance. In this way it is possible to reduce the intersection 
problem, locally, to the intersection between two planes. This method is independent of type 
and shape of involved surfaces, and shape and complexity of the intersection curves. These 
factors are important to ensure the robustness and generality of the method, important 
characteristics in CAGD. The processing time, that is pointed as a negative factor for this type 
of method (Andrade, 1998), can be optimized with the use of appropriate criteria in the 
subdivision, in the interference computation, and in the intersection points determination, as 
described below.  

On the other hand, the use of adaptive subdivision does not ensure an appropriate and 
uniform accuracy level along the intersection curves, problem that is critical when the 
surfaces possess variable curvature, as usual in freeform surfaces. Such limitation is solved 
using a refinement algorithm, to provide uniform precision along all of the intersection 
curves. The algorithm provides the points of the intersection curves mapped in parametric 
coordinates on the two involved surfaces. The precision, relative to the maximum dimension, 
used in the examples is 10-12. The definition of the intersection curves in the parametric space 
turns possible the determination of sub-domains on the surfaces, making easier the process of 
mesh generation on trimmed surface patches. 

The algorithm developed involves four steps:  
• Adaptive Subdivision – the surfaces are subdivided successively until all active 
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patches become almost flat;  
• Intersection between patches – the intersection segments are calculated in the 3D 

space;  
• Refinement of the results – the results are refined and mapped on the surfaces in the 

parametric space;  
• Segments reordering – the consecutive segments are connected to create continuous 

curves of intersection. 

4 ADAPTIVE SUBDIVISION  
The adaptive subdivision implemented uses a non-uniform quadtrees structure to subdivide 

the surfaces. The goal is to determine in both surfaces the potentially places where 
intersection can exists. As the subdivision level enlarges, the surface elements flatness 
increases, allowing approximating locally the surfaces by an appropriate triangulation. Thus, 
the first approximation of intersection curves will be the set of intersection segments between 
triangle pairs. 

The algorithm uses a data structure where information on the surface elements and their 
bounding boxes are stored. The overlapping between bounding volumes is computed at each 
iteration eliminating parts whose bounding volumes do not overlap. The following present the 
basic concepts and main steps of subdivision algorithm. 

4.1 Flatness of a surface patch 
The flatness of a surface element is a concept that allows evaluating the curvature degree 

of the element. The flatness is defined here as the smaller cosine of the angles among the 
normal vectors in the vertices and the center of the patch and is used to control the assembling 
of the bounding boxes and the subdivision pro esses. The flatness of an element i (ܨ෠௜) is 
computed by the internal pro c mal vectors: 

c
du t among norܨ෠௜ ൌ ݊݅ܯ ቆ ௜ܰ‖ ௜ܰ‖ . ௜ܰ௝ฮ ௜ܰ௝ฮቇ௝ୀଵ..ସ (02)

where Ni is the normal vector in the center of element and Nij is the normal vector in each 
vertex of the element. ܨ෠௜ is the smallest value of the cosines. Therefore, a flat element will 
have ܨ෠௜ ൌ 1. The largest admissible angle (ܣመெ௔௫) among normal vectors corresponds to 
minimum admissible ܨ෠௜. ܣመெ௔௫ is fixed angular tolerance and is expressed by  ܣመெ௔௫ ൌ cosିଵ ෠ெ௜௡ (03)ܨ

where ܨ෠ெ௜௡ is the minimum ܨ෠௜ from all elements considered.  

4.2 Computing the bounding volume 
Bounding volume definition is determinant for accuracy and performance of the 

subdivision process. The surface oriented bounding boxes result in fewer subdivisions, but 
time for the calculating and detecting non-intersection of surface oriented bounding boxes is 
far exceeds the time used by axis aligned bounding boxes (Sabharwal, 1994). Thus, this work 
uses axis aligned bounding box (AABB) due to its low computational cost. 

