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Abstract.
In this paper, we present a numerical study of the viscous/inviscid hypersonic flows in con-

fined ducts and around of immersed bodies. Nowadays the flow at high Mach numbers and its
interaction with deformable structures is considered a ‘challenge’ in the context of numerical
methods.

In hypersonic flow problems the non-linearities become high and any difficulty in the con-
vergence of the linear system may influence the nonlinear convergence and finally make the
solution to blow up. Then, global iteration result in a non suitable scheme (high cpu and
memory demands for preconditioned GMRes method, for instance) for this step. A new pre-
conditioner for domain decomposition methods (see References1,2,3) is used in order to obtain
physical solutions and to accelerate the convergence to a low tolerance in residuals.

In order to diminish the solution error near physical discontinuities (e.g. contact layers,
shock waves) or expansion shocks an adaptive mesh refinement technique is used. Besides, an
anisotropic shock capturing operator is added to the Galerkin/SUPG formulation.

Also in this work, we present results of a new methodology for imposing absorbing boundary
conditions for general advective-diffusive system of equations (e.g., the compressible Navier-
Stokes equations). Basically, two types oflocal absorbing boundary conditions (b.c.) are con-
sidered, i.e. the linear absorbent b.c., based on the Jacobian of the flux function, assuming
small perturbations about a reference value, and the general non-linear absorbent b.c. based
on the Riemann invariants of the problem (see Reference4 for a more detailed description). 22232223
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1 INTRODUCTION.

Accurate prediction of laminar-to-turbulent transition in boundary-layer flows is a key in the
aero-thermodynamic design and optimization of many aeronautical/aerospace configurations,
such as high-lift systems, quiet and ultra-efficient supersonic aircraft, reentry bodies, and hy-
personic air-intakes. The prediction of mechanical and thermal loads on the surfaces of hy-
personic vehicles is essential for the design of their aerodynamic shape and thermal shields.
The control surfaces (such as elevators and flaps) are immersed in the flow field of the ve-
hicle and are dominated by shock wave/boundary layer interactions that can cause extended
separations, laminar/turbulence transition, intense localized heating and chemical reactions that
feed from its production and cause the change of the fluid properties. These interactions pro-
duces an increase of drag and lift forces, that generate a variation of the hinge moment and
change the aerodynamic efficiency (generally, a loss) of the control surfaces. Experimental and
theoretical studies dealing with theshock wave/boundary layer interaction over compression
ramps were conducted in the past half-century for both laminar and turbulent conditions and for
low enthalpy hypersonic flows. Extensive reviews describing the physical features of a shock
wave/boundary layer interaction in that regime can be found in the works of Chapmanet al.,5

Délery6 and the references therein.
Experimental studies were conducted by Holden7 (laminar and turbulent regimes) in order to

study the shock wave/boundary layer interactions from supersonic through hypersonic regime.
Holden established that “upstream influence decreases with Mach number and increases with
ramp angle and, and it is affected also by the Reynolds number (weakly in a fully turbulent
regime), while bluntness reduces pressure and thermal loads since the interaction occurs in a
locally supersonic regime”. Later, it was shown experimentally that the upstream influence
and separation length (a measure of the intensity of a shock wave/boundary layer interaction)
increase with ramp angle (for fixed Mach and Reynolds numbers) and that decrease with Mach
number (for fixed ramp angle and Reynolds).

On the other hand, the treatment of the equations that governs the inviscid flow at supersonic
Mach numbers with numerical techniques has received a wealth of attention in finite differences
and finite volumes techniques since the pioneering work of Sod,8 Moretti9 and Hirschet al.10 in
late seventies and middle eighties; and the articles of Grasso and Marini11,12 in nineties.

One of the most challenging tasks in numerical simulations of compressible viscous flows is
the approximation of thin boundary layers which develop in a gas along walls of a solid obstacle.
Recent articles of Jianget al.13 and Zhong and Tatineni14 studied the instability and transition
(laminar to turbulent) of hypersonic boundary layers by means of Direct Numerical Simulations
(DNS, via a high order finite difference method) and Parabolized Stability Equations (PSE)
techniques.

Rachowicz, in Reference,15 introduced an application of the finite element method with sig-
nificantly stretched elements (in an adaptive process as a result of selective directional subsect-
ing of elements) to solve compressible Navier-Stokes equations. Rachowicz used an iterative
solver (i.e, the GMRes algorithm with a domain decomposition Schwarz-type preconditioner
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similar to block-Jacobi preconditioner) with the convergence characteristics independent of the
aspect ratio of elements.

In this work, we present a model to study the flow (viscous/inviscid) at high Mach numbers
around bodies by means of a parallel stabilized finite element method considering an anisotropic
shock-capturing operator and ah-adaptive refinement technique. Also, a new preconditioner for
domain decomposition method (see References1,2,3 is used in order to obtain physical solutions
and to accelerate the convergence to a low tolerance in residuals when the condition of the
(inner) linear system grows substantially due to high gradients in refinement and the high non-
linearity of the physical problem. A new local non-reflecting boundary condition, based on the
Jacobian of the flux functions, is used in order to avoid wave reflections at the intersections
of subsonic regions and fictitious walls. The approach used here do not consider chemical
reactions.

