CONCENTRACIÓN DE TENSIONES EN PLACA ORTÓTROPA SOMETIDA A ESFUERZO BIAXIAL.

D.V. Bambill^{*†}, A. Susca^{*†}, P.A.A. Laura^{*}, S. Maíz^{*†}.

^{*} Departamento De Ingeniería – Instituto de Mecánica Aplicada – Universidad Nacional del Sur, Av. Alem 1253 – (8000) Bahía Blanca – Argentina.

[†] Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). e-mail: <u>dbambill@criba.edu.ar</u>, <u>asusca@ceia.uns.edu.ar</u>, <u>ima@criba.edu.ar</u>, <u>smaiz@uns.edu.ar</u>.

Palabras clave: Estado Plano, Concentración de tensiones, Placa, Ortotropía, Orificio.

Resumen. El problema de la concentración de tensiones que un orificio de reducida magnitud introduce en un medio elástico sometido a un campo de tensiones ha sido largamente estudiado en el campo de la mecánica de sólidos. Un caso paradigmático lo constituye, la clásica solución de Kirsch, para medios isótropos, obtenida en las postrimerías del siglo XIX.

En general, los tratados al alcance del ingeniero tratan solamente problemas en medios isótropos. Sin embargo, en numerosas situaciones tecnológicas, resulta de interés el estudio del problema en medios no isótropos, como por ejemplo pueden mencionarse perforaciones en chapas metálicas, a las que le proceso de laminado induce características ortótropas o la perforación de túneles en medios rocosos.

En el presente trabajo, se estudia el efecto de un orificio circular sobre la distribución de tensiones existentes en una placa rectangular ortótropa infinita sometida a tracción uniforme en sus cuatro bordes. Se presentan resultados en forma numérica y gráfica obtenidos por los autores utilizando el método de elementos finitos.

1 INTRODUCCION

El estudio propuesto se centra en el análisis de los esfuerzos que se producen en cercanías de un orificio practicado en una placa delgada ortótropa de dimensiones infinitas, sujeta a una tensión uniforme de tracción "p" en dos direcciones ortogonales. Para el análisis las direcciones de carga se adoptan coincidentes con los ejes coordenados "x"e "y"; tal como se muestra en la figura 1.

Figura 1: Esquema del problema a analizar.

Si el problema se analiza para una placa de material isótropo, la distribución de tensiones en cercanías del borde del orificio responde a las conocidas expresiones encontradas por Kirsch^{1,2}. En coordenadas polares, las componentes de tensión normal "*r*" y " θ " son:

$$\sigma_r = p \left(1 - \frac{a^2}{r^2} \right) \tag{1}$$

$$\sigma_{\theta} = p \left(1 + \frac{a^2}{r^2} \right) \tag{2}$$

donde *a* es el radio del orificio, *r* es la coordenada polar medida desde el centro del orificio al punto considerado, σ_r es la tensión normal que se produce en un plano tangente y σ_{θ} la tensión que se produce en un plano normal al borde del orificio. Es interesante hacer notar, que en este caso el factor de concentración de tensiones que se produce es de valor igual a 2. En el estudio propuesto se analizan placas de material ortótropo. (Cuando el material de un cuerpo homogéneo tiene tres planos de simetría elástica perpendiculares entre sí, que pasan a través de cada punto de un cuerpo homogéneo, el material se dice ortótropo). Lekhnitskii³, resolvió el estado plano de tensiones para variadas geometrías de placas con orificios con

distintas solicitaciones de esfuerzos. Otros autores^{4, 5; 6} han analizado concentración de tensiones en medios ortótropos considerando situaciones diversas.