Each bounding box must enclose the correspondent surface element that is assured by a 
local recursive subdivision method that uses the flatness of each sub-element as control 
parameter. When an appropriate tolerance is used, this method computes bounding box with 
good precision and low computational cost. To compute the bounding box of a surface 
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4.4 
Wherever the flatness of an active surface element is lower than the given tolerance, the 

ed element creates four children with the same 
pa

 (b  

Figure 3: Surface subdivision in parametric space made: a) without and b) with additional verification of false 
links. 

4
The subdivision process is controlled by the surface elements flatness and their bounding 

se elements pairs where intersection is potentially possible. 
Th

Subdivision of a surface element  

element is subdivided. Each subdivid
rametric dimensions that inherit the links from their mother. In parametric space the 

children elements have half dimensions of their mother patch. Finally, the mother element is 
removed from data structure and the children elements dataset is computed and added to the 
quadtree data structure.  

A cross verification is made between the children elements and the elements linked to their 
mother. The child element that interferes with no element linked to its mother is eliminated 
avoiding unnecessary verifications between elements with false links; this additional step 
increases the convergence rate of the algorithm. Figure 3 shows how this procedure reduces 
the number of active cells in quadtree. 

(a) )

.5 The subdivision algorithm 

box interferences determine who
us, in the same iteration subdivisions are made in all elements pairs whose bounding boxes 

overlap and whose flatness are small than specified tolerance. Then, the quadtree data 
structure is updated to compute the new interferences. The process is repeated until the 
flatness tolerance is reached for all elements. The algorithm has the following steps: 

i. The two surfaces are subdivided, initially, in 2x2 meshes, resulting in four elements 
with the same parametric dimensions. The dataset from each element is added to 
database quadtree. In this initial step, all elements from one surface are linked to all 
elements from other surface.  

ii. The overlapping bounding boxes are computed following their links and the elements 
whose bounding boxes are overlapping are linked, updating database. Only the data for 
these elements, which are potential candidates to contain segments of intersection 
curves, remain in the database.  

iii. The flatness of all elements in the data structure is computed. The elements whose 
flatness is less than a given tolerance are subdivided. Their children inherit links to the 
elements on the other surface and substitute their mothers in the database. No more 
than one level of subdivision difference is allowed between two adjacent elements. 
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iv. If there is an element whose flatness is less than the tolerance, the algorithm returns to 
the step ii otherwise the algorithm stops.  

The angular tolerance used in the examples is five degrees (5o). Numerical experiments 
performed show that smaller angular values turn the computational cost high without 

Figure 4: Example 1: Sweep surface and revolved surface. Figure shows subdivision process with bounding 
boxes along seven iterations in 3D space. 

significant increase in accuracy and increase the number of intersection points. Besides, it is 
necessary to do a refinement process to assure precision and homogeneity to the results, as is 
described in Section 6. This tolerance (5o) is smaller than that used by Houghton et al. (1985), 
which was 20o, and it is enough for a good initial precision and also to find all the intersection 
curve segments.                                                                                                             
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5.1 Division in triangles 
The domain subdivision obtained in the previous stage is not uniform and elements with 

different number of neighbors can occur. In this case, gaps could arise between the calculated 
segments (Fig. 6). Thus, before an element is subdivided into triangles, it is necessary to 
compute the number of neighbors for each edge to determine the correct topology for the 
triangulation. This number is restricted to one and two, because the subdivision algorithm 
does not allow transitions of more than one level. Five different configurations exist 
according to element neighborhood topology.  

 When the four edges of an element have one neighbor, it is subdivided in two triangles 
(f . 
In this case, a vertex is
two edges have two neighbors, these can be adjacent or opposed. In both cases four triangles 

gical configurations are different (figure 7c-d). Finally, if three 
ed

igure 7a).  When one edge of the element has two neighbors, it is divided in three triangles
 created in the middle of the edge that has two neighbors (figure 7b). If 

are created, but the topolo
ges have two neighbors, five triangles are created with three new intermediary vertexes 

(figure 7e).  The situation where the four edges have two neighbors doesn’t happen here 
because in this case the element is already subdivided in the previous step. These five 
configurations assure a mesh without gaps. 