2 PHYSICAL MODEL.

We focus this work in the solution of compressible Navier-Stokes equations with the SUPG/SC
(“Streamline Upwind Petrov-Galerkin/Shock Capturing) method proposed by Brookset al. in
Reference16 and by Aliabadyet al. in Reference17

2.1 The compressible Navier-Stokes equations.

The differential form of the conservation equations of mass, momentum and total energy that
governs the dynamics of compressible and viscous fluid flow may be written in a compact
intrinsic (vector) form as (Einstein summation convention is assumed,i, j = 1, 2, 3):

∂U

∂t
+

∂(Fa)i

∂xi

=
∂(Fd)i

∂xi

+ G in Ω× (0, t+] (1)

whereΩ is the model domain with boundaryΓ. U = (ρ, ρu, ρe)t is the unknown state
vector expressed in conservative variables as above,e represents the specific total energy,Fa

accounts for the (vector) advective fluxes,Fd for the (vector) diffusive fluxes andG is used for
the external source terms (i.eG = (0, ρfe, Wf + qH), Wf = ρfe · u is the work done by the
external forcesfe andn represents the boundary unit normal vector). Also, initial and boundary
condition must be added (see10). In this article, we treat the so calledabsorbent boundary
conditions. The integral conservation form is

∂

∂t

∫
Ω

 ρ
ρu
ρe

dΩ +

∮
Γ

 ρu

ρu⊗ u + pI − τ
ρuH − τ · u− k∇T

 · ndΓ =

∫
Ω

 0
ρfe

Wf + qH

dΩ (2)

In (2), H is the total specific enthalpy defined in terms of the specific internal energyΞ and
the specific kinetic energy asH = h + 1/2|u|2 andh = Ξ + p/ρ, respectively. The above
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mentioned advective and diffusive fluxes are defined as:

Fa =


ρui

ρu1ui + δi1p
ρu2ui + δi2p
ρu3ui + δi3p
(ρe + p)ui

 , Fd =


0
τi1

τi2

τi3

τikuk − qi

 . (3)

Hereδij is the Kronecker isotropic tensor of rank 2 (also denoted asI), qi are the compo-
nents of the heat flux vector, andτij are the components of the Newtonian viscous stress tensor:
τ = 2µε(u)−2/3µ(∇·u)I. The strain rate tensorε is ε(u) = 1

2
(∂jui +∂iuj). qi is the heat flux

defined according to the Fourier law assumptions as:qi = −κ∇T with κ the thermal conductiv-
ity andT the temperature. The coefficients of viscosity and thermal conductivity are assumed
be given by the Sutherland formula (i.e, the gas is considered in astandard atmosphere),

µ = µ0

(
T

T0

)3/2
T0 + 110

T + 110
κ =

γRµ

(γ − 1)Pr
, (4)

whereµ0 is the viscosity at the reference temperatureT0 andPr is the Prandtl number (i.e.,
Pr = ν/ι, ι is the thermal diffusivity coefficient).

The physical model is closed by the definition of the constitutive law for the specific internal
energy in terms of the thermodynamic state and some state equation for the thermodynamic
variables, normally an ideal gas law is adopted, thenρe = p

γ−1
+ 1/2ρ||u||2 andp = ρRT ; where

R = (γ − 1)Cv is the particular gas constant andγ = Cp

Cv
is the ratio of the specific heat at

constant pressure relative to that at constant volume. Alternatively equation (2) can be written
in the quasi-linear form:

∂U

∂t
+ Ai

∂U

∂xi

=
∂

∂xi

(
Kij

∂U

∂xj

)
+ G (5)

where we have made the assumption that the flux vectors are only function of the state
variables, i.e.Fa = Fa(U) andFd = Fd(U). Then we can write the divergence of the flux
vector functions as∂F

a

∂xi
= ∂Fa

∂U
∂U
∂xi

= Ai
∂U
∂xi

and ∂Fd

∂xi
= ∂Fd

∂U
∂U
∂xi

= Kij
∂U
∂xi

.

2.2 Inviscid approximation.

In some particular cases, when inertial forces are predominant over viscous effects and no heat
conduction is considered, the fluid motion is described by the Euler equations and they are
obtained from the Navier-Stokes equations neglecting all shear stresses and heat conduction
terms. This is a valid approximation for flows at high Reynolds numbers (Re = ||u||L/ν, L is
a characteristic length scale andν is the kinematic viscosity). The use of this approach changes
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the mathematical behavior of the set of equations. The set of differential equations becomes
first order and hyperbolic. The boundary conditions must be reformulated and the solution can
accept discontinuous variables. The imposition of non-reflecting boundary conditions will be
treated further.