El problema objeto del planteo propuesto en este trabajo es el de una placa infinita sometida a una solicitación biaxial de esfuerzos, donde las direcciones principales de elasticidad coinciden con los ejes coordenados. En un sistema plano de tensiones donde no se consideran fuerzas de volumen, la ecuación diferencial gobernante es:

$$\frac{1}{E_2} \cdot \frac{\partial^4 F}{\partial x^4} + \left(\frac{1}{G} - \frac{2\nu_1}{E_1}\right) \cdot \frac{\partial^4 F}{\partial x^2 \partial y^2} + \frac{1}{E_1} \cdot \frac{\partial^4 F}{\partial y^4} = 0$$
(3)

donde F es la función tensión que cumple con:

$$\sigma_{y} = \frac{\partial^{2} F}{\partial x^{2}}$$

$$\sigma_{x} = \frac{\partial^{2} F}{\partial^{2} y}$$

$$\tau_{xy} = -\frac{\partial^{2} F}{\partial x \partial y}$$
(4)

 E_1 , E_2 son los módulos de Young en las direcciones principales elásticas "x"e "y"respectivamente;

 $G = G_{12}$, es el módulo de elasticidad transversal, que caracteriza el cambio de ángulo entre las direcciones principales "x"e "y",

 $v_1 = v_{12}$ es el módulo de Poisson que caracteriza la disminución de longitud en la dirección "y"durante la tracción en dirección "x", y análogamente

 $v_2 = v_{21}$ es el módulo de Poisson que caracteriza la disminución de longitud en la dirección "x"durante la tracción en dirección "y".

La siguiente relación entre los módulos de Young y los módulos de Poisson existe debido a la simetría de los materiales ortótropos:

$$E_1 \cdot V_2 = E_2 \cdot V_1 \tag{5}$$

Por consiguiente para realizar el estudio de las tensiones de una placa ortótropa sujeta a un estado plano de tensiones es suficiente conocer sólo estas cuatro constantes $E_1, E_2, G \neq v_1$:

La solución de la ecuación (3), resuelta por Lekhnitskii, para el caso de la placa de material ortótropo de la figura con un orificio circular sin perturbaciones en sus bordes y sujeta a tensiones de tracción "p" en las dos direcciones principales (tensión hidrostática en el plano "x-y"), expresada en coordenadas polares es:

$$\sigma_{\theta} = p \frac{E_{\theta}}{E_1} \left[-k + k(k+n)\cos^2(\theta) + (1+n)\sin^2(\theta) \right]$$
(6)

donde:

$$k = \sqrt{\frac{E_1}{E_2}} \tag{7}$$

$$n = \sqrt{2\left(\frac{E_1}{E_2} - \nu_1\right) + \frac{E_1}{G}} \tag{8}$$

 θ , es el ángulo polar medido desde el eje "x" positivo en sentido antihorario;

 E_{θ} es el módulo de Young en la dirección tangente al borde del orificio. En función de las constantes elásticas en las direcciones principales se puede expresar E_{θ} como:

$$E_{\theta} = \left[\frac{\sin^4(\theta)}{E_1} + \left(\frac{1}{G} - \frac{2\nu_1}{E_1}\right)\sin^2(\theta)\cos^2(\theta) + \frac{\cos^4(\theta)}{E_2}\right]^{-1}$$
(9)

Se define como factor de tensiones a la relación $K = \frac{\sigma_{\theta}}{p}$ y las relaciones extremas:

$$K_{máx} = \frac{\sigma_{\theta máx}}{p}$$

$$K_{mín} = \frac{\sigma_{\theta mín}}{p}$$
(10), (11)

 $K_{\text{máx}}$ es el factor de concentración de tensiones máximas y $K_{\text{mín}}$ corresponde a las tensiones mínimas que aparecen en el borde del orificio al aplicar la tensión de tracción *p*.

2 MODELADO CON ELEMENTOS FINITOS.

El problema se analizó utilizando el método de elementos finitos (ALGOR⁷).

La placa fue modelada con elementos finitos y se construyeron varios modelos con mallados diferentes para hacer la experimentación numérica que indicara cuál era el modelo que mejor describía el problema. La selección de uno de ellos, se decidió por la comparación con resultados obtenidos para un caso resuelto por Lekhnitskii³.