  Each segment of the intersection curve results from the intersection between two 
triangles from two surface elements. A single element can have several segments depending 
on the number of linked elements and the number of triangles in each one (the quadtree 
top logo y). As each element can contain up to five triangles, the number of intersections 
among triangles can rise to twenty-five. If an element has four links, the number of 
intersections between triangles can increase up to one hundred. 
 

(a) (b)

(c) (d)

(e)  
Figure 7: Topologies of triangle subdivision. a) All edges have only one neighbor. b) One edge has two 

neighbors. c) Two adjacent edges have two neighbors. d) Two edges opposed have two neighbors. e) Three 
edges have two neighbors. 

5.2 Intersection of two triangles in the 3D space  
The intersection between two triangles (T1 and T2) in 3D space is computed by two basic 

stages. First, the algorithm determines the intersection points of the triangle T2 with the T1 
plane. The second stage uses topology criteria to compute a valid segment between the two 
triangles.  
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V3
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segment

 
 Figure 8: Intersection between two triangles (T1 and T ) in 3D space.  2

 (see Fig. 8): 

e sign of zL coordinates of T2 vertexes are different, then T2 has intersection with 
the T1 plane, but not necessarily with T1.  

iv. The intersection points between T2 and the T1 plane should have zL coordinates equal 
to zero. Two points, P1 and P2, result from intersection of the two edges of T2 with the 
T1 plane (or local xy).  

v. If any part of the segment defined by points P1 and P2 is inside T1, then there is 
intersection between T1 and T2. 

vi. A valid segment is computed. 

5.3 Determination of the two points with z = 0 (step iii)  
The parametric representations of the two edges of T2, which cross xy plane, are used to 

compute P1 and P2:  ۺ૚ሺݐሻ ൌ ሺ1 െ .ሻݐ ૚܄ ൅ ૛ (04)܄ݐ
ሻݑ૛ሺۺ  ൌ ሺ1 െ .ሻݑ ૚܄ ൅ ૜ (05)܄ݑ

where t where P1 and P2 are found with values of t and u that make z=0. This operation is 
shown below:  , ڮ ݐ ଵݖ

 
The main steps are described for triangles T  and T1 2
i. A Cartesian coordinate system (xL, yL, zL) is attached to T1. The plane of the triangle is 

coincident with the local xy plane.  
ii. The vertexes of T2 are referred to this new coordinate system. 
iii. If  th

0 ൌ ሺ1 െ ଵݖሻݐ ൅ ଶݖݐ ൌ ଵݖ െ ଶ (06)ݖ

ݖݑ , ڮ ݑ ൌ0 ൌ ሺ1 െ ଵݖሻݑ ൅ ଵଷݖ ଵݖ െ ଷ (07)ݖ
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where z1, z2, and z3 are the local z of T2 vertexes. Valid values of t are in the [0,1] interval due 
the parameterization chosen. The xL and yL coordinates are computed with the t and u values 
in the corresponding parametric equations. Thus, P1 and P2 are obtained analytically with 

ction segment (step vi) 
ry to verify if there is 

n segment must belong to both 
tria

d: the th egment defined by P1 and P2. The 
intersections between the segm f T1 are computed. The result is a 
parameter t of the intersectio This allows the evaluation of the 
segment position in relation t arying from 1 to 3, are respectively 
the parametric equations of t the edges of T1. The interse  
between r  and r  is expressed 

exact values. 