2.3 Variational formulation.

Now we present the variational formulation of the compressible Navier-Stokes equations us-
ing SUPG finite elements method and the shock capturing operator. Consider a finite element
discretization of theΩ into sub-domainsΩe, e = 1, 2, . . . , nel. Based on this discretization we
define the finite element function spaces for the trial solutions and for the weighting functions
asVh andSh respectively. These function spaces are selected, by taking the Dirichlet boundary
conditions into account, as subsets of[H1h(Ω)]nd.o.f., whereH1h(Ω) is the finite dimensional
Sobolev functional space overΩ, andnd.o.f. = nsd + 2 is the number of degrees of freedom in
the continuum problem andnsd is the space dimension.

The stabilized finite element formulation of the quasi-linear form of (1) is written as follows:
find Uh ∈ Sh such that∀Wh ∈ Vh

∫
Ω

Wh ·
(

∂Uh

∂t
+

∂Fh
a

∂xi

)
dΩ =

∫
Ω

Wh ·
(

∂Fh
d

∂xi

+ G
)

dΩ∫
Ω

Wh ·
(

∂Uh

∂t
+ Ah

i

∂Uh

∂xi

− G
)

dΩ +

∫
Ω

∂Wh

∂xi

·Kh
ij

∂Uh

∂xj

dΩ−
∫

Γh

Wh ·HhdΓ+

+

nel∑
e=1

∫
Ωe

τ(Ah
k)

T ∂Wh

∂xk

·
{

∂Uh

∂t
+ Ah

i

∂Uh

∂xi

− ∂

∂xi

(
Kh

ij

∂Uh

∂xj

)
− G

}
dΩ+

+

nel∑
e=1

∫
Ωe

δshc
∂Wh

∂xi

· ∂Uh

∂xi

dΩ = 0

(6)

where

Sh = {Uh|Uh ∈ [H1h(Ω)]nd.o.f. ,Uh|Ωe ∈ [P 1(Ωe)]nd.o.f. ,Uh = g onΓg}
Vh = {Wh|Wh ∈ [H1h(Ω)]nd.o.f. ,Wh|Ωe ∈ [P 1(Ωe)]nd.o.f. ,Wh = 0 on∂Ωg}

(7)

where matricesAi andKij are defined in section§2.1.
The first three terms inside the first two integrals in the variational formulation (6) constitute

the Galerkin formulation of the problem, the third integral accounts for the Neumann boundary
conditions. The first series of element level integrals in (6) are the SUPG stabilization terms
added to prevent spatial oscillations in the advection-dominated range. The second series of
element level integrals in (6) are the shock capturing terms added to assure the stability at high
Mach and Reynolds number flows, specially to suppress spurious overshoot and undershoot
effects in the vicinity of discontinuities.
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Various options for calculating the stabilization parameters and defining the shock capturing
terms in the context of the SUPG formulation were introduced in Reference.18 In this section
we describe some of these options. The first one is the standard SUPG intrinsic time tensor
τ introduced by Aliabadi and Tezduyar in Reference.17 In this case this matrix is defined as
τ = max[0, τa − τd − τδ], with eachτx taking into account the advective and diffusive effects
and also avoiding the duplication of the shock capturing operator and the streamline upwind
operator. These matrices are defined as:

τa =
h

2(c + |u|)
I, τd =

∑nsd
j=1 β2

j diag (Kjj)

(c + |u|)2
I, τδ =

δshc

(c + |u|)2
I, (8)

wherec is the acoustic speed,h = 2
( ∑nen

a=1 |u · ∇Na|
)−1

is the element size computed here

as the element length in the direction of the streamline using for its definition the multi-lineal
trial functionNa. δshc is the shock capturing parameter defined in the next paragraph. Theτ
matrix computation is already an open problem because it is not possible to diagonalize the sys-
tem of equations. It follows some heuristics arguments based on the maximum value of the set
of eigenvalues of the advective jacobian matrices for the characteristic velocity, some measure
of the element size that may not be very well justified but is equivalent to any other element size
and some mechanism able to remove stabilization when physical diffusion is present.

The design of the shock capturing operator is also an open problem. Here two version,
one isotropic and other anisotropic are presented, both of them proposed by Tezduyaret al.19

First a unit vector oriented with the density gradient is defined asj = nablaρh/|∇ρh| and
a characteristic length ashJGN = 2 (

∑nen
a=1 |j · ∇Na|)−1, whereNa the finite element shape

function corresponding toa node. The above cited isotropic shock capturing factor included in
(6) is then defined as:

δshc =
hJGN

2
uchar

(
|∇ρh|hJGN

ρref

)β

(9)

whereuchar = |u|+ c is the characteristic velocity defined in this work as the addition of the
flow velocity magnitude and the acoustic speed.ρref is the gaussian point interpolated density
andβ parameter may be taken as 1 or 2 according to the sharpness of the discontinuity to be
captured as suggested in Reference.19 However in this work onlyβ = 1 was successfully used.