El ejemplo elegido corresponde a un material ortótropo cuyas constantes elásticas son:

$$E_1 = 1.2 \ 10^5 \ \frac{\text{kg}}{\text{cm}^2}$$

 $E_2 = 0.6 \ 10^5 \ \frac{\text{kg}}{\text{cm}^2}$

$$G = 0.07 \ 10^5 \ \frac{\text{kg}}{\text{cm}^2}$$

 $v_1 = 0.071$

Las relaciones elásticas resultan: $E_1/E_2 = 2$ y $G/E_2 = 0.1167$

Los resultados dados por Lekhnitskii para la máxima tensión son

$$\sigma_{\theta m \alpha x} = 4.04 \ p \to \theta = 90^{\circ} \tag{12}$$

y para la mínima:

$$\sigma_{\theta m in} = 1.09 \ p \to \theta = 45^{\circ} \tag{13}$$

Se probaron tres modelos diferentes con elementos finitos de la placa. Dada la simetría se analizó un cuarto de placa. Se observó una perfecta concordancia en la ubicación de los puntos donde se producen las tensiones extremas en todos los modelos. Los valores de los factores de concentración de tensiones obtenidos de los modelos analizados se transcriben en la tabla 1.

	Número de elementos	$K_{máx} = \frac{\sigma_{\theta máx}}{p}$	$K_{min} = \frac{\sigma_{\theta min}}{p}$
-	50772	4,07722	1.08565
	51284	4,05982	1.08214
	114240	4,04897	1.08000

Tabla 1: Factor de concentración de tensiones para diferentes modelos en elementos finitos.

En la figura 2 se reproduce un detalle del mallado construido en las cercanías del borde para el modelado con 114240 elementos. Se puede observar una densidad importante de elementos en las cercanías del borde para modelar adecuadamente el contorno del orificio y luego la transición hacia elementos de mayor dimensión a medida que se alejan del orificio, donde la influencia del orificio sobre el campo de tensiones se va reduciendo. Se adoptó este último modelo de mallado para los cálculos que se presentan a continuación.

Figura 2: Detalle del mallado.

3 RESULTADOS.

El mallado de la figura 2, se utilizó para resolver el problema para placas con diferentes características elásticas. Se variaron los parámetros E_1/E_2 y G/E_2 y se mantuvo constante el coeficiente de Poisson v_1 en 0.30. Se tomaron valores de E_1/E_2 entre 1 y 10, en forma progresiva variando de a uno y luego se tomó también para dos valores E_1/E_2 de considerable magnitud, 20 y 40. Para cada una de estas relaciones de módulos de elasticidad, se tomaron valores para $G/E_2 = 0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9$ y 1. Estos son los resultados que se presentan en las tablas 2 a 9. En cada tabla hay cuatro grupos de resultados, el valor del factor de concentraciones de tensiones máximo y ángulo $\theta = \beta_1$ que determina la ubicación del punto sobre el contorno del orificio donde se produce. El valor de K_{min} y el ángulo que indica la posición $\theta = \beta_2$ y el valor del factor sobre los ejes coordenados "x" e "y": K_{0° , K_{90° . Los ángulos están indicados en grados sexagecimales.

En la tabla 2, que corresponde a la relación $G/E_2 = 0,1$, se observan los valores más altos del factor $K_{máx}$ de todas las combinaciones elegidas.

De la lectura de los datos en las tablas mencionadas se observa que la ubicación de los puntos de máxima y mínima concentración de tensiones resultan fuertemente afectados por las relaciones elásticas del material elegido, como era de preveer.