5.4 Determination of a valid interse
If there is intersection between the planes, it is still necessa

intersection between the two triangles. A valid intersectio
ngles. Again, the parametric equations of the segments are used to solve the problem. Four 

segments are analyze ree edges of T1 and the s
ent (P1P2) and the edges o
 g  

), with 
e gme

n point for each se ment.
o T1. ri(ti) and rj(tj j v
he inters ction se nt and 
by  

ction
i j

 
tik = Int(ri, rk), and til = Int(r , ri l) 

en r  and r  is expressed by  

(08)
 

and the intersection betwe
 

j i

tki = Int(rk, ri), and tli = Int(rl, ri) 

n that determines the value of the para
dges of T  for ൑ 1 and 0 ൑ ݐ

(09)
 

here Int(.,.) is a functio meter at the intersection point 
nd rk and rl are the two e 1  0 ൑ ௞௜ݐ ௟௜ ൑ 1; this is the necessary but 

 determine if the segment intersection is out of T1, totally 
inside T1 or partially inside of the three following situations 
take place: 

Fig. 10.a);  ௜௞ ௜௟ out of T1 (Fig. 10.b);  
iii. 0 ൏ ௜௞ݐ ൏ 1 and (ݐ௜௟ ൐ t of T1 (Fig. 10.c).  

 

w
a
not sufficient condition to exist an intersection between the two triangles. When two values of 
tji are out of the interval [0,1], which is the parametric bounds, there is no intersection 
between T1 and T2 (Fig. 9). The same occurs when two values of tij are out of bounds [0,1] 
(Fig. 9b). 
 

 
(a)                       (b) 

Figure 9: When the values of tji and tij are out of bounds [0,1] there is no intersection.  

 
till, tij and tik are analyzed toS

 it. If there is intersection, one 

i. ݐ௜௟ ൐ 0 and ݐ௜௞ ൐ 1 – The segment is inside T1 (
ii. 0 ൏ ݐ ൏ 1 and 0 ൏ ݐ ൏ 1  – Two endpoints 1 ou ݐ௜௟ ൏ 0) – One endpoint ou
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 Fiii
 Figure 10: Three situations where intersection exists between T1 and T2: a) the segment is totally inside T1; b) 
the segment is partially inside T1, but the two endpoints are out; c) the segment is partially inside T1 with one 

endpoint out.  

The final intersection segment corresponds to that part that is inside T1. Therefore, the next 
step is to compute the endpoint coordinates of the valid segm  using the parametric 
coordinate t . For situation  nothing c  remain. In situation ii 
(Fig. 10b), n iii (Fig. 

djust one of the extremities: Pk=ri(til). In this case, k is the endpoint (1 
r 

 of segments connected by 
ves between two 

ped in both 

 

pproximation of intersection curves 
bu

surfaces. The accuracy is 10
lative to maximum dimension of the involved surfaces; the points are mapped on the 

ent  
ij 1 2
the two points should be adjusted: P1 = ri(til) and P2=ri(tik). In situatio

i (Fig. 10a) hanges and P  and P

10c), it is necessary to a
o 2) that is out of T1 and til should be between 0 and 1.  

Once computed all segments of intersection, the endpoints coordinates are referred to the 
global reference system and stored in a specific array. Segments are stored in a connectivity 
arr  tay hat ha point to the oint 
their e represent an approximation of the in ersection cur

 

s ers p array. The final result is a set
txtremities that 

surfaces in the 3D space (Fig. 11). These results must be refined and map
parametric spaces what will be explained in the next section.  

 
Figure 11: Intersection curve in 3D space for example 1. 

 

6 REFINEMENT OF RESULTS AND PARAMETRIC MAPPING 
The intersection points computed up to here are an a
t with heterogeneous and low accuracy due to the approximation by triangulation. Thus, a 

refinement process was developed to increase the accuracy of results with uniformity. The 
algorithm developed is of Newton-Raphson type and uses the directions of the tangents on the 
two surfaces to improve the accuracy of the intersection points obtained in Section 5. It is 
based on the work of Houghton et al. (1985), but with important improvement because here 
the points are mapped in parametric coordinates in the two -12 

re

ti2>1

V1 
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V2 
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ti1>0
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surfaces with an error of 10-15 in parametric distance. A procedure was developed to provide 
this parametric mapping and assure good precision for any type of parametric surface.  