The anisotropic version of the shock capturing term in (6) is changed as follows:

nel∑
e=1

∫
Ωe

∂Wh

∂xi

jiδshcjk
∂Uh

∂xk

dΩ. (10)

The anisotropic shock capturing term had shown a good behavior, however for some applica-
tions, both terms may be needed, the isotropic one weighted by a factor close to 0.1 or lower.
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2.4 Adaptive refinement.

Here the adaptive refinement strategy is briefly presented for clarity reasons. Further details
about the implementation of this technique in PETSc-FEM are included in Reference.20 The
adaptive refinement criterion adopted here is commonly calledhomogeneous refinement, i.e.
there are only one type of elements in the whole mesh, triangles or quadrilaterals in 2D and
tetrahedra or hexahedra in 3D. For this case it is commonly allowed the existence of irregular
nodes, nodes that only exists for only one of the two meshes in contact. In this strategy only
one irregular node at the interface between two different refinement levels are allowed with
its solution constrained to be a linear combination of the two father nodes at the refined edge.
The error indicator marks each one of the elements to be refined at the end of the current
computation. The definition of the error indicator depends on the problem at hand and it is not
rigorously treated in this work. Once the error indicator finishes its job those elements marked
are divided in2nsd elements. The element edges are firstly divided in two, then their associated
faces are divided in four and finally for 3D problems the corresponding volume is built with
the refined faces. For tetrahedra an special situation is found, this subdivision generates four
tetrahedral that are similar to the father one, and an internal octahedron. The octahedron is
divided into two pyramids of four faces according to the length or the internal diagonals. Finally
each pyramid is divided into two tetrahedras. Once the new mesh is generated, the irregular
nodes are identified, the new boundary conditions are added and the current state is linearly
interpolated in the new mesh. This strategy is one of several others existing in the literature,
having some interesting advantages, among them one associated with the refined mesh quality.
For quadrilaterals, triangles and hexahedras is trivial to show that the quality keeps constant.
For tetrahedras, it is possible to show that the quality keeps almost constant, with a final quality
proportional to the original one with a factor of order one.

2.5 Non-reflecting boundary conditions.

It is often required in gas dynamics, or generally, in CFD computations, that the computational
domain used in a flow simulation represent only a subdomain of a larger physical domain. To
obtain a numerical solution that closely resembles the physical flow field in this subdomain,
ideally the condition at computational boundary should be specified using the physical flow
conditions there. Unfortunately, these conditions generally are not known without first solving
the larger physical flow field.

It is well-known that non-reflecting boundary conditions (NRBCs) play an important role in
fluid flow computations. The need for artificial boundary conditions arises when the domain of
the problem is unbounded and extends to infinity. In order to treat the problem numerically, a
domain of finite size is required and artificial boundaries are imposed. At these artificial bound-
aries, NRBCs are sought for to minimize their influences on the flow. A spurious reflection
resulting from an inappropriate numerical boundary condition will contaminate the flow field
and may entirely spoil the flow computation. For the problems considered in this article, we
use local conditions that are similar to the (absorbent) conditions described in Reference21 and
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adapted for problems arising in gas dynamics. The basic idea is to handle the incoming Riemann
invariants of the problem from fictitious walls (i.e., they may vanish at computational bound-
aries). Also, a novel set of dynamical absorbent boundary conditions proposed in Reference4

are considered.

3 NUMERICAL TESTS.

Trough these test we use a linear system solver (i.e., for the inner most loop) based on domain
decomposition techniques that we called IISD+ISP (“Interface Iterative-Subdomain Direct, with
added “Interface Strip Preconditioner”). This method have shown a high performance (i.e.,
CPU time and memory requirements, as well as accurate solutions) in a wide range of prob-
lems arising in CFD in comparison with other classical solvers and techniques. Moreover,
some classical methods have failed to achieve a physical solution, see References1,2,3 for more
datails on this subject. Implementation details of the solver and models are available on the net
at http://www.cimec.org.ar/petscfem .22

3.1 The hypersonic flow over a flat plate test (test conducted in a sequential environ-
ment).

In this section the hypersonic flow around a flat plate is analyzed, being a typical flow problem
where the nonlinearities are so high that any difficulty in the convergence of the linear sys-
tem may influence the nonlinear convergence and finally make the solution to blow up. This
problem, deeply documented by Carter in Reference,23 show a strong interaction between the
boundary layer and the shock wave and also a discontinuity introduced at the flat plate leading
edge where the flow has to stagnate from a very high free stream velocity. Both are sources of
numerical drawbacks making this test a very challenge problem. Figure (1) shows the problem
definition with a sketch of the physical structures present in the flow field and the boundary
condition applied to it.

For solving this problem a compressible laminar Navier-Stokes flow solver was used with
a constant viscosity for a Reynolds number of104 based on the flat plate length and the free
stream state. The Mach number was chosen as 5. This problem was successfully solved using
IISD+ISP solver but it was not possible to obtain a solution with a preconditioned global GMRes
solver, using in both cases a Krylov subspace dimension of 200. In this last case after some time
steps the solution began to present a poor resolution of the strong shock wave and finally the
solution crashed. Figure (2) shows the skin friction coefficient and the Stanton number against
theoretical predictions based on analytical solutions of an approximate theory calledEckert
reference enthalpy method.24 These results show an acceptable behavior of the numerical results
relative to the analytical predictions. The Stanton number is defined as
St = qwall

ρ∞U∞Cp|Twall−T 0
∞|

.
The mesh used was composed by 24150 quadrangular elements and 24462 nodes. In order to

capture the high thermal and flow gradients the normal spacing close to the flat plate was chosen
about4×10−6. This kind of examples is for cases where the computational resources are limited
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or =0wall conditions: u=0,  T=

Figure 1: Problem definition.

to single processor architectures and it is not possible to get a solution using preconditioned
Global GMRes iteration. Also in such case IISD+ISP does not show any difficulties to get an
accurate solution.

3.2 Inviscid hypersonic ramp at Mach=10.

The computational domain for the test case in inviscid configuration is very simple. The angle
of the ramp is 15◦. For a specific angle of the ramp, two angles of shock wave are solution
of the equation. According to the theory of stability, it can be shown that the shock wave
corresponding to the highest angle is unstable and it will disappear and that the shock wave
corresponding to the lowest angle is stable. This means that if we increase the angle of the ramp
up to the limit angle defining the maximum of angle of the shock wave, the shock wave will not
be attached to the corner of the ramp anymore and will be positioned before the corner. For a
detached shock, the structure is more complex. The characteristics of the flow are that the shock
wave is normal to the flat plate before the corner of the ramp and the shape of the shock wave
is not linear anymore. The shock wave tends asymptotically to an oblique line far away from
the wall. The angle of this line is equal tosin−1(1/M∞). Also, a restricted subsonic region is
located just after the shock wave near the corner of the ramp and there is a stagnation point at
the corner of the ramp.

In order to conserve attached shock at the corner of the compression ramp, the Mach number
at inlet will be chosen equal to 10. The complete characteristics of the inflow are: inlet pressure
p∞ = 105Pa; gas constantR = 287J/(kgK); gas specific heat ratioγ = 1.4 and inlet temper-
atureT∞ = 300K. With these values the inlet speed of sound isc = 347.2m/sec. As initial
flow field, we will consider a uniform flow alongx-direction withM = 10; p = 105Pa and
T = 300K. The time step was set to 0.01 secs. We consider for this problems the absorbent
boundary conditions based on the Riemann invariants of the flux functions. We remark that the
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Figure 2: IISD+ISP solution vs. Theoretical approach.
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Table 1: comparison between the analytical reference results and the computed results

Press. ratio Temp. ratio Mach after the shock Angle of the shock
Present Result 13.482 3.166 5.305 20.37◦

Theoretical 13.404 3.194 5.279 19.941◦

Relative error 0.6% 0.9% 0.5% 2.1%

invariants are known for Euler equations and the conditions are satified in the nonlinear form.
The table (1) shows the results comparing to the analytical values.
A mesh of 23625 quadrangular elements and 23086 nodes was used. A basic structured mesh

was adaptively refined. The basic mesh had a variable step size towards the wall in the vertical
direction and towards the corner and leading edge in the horizontal direction. The final mesh
had an element at the wall with a size of1.5×10−6 in the normal direction and1.3×10−5 in the
tangential direction. In order to perform this test case we used a Q1/Q1 element for the space
discretization which means that the velocity, the density and the temperature field are discretized
in the same way with linear interpolation. In order to reach the steady state we iterated in time
with a backward Euler scheme using 3 Newton-Raphson iterations per time step. The Stanton
number was computed estimating the normal derivative of temperature at the wall with a second
order finite difference approximation.

Another important point to study is the capacity of the code to simulate the shock without
non-physical oscillation. We then analyze the profile of the pressure field along an horizontal
cut at the position y = 0.2 (figure (3)).
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Figure 3: Results in non-refined grid.
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We have to point out that for ay=const cut, we plot values for nodes that fall in a thin strip
of nodes around the y value. This is the reason why there seems to be two curves in the cut.

Previous results, obtained on a grid without adaptive refinement, are in general very good
but we have observed some problems in the temperature field. Also, on figure (3), we observe
that the temperature after the shock continues to increase instead of being constant.

This problem is generated by lack of refinement near the corner. If the corner is not well
resolved, then the values behind the shock, near the corner, are different and this is propagated
through the streamlines (in this case parallel to the ramp ) to a narrow strip near the ramp. This
effect can be solved by using adaptive refinement. The temperature ratio field (over the whole
domain) with the new adapted mesh can be shown in figure (4).