6.1 Parametric mapping 
The central step of the refinement process is the parametric mapping algorithm, which 

projects a point (Pi) from the space onto a parametric surface. The point projection is 
computed in both coordinate systems: parametric and real. A generic analytical solution 
would depend on surface type; thus, an iterative numerical procedure that uses the tangent 
directions on a point of the surface is employed.  

The center PS1 of the surface element is used as an initial approximation for the iterative 
process.  The tangents on point PS1 are computed in the parametric directions (u, v) and the 
vector Vj (where Vj =P rojections correct the 
initial approximation and the process repeats itself until the tolerance is reached. The core 

ea is minimize the projections length of vector Vj onto the tangent vectors up to the vector 
to coincide with the normal vector. 

ent Si close to Pi, the 
alg

ௌ௝:  ∆࢛ൌ V

i – PSj) is projected on these tangents. These p

id

Considering a point Pi in the 3D space and a parametric surface elem
orithm is as follows:  
i. A local conversion factor (fRP) between parametric and 3D space is computed as ோ݂௉ ൌ ௉ܦ ⁄ோܦ , where DP is parametric distance on the surface element and DR is the 

equivalent 3D distance.  
ii. The central point of Si is computed in parametric space (Pௌଵ௉ ), and in 3D space (Pௌଵ௉ ),). 

This is the first approximation of Pi projection on to surface (j=1). 
iii. The vector Vj is computed as Vj = Pi – PSj. 
iv. The tangent vectors (Tu, Tv) on the point PS1 of the surface are computed by finite 

differences with relation to u and v and normalized. 
v. The vector Vj is projected on Tu and Tv and these projections are used to update P௉

.࢐ T࢜∆(10) ࢛ൌ V࢐. T(11) ࢜∆ሬሬԦ௣ൌ ሾ∆௨, ∆௩ሿ (12)

vi. If (Δu and Δv) < Tolerance then PS is Pi projection otherwise the new approximation is 
given by  ۾ௌ௝ାଵ௣ ൌ ௌ௝௉۾ ൅ ∆ሬሬԦ௣ ோ݂௉ (13)۾ ൌ ۴ ሺ۾௉ ሻ (14)ௌ௝ାଵ ܁ ௌ௝

rance adopted in the param -15. This high level 

            
vii. et . R urn to iii
 
At the end of the process, PS is the orthogonal projection of  on the surface and ௣ its 

parametric coordinates. The tole
 Pi ௌ۾

etric space is 10
of accuracy is needed for the convergence and precision of the refinement algorithm. Figure 
12 shows how the projection is made. 
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Pi 

Figure 12: point o  PS. b) Correction by 
iteration of th rdi  PS  parametric space.  

6.2

ered that a point is on the intersection if the distance 
between its two projections is less than a given tolerance. Whenever the distance is larger than 
the to ojections of the point on the two surfaces and 
the tang ployed.  
 

 Proj tion of a ec n a surface. a) Vector Vi being projected on tangents in
e coo nates of  in

 The refinement algorithm 
A point in the real space projected on two surfaces, gives rise to two projections. If the 

point is on the intersection curve of the surfaces, the distance between these two projections 
vanishes. In the algorithm it is consid

lerance, an iterative proce that uses the pr
ents to the surfaces in these points has to be em

ss 

T1 T2

Pi0

Pi1

PS1

)( 1S
pP

PS2

)( 2S
pP

 
Fi  

and T2 are the , PS1 and PS2.  

ow: 

i S1 S2

gure 13: Refinement scheme: Pi is the intersection point, PS1 and PS2 are the projections on the surfaces and T1
tangent vectors in PS1 and PS2 in the plane defined by Pi

The algorithm is described bel
i. Point Pi is projected on the two surfaces resulting in Pௌଵ௉  and Pௌଶ௉  in parametric 

coordinates and in PS1 and PS2 in real coordinates. 
ii. The distance (ΔPS) between PS1 and PS2 is computed. If ΔPS is smaller than the 

tolerance, go to step v.  
iii. The two surface tangent vectors (T1 at PS1 and T2 at PS2) are computed in such a way 

that they lie on the plane defined by P , P  and P .  