Figure 4: Temperature ratio on the second mesh.

3.3 Viscous hypersonic ramp at Mach=5.

The test case is the isothermal compression ramp at Mach 5. Experimental data are available
for the wall pressure coefficient and the wall Stanton number.

The compression ramp is 15◦. The corner is located 0.25 m from the leading edge. This
length is used to define the Reynolds number which gives the value1.5× 106. The inflow
temperature is 80K and the wall temperature is 288K.

The Prandtl number is constant and equals to 0.72. The viscosity is a function of temperature
according to Sutherland’s law. To conserve attached shock at the corner of the compression
ramp, the Mach number at inlet will be chosen equal to 5. The complete characteristics of the
inflow are: inlet pressurep∞ = 105Pa, gas constantR = 287J/(kgK), gas specific heat ratio
γ = 1.4, inlet temperature : 80K and wall temperatureTwall = 288K. With these values we
obtain a speed of sound value ofc = 179.3m/sec. As initial flow field, we will consider inviscid
uniform flow withM = 5, p = 105Pa andT = 80K.
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3.3.1 Physics of a shock wave/boundary layer interaction.

For two-dimensional shock wave/boundary layer interactions typical of laminar flows over com-
pression ramps with sharp leading edge the physics is rather well understood when unsteady
effects are negligible. Referring to figure (5), a relatively weak shock forms at the sharp leading
edge of the plate, the shock induced by the ramp interacts with the boundary layer and, due
to the upstream propagation of pressure disturbances across the subsonic portion of the bound-
ary layer (i.e. the upstream influence), flow separation may occur depending upon the Mach
number, the Reynolds number, the ramp angle, the wall temperature, the strength of the adverse
pressure gradient and the boundary layer stability. The presence of the separation bubble causes
a deviation of the streamlines and the consequent formation of the separation shock, followed
by a nearly constant pressure region (i.e. the plateau) in correspondence with the recircula-
tion. In the separated region the skin-friction is negative and in laminar flows the heat transfer
reaches a minimum due to the greater boundary layer thickness that lowers temperature gra-
dients. The recirculation bubble ends with flow reattachment on the ramp surface across the
strong reattachment shock. The interaction between separation and reattachment shocks gener-
ates a transmitted shock, a shear layer and, depending upon the Mach number, either a shock
wave or an expansion fan that interacts with the boundary layer on the ramp. The skin friction
and heat transfer rapidly increase downstream of reattachment due to the flow re-compression,
and have a peak past reattachment at the location where boundary layer thickness is minimum,
then they decrease due to boundary layer thickening (and flow re-acceleration) on the ramp.
When analyzing shock wave/boundary layer interaction flows the occurrence of incipient sepa-
ration and G̈ortler instabilities past flow reattachment on the ramp must be checked, since both
physical features considerably affect the flow field development.

3.3.2 Numerical simulation conducted in a parallel environment.

On the figure (6), we compare the pressure coefficient along the isothermal wall using the
Sutherland law with experimental data.

We observe that the general shape of the pressure coefficient along the wall is good. There
are oscillations betweenx = 0 andx = 0.25 but we observe that the position of the shock is
well reproduced according to the experimental data. After the shock, the pressure coefficient is
under evaluated.

Concerning the Stanton number, the following results (figure (7)) are obtained from the sim-
ulation.

We clearly observe that the Stanton number along the isothermal wall presents important
fluctuations betweenx=0.225 andx=0.25 which is the corner of the ramp. We also observe that
before the corner, the Stanton number is over evaluated and after the corner under evaluated.

In order to explain the fluctuation at the corner of the ramp, we have to analyze to recircu-
lation bubble in the flow. As shown, we clearly see that the proposed grid is not enough fine to
capture correctly the recirculation bubble, which cause important problem for the evaluation of
the heat transfer. On the figure (8), we observe in red the region where the x-velocity is negative
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Figure 5: Mach number.
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Figure 6: Pressure coefficient along the isothermal wall. Inred: PETSc-FEM results,blue: experimental.
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Figure 7: Stanton number along the isothermal wall. Inred: PETSc-FEM results,blue: experimental.

and in blue the regions where the x-velocity is positive. We see one big recirculation zone in red
but near the isothermal wall, before the corner, we also observe two small recirculation zone in
blue. The presence of such zones shows that the grid is not fine enough to correctly characterize
the flow and in particular the heat transfer at the wall.

Figure 8: Recirculation zone for the first computation with constant viscosity.

The new distributions of Mach number, Stanton number and skin-friction coefficient are
reported in figures (5), (9) and (10), respectively, where a new adapted mesh with the same
number of nodes was used.

Figure (12) indicates that the predicted plateau pressure is slightly lower than the measured
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Figure 9: Stanton number (refined mesh). Inred: PETSc-FEM results,green: Blasius analytical approximation,
blue: Eckert analytical approximation,circles&stars: experimental.
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Figure 10: Skin friction coefficient (refined mesh).
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one, and the pressure peak is slightly over-predicted, while the computed flow expansion on the
ramp is weaker than that evidenced by experiments. Comparison of Stanton number shows
a very good agreement with experiments along the entire model, except for a small over-
prediction of peak heating. The skin-friction (figure (9)) is well predicted upstream of the
interaction (the theoretical distribution given by Eckert’s reference enthalpy method is also
plotted for comparison). In figures (11) to (13) we can seex =constant cuts for Mach,u/c
andp/p∞. The cuts are at 11 equidistant vertical lines starting atx = 0.15 and ending at the
cornerx = 0.25 with intervals of 0.1. The colors identify the section, starting fromx=0.15 to
0.25.
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Figure 11: Mach at severalx =const cuts, detail near wall.

3.3.3 Efficiency notes.

The mesh has 30032 nodes (120128 degrees of freedom) and 28854 quadrangular elements.
Bilinear (Q1) interpolation was used. Adaptive refinement is used for obtaining a grid with a
significant refinement towards the wall. The startup time (reading the mesh, graph partitioning
and building matrix profiles) is negligible, so that the CPU time can be accurately computed
as the time of one time step times the number of time steps. The number of time steps needed
to converge can be estimated as 1500. (With the time step used, this number of time steps is
enough for a particle to travel 3 times the length of the computational domain.)

In a cluster of Intel Pentium 4, 2.80GHz-HT (1024Kb cache, 2GB RAM) processors we have
the following CPU time per time steps.

• For 1 processor: 120.4 secs per time step.
• For 4 processor: 33.6 secs per time step. (Speed-up 3.58, efficiency 89.6%).
• For 10 processors: 18.6 secs per time step. (Speed-up 6.38, efficiency 63.8%).
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Figure 12: Relative pressure (p/p∞) at severalx =const cuts.
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Figure 13: Relative temperature (T/T∞) at severalx =const cuts, detail near wall.

So that, the total computing time ranges from 50 hrs in sequential mode (1 processor) to
7.75 hrs in parallel (10 processors). We used two Newton iterations per time step, so that the
CPU time per Newton iteration is one half the CPU time per time step, in general 40% of the
CPU time is spent in building the residual and matrices and the rest in solving the linear system
with the Domain Decomposition Method and the Interface Strip Preconditioner.

3.4 Shock wave propagation in a Nozzle.

The third test case proposed is the study of the propagation of a shock wave in a nozzle. Even
if in a real configuration, the problem has to be 3D, we will consider a 2D geometry of the
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nozzle. The contour of the nozzle has been provided by ESA. The test consists in studying
the propagation of the shock wave when a brutal rupture of the diaphragm at the inlet occurs
until the steady-state problem. Two different time integration schemes were used: a first order
temporal scheme and a second order temporal scheme. The fluid is initially at rest and at a
pressure of 143Pa, temperature262K. At time t = 0 a membrane at the throat (AD) is broken.
Behind the membrane there is a reservoir at 6bar, 4170K. The gas constant isγ = 1.17. The
axial symmetry of the problem is exploited by taking a slice of elements between two meridian
planes that cut thez-axis (see figure (14)).

x

A B z

C

D

x

y

F’F

φ

∆φ

Figure 14: Geometrical description of the problem.

A 3D mesh of hexahedral elements is generated by“extrusion” of a quadrangular mesh in
the x − z plane in the circumferential direction. Quadrangular elements that have a side on
the z-axis generate a“wedge” element, i.e. an hexahedra element with a face collapsed in a
edge. Periodic boundary conditions are considered between the two meridian planes, i.e. values
at a nodeF ′ on planeφ = ∆φ is taken from the value of the corresponding node at plane
φ = 0 (x − z plane). Scalars are simply copied and vectors are appropriately rotated. The
periodic boundary condition reduces on thez axis tou = v = 0 andw free. This is, thus,
the condition on thez axis. Slip boundary condition is imposed at the wallDC. p, ρ andu, v
are imposed at inletAD, whereasw (axial velocity) is left free. At outlet (BC), an absorbing
boundary condition that we called“ulsar”4 is imposed. This guarantees that the proper number
of boundary conditions is imposed, since the flow there passes through a number of conditions,
from rest to subsonic and supersonic outlet, varying the number of incoming characteristics.

3.4.1 First order temporal scheme.

A first order temporal scheme (backward Euler), with a time step of∆t = 5.143×10−6 was
employed. The propagation of the shock wave is shown in figure (15).

The first curve is for the fifth time step (t = 5∆t = 2.5717×10−5sec). The second curve is
for the 50-th time step (t = 50∆t = 2.5717×10−4sec). Subsequent curves are plotted each 50
time steps, so that there is a time difference of50∆t = 2.5717×10−4sec between each curve.
The last curve before all the perturbation exits at the outlet is fort = 7.2×10−4sec.