PSj 

PSj+1 

PSj+2 v 

u 

Tv 

T  

PSj 
PSj+1 

Vj 

u
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iv. The new position Pi1 of point Pi is the intersection between lines defined by T1 and T2. 
Return to i. 

v. The parametric points Pௌଵ௉  and Pௌଶ௉  are stored in arrays specific for each surface. The 
connectivity arrays for the two surfaces remain unchanged.  

Figure 13 shows how the refinement algorithm works. The convergence is very fast when 
the surfaces have a uniform curvature. When the surfaces have variable curvature, the 
iterations increase, but generally it is less than four. A tolerance of 10-12 relative to the 
maximum dimension of the involved surfaces was adopted in this work, providing the 
precision needed in CAGD. The processing time in this step is dominant among the four that 
compose the intersection algorithm because of the great number of floating-point operations. 

Following the application of the refinement algorithm, only the parametric coordinates of 
the intersection points on each surface are retained. The segments that are determined by these 
points constitute the solution of the intersection problem. Figure 14 represents, in both 
parametric spaces, the intersection segments obtained after the refinement with parametric 

gments are also endpoints. These endpoints 
are used as starting points in the assemblage of a curve. In closed curves the starting point is 
chosen arbitrarily.  

Each point added to a curve is called pivot. The first pivot is an endpoint. The algorithm 
finds the point connected by a segment to this pivot. Such point is the new pivot. The process 
repeats until the other endpoint.  

After reordering, the intersection curves are given by an ordered set of points that define 
straight segments in the parametric space. However, this is not the best representation for an 
efficient manipulation of the intersection curves, a parametric representation f(t) being more 
useful. Such representation is obtained using the real lengths of the curve in 3D space. As the 

mapping for Example 1 (see figures 4, 5 and 11). 
 

             
Figure 14: Intersection segments in the parametric space of two surfaces. The patches shaded are those that 

correspond to overlapping bounding volumes. The intersection curve is represented in the parametric spaces of 
both surfaces. 

7 SEGMENTS REORDERING AND PARAMETRIC REPRESENTATION 

The objective of this stage is to transform the set of segments into a set of successive 
points that defines a continuous intersection curve. The algorithm determines topology of the 
intersection curve based on segments topology. Thus connectivity of segments are analyzed to 
find the intersection curves endpoints and to identify adjacent segments. Open curves have 
two endpoints and closed curves have none. A point that belongs to a single segment is an 
endpoint. Points that belong to more than two se
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curve f(t) is unique in the 3D space, it is possible to use the same parametric representation 

for the curve in both surfaces. The parametric representation is determined in the following 

way:  

i. The length of the curve (LT) is calculated by adding the distances between consecutive 

points in the 3D space.  

ii. The accumulated length (LAi) at a given point is calculated by adding the distances 

between all of the previous points.  

iii. Parametric coordinate of a point is calculated by      

iv. The parametric function uses a linear interpolation  in the parametric space to calculate 

the points on the intersection curve:  

 (15) 

 (16) 
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Example 4 

Example 7 

Example 8 

Example 5 

Example 6 

 Figure 17:  Example 4: two perpendicular cylinders with different diameters. Example 5: two perpendicular 
cylinders with same diameter. Example 6: two oblique cylinders with same diameter. Example 7: two parallel 

cylinders. Example 8: cone and cylinder with perpendicular axes.   
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Example 9 

Example 10 

Example 11 

 

 