The value of the mean velocity of the shock wave (using the previous figure) is 2465.8 m/s
and agrees with the measure data (2600-2700 m/s).

After the shock wave has reached the outlet, the steady state is quite rapidly obtained. The
Mach number along thez-axis at steady state starts fromM = 1 at the inlet, according to the
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Figure 15: Time evolution of axial velocity (vz) atz-axis.

theory, and goes up to 3.8 at the outlet as shown on the figure (16) (this plot corresponds to
the second order scheme simulation, but there is no substantial differences with the first order
scheme results).

Enthalpy and mass Conservation:In the steady state we checked for mass and enthalpy
conservation by integrating the mass (ρw) and enthalpy (ρhw) flow in the inlet and outlet
planes using the standard FEM interpolation. The mass flow is6.2860Kg/sec at inlet and
6.2871Kg/sec at outlet (relative error is2.5×10−4), whereas the enthalpy flow is5.8753×
107Kg m2/sec3 at inlet5.9690×107Kg m2/sec3 at outlet (relative error of1.1×10−3).

3.4.2 Second order temporal scheme.

A second simulation were performed for this test case using a second order temporal scheme.
The temporal scheme is now the Crank-Nicolson scheme, which has second order temporal
accuracy. Using this second order temporal scheme, we obtain the time evolution of the axial
velocity atz-axis which yields a shock velocity of 2620.5 m/s.

On the physical wall of the domain, the Mach distribution is slightly different from the one
obtained along thez-axis. The Mach number becomes high quickly and in a monotone way
(see figure (16).

Enthalpy and mass Conservation:With this temporal scheme the mass flow is6.2542Kg/sec
at inlet and6.2680Kg/sec at outlet (relative error is2.17×10−3), whereas the enthalpy flow is
5.8545×107Kg m2/sec3 at inlet and6.8369×107Kg m2/sec3 at outlet (relative error3×10−3).

The CFL number was computed asCFL = (|u|+ c)∆t/h. h was taken constant as the mesh
step size in the axial direction, i.e.h = 4.4938×10−3. A colormap of the CFL number is shown
at figure (17). The maximum CFL is near the shock and reaches 1.4.
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Figure 16: Mach number: along thez-axis (left); at the wallDC (right )

Figure 17: Colormap for CFL= (|u|+ c)∆t/h.

3.4.3 Computing time for the nozzle.

The mesh has 24892 nodes, (124460 degrees of freedom), 12000 hexahedral elements (bilinear
Q1 interpolation).

In a cluster of Intel Pentium 4, 2.80GHz-HT (1024Kb cache, 2GB RAM) processors we have
the following CPU time per time steps (3 Newton iterations per time step).

• For 1 processor: 62.5 secs per Newton iteration, 187.5 secs/time step.
• For 4 processors: 17.83 secs per Newton iteration, 53.5 secs/time step (speed-up 3.5,

efficiency 87%).
• For 10 processors: 9.83 secs per Newton iteration, 29.5 secs/time step (speed-up 6.4,

efficiency 64%).

The number of time steps until the flow reaches the steady state can be estimated as 900, so
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Figure 18:||u|| in two different time steps.

that the total computing time ranges from 47 hrs in sequential mode (1 processor) to 7.37 hrs in
parallel (10 processors).

Note on parallel efficiency: It must be taken into account that the size of the problem is
too small to give high efficiency for 10 processors in both examples. Higher efficiencies are
obtained for a larger problem.

4 CONCLUSIONS AND FUTURE WORK.

In this work a variety of challenge problems involving viscous/inviscid compressible flows at
hypersonic Mach number were considered. This paper emphasizes on the quality and the ef-
ficiency of solver schemes for CFD problems. Both criteria should be evaluated together to
analyze the performance of a simulation. Reasonable efficiency might not be very significant
if the solution is not accurate enough for the final purpose. Numerical experiments of several
physical (real) problems have been carried out to show its computation time and memory re-
quirements using monolithic schemes. Through these tests, it was shown that it is not always
possible to obtain an acceptable solution for the problem using classical global Krylov methods
(like preconditioned global GMRes one). Domain Decomposition techniques, especially the
Schur Complement Domain Decomposition using the Interface Strip Preconditioner, are suit-
able in order to achieve accurate solutions efficiently. The IS preconditioner is well suited for
flows with high Mach numbers and high Reynolds numbers where the contribution of advective
terms are predominant in the governing equations. Furthermore, IISD+ISP is a good alternative
to treat problems where domain discretization presents high refinement gradients.

Future work will consider chemical reactions to correct the prediction of the heat conduction
and the imposition of conditions to simulate radiation effects in a wide wavelength range of
the spectra. Also, in a major state of the code, astrong interaction of this kind of flow with
structural components will be treated.
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