Example 12

Example 13

Figure 18: Example 9: cylinder and torus with same diameter. Example 10: cylinder and sphere. Example 11: 
plane and sweep surface. Example 12: two revolved surfaces, one is a truncated cone and the other is a spline 

revolved and sweep surface. Example 14: two revolved surfaces, onerevolved. Example 13:  is a cylinder and the 
other is a spline revolved. Example 15: Coons and ruled surface. 
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Table 1 shows the mean and maximum errors in the computed intersection points (error is 
defined as the relative distance between the points on the two surfaces that correspond to a 
single intersection point). In all examples the maximum error was less than 10-12 and the mean 
error less than 10-13 (except in example 3 where the mean error was less than 10-11). As the 
usual accuracy in CAD applications is 10-6 to 10-8 the precision of the proposed algorithm is, 
in general, greater.  The CPU time given corresponds to a Pentium IV 2.4 GHz with 512MB. 
Refinement is the most time-consuming step. Processing speed increases when tolerance is 
reduced. Example 13 needs 36 sec with tolerance 10-12 and 25 sec with tolerance 10-8. 
Tolerance can be customized on implementation for the required applications, according to 

accuracy. 
 
the needed 

 S1 patches S2 patches Inters. Curves Relative Error CPU 
Ex. Total Rem. Total Rem. points S1 S2 Max Med. Time (sec) 

1 986 348 516 222 608 1 1 2.157009e-11 2.088392e-12 7 
2 1116 568 1178 352 832 2 2 3.443295e-11 2.759666e-12 5 
3 411 173 325 133 372 1 1 1.288117e-10 4.007308e-11 13 
4 536 260 468 144 616 3 2 1.788262e-11 3.192538e-13 2.05 
5 2471 1339 951 334 1242 6 6 2.154993e-11 2.166294e-12 4.57 
6 658 235 1031 523 541 1 1 2.027047e-11 2.766512e-12 2.21 
7 508 256 252 128 129 1 1 4.898425e-16 4.898425e-16 0.60 
8 552 209 1004 442 679 3 2 2.426449e-11 1.156698e-12 3.13 
9 1789 690 1772 922 1488 12 14 2.509866e-11 2.162789e-12 8.39 

10 1195 416 1604 872 890 1 1 1.738579e-11 2.159538e-12 4.93 
11 346 134 434 165 329 1 1 2.047152e-11 1.067454e-12 3.82 
12 1468 690 2634 1412 1225 2 3 4.471619e-11 2.518051e-12 11 
13 1721 622 2017 936 1472 4 3 7.022341e-10 2.883347e-11 36 
14 1250 538 2856 1576 1216 2 3 1.918307e-05 7.844887e-08 11 
15 1036 566 1004 544 510 1 1 4.239043e-12 7.908833e-13 5 

Table 1: Results obtained with proposed algorithm applied on examples 1 to 15.  

9 CONCLUSIONS 
An algorithm that provides the intersection curves of two surfaces in parametric space has 

been described. The algorithm uses a subdivision process together with a refinement 
procedure. The adaptive subdivision process uses a sample points technique to compute the 
bounding volumes and it is controlled by the flatness tolerance; this assures that the number 
of intersection points will be ad uate. The subdivisions converge very fast to the 

n by the examples. The initial approximation 
in 3D space is refined with an algorithm that increases accuracy and projects the curves onto 
the two surfaces in their parametric spaces; the results are parametric curves in the parametric 
spaces of the two involved surfaces. The curves in the parametric space can be used to 
manipulate the surface geometry through sub domains. In this way, it is possible to build 
complex models with great number of trimmed patches to use in mesh generation (see Fig. 
19), numerical analysis, CAGD, and general computer graphics applications.  

This work introduces some important contributions as the practical use of the subdivision 
algorithm to solve completely the surface intersection problem for quadric parametric 
s . 

Other original contribution is the method es, which uses a 
local recursive subdivision. Others two important contributions are the method to project a 

eq
neighborhood of the intersection curves, as show

urfaces. These algorithms are common used only to compute start points to other techniques
Therefore it is possible to take the main advantage of this method type that is the total 
independence of the shape of the intersection curves and its immunity to singularities points. 

to compute the bounding volum
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