En las tablas subsiguientes, 10 a 15, se presentan una serie de casos en los que se estudió con más detalle el efecto de la variación de la relación de ortotropía. Se amplió el espectro de valores para las relaciones de E_1/E_2 . Las tablas 10 y 11 muestran la variación de los factores de tensión en función de E_1/E_2 donde se adoptaron más valores intermedios entre 1 y 2 para $G/E_2 = 0,1$ y 0,5 respectivamente. La tabla 12 corresponde a la relación $G/E_2 = 0,6$, con E_1/E_2

variando de 1 a 1,5 Las tablas 13 a 15 presentan valores más moderados de E_1/E_2 entre 5 y 7 para $G/E_2 = 0.8$, 0.9 y 1 respectivamente. Para visualizar el efecto de dichas variaciones en la ortotropía del material en el factor de concentraciones máximas se presentan los gráficos, figuras 3 a la 6. En la figura 7 se grafican los valores del ángulo β_1 en radianes, donde se

produce la máxima tensión, en función de las relaciones $\frac{E_1}{E_2}$ y $\frac{G}{E_2}$. La figura 8 es un

detalle de la figura anterior para los valores $\frac{E_1}{E_2}$ entre 5 y 7.

A continuación se grafica la expresión del factor de tensiones sobre el borde del orificio circular $K = K(\theta, a) = \frac{\sigma_{\theta}(\theta, a)}{p}$ de la expresión (6) en función del ángulo θ . Las figuras 9 y 10 se corresponden con los valores G/E_2 igual a 0.1 y 0.3 lo que permite visualizar el comportamiento de las tensiones de la placa analizada con un modelo continuo.

Por último en las tablas 16 y 17 se presentan comparaciones del factor K calculados con ambos modelos, modelo discreto con elementos finitos y modelo continuo, con la expresión de Lekhnitskii, (6), para la relación $G_{E_2} = 0,1$, con $v_1 = 0,30$.

$G/E_2 = 0,1$								
E_{1}/E_{2}	$K_{ m máx}$	β_1	$K_{ m mín}$	β_2	K_{0°	K_{90°		
1	3,40440	90°	1,18503	45,0000	3,40440	3,40440		
2	4,33470	90°	1,01465	48,6000	3,64344	4,33470		
3	5,03769	90°	0,93264	50,4000	3,74477	5,03769		
4	5,62442	90°	0,87906	52,1999	3,80380	5,62442		
5	6,13658	90°	0,83889	53,9999	3,84347	6,13658		
6	6,59538	90°	0,80646	54,8999	3,87241	6,59538		
7	7,01336	90°	0,77860	56,7000	3,89469	7,01336		
8	7,39876	90°	0,75363	57,6000	3,91252	7,39876		
9	7,75732	90°	0,73075	58,5000	3,92718	7,75732		
10	8,09326	90°	0,70922	60,3000	3,93951	8,09326		
20	10,68360	90°	0,48888	69,3000	4,00486	10,68360		
40	14,00100	90°	0,09052	71,9999	4,04900	14,00100		

Tabla 2: Valores del Factor de tensiones K.

$G/E_2 = 0,3$									
E_{1}/E_{2}	<i>K</i> _{máx}	β_1	<i>K</i> _{mín}	β_2	K_{0°	K_{90°			
1	2,18509	90°	1,84762	45,00000	2,18509	2,18509			
2	2,58000	90°	1,62557	48,60000	2,40814	2,58000			
3	2,86837	90°	1,52548	50,40000	2,49830	2,86837			
4	3,10621	90°	1,46389	52,19990	2,54938	3,10621			
5	3,31305	90°	1,41991	53,09990	2,58305	3,31305			
6	3,49839	90°	1,38619	53,99990	2,60727	3,49839			
7	3,66767	90°	1,35909	54,89990	2,62570	3,66767			
8	3,82437	90°	1,33639	55,79990	2,64032	3,82437			
9	3,97084	90°	1,31657	55,79990	2,65225	3,97084			
10	4,10877	90°	1,29924	56,70000	2,66222	4,10877			
20	5,20086	90°	1,18724	61,19990	2,71414	5,20086			
40	6,67045	90°	1,05101	66,59990	2,74852	6,67045			

Tabla 3: Valores del Factor de tensiones K..

Tabla 4: Valores del Factor de tensiones *K*.

			$G/E_2 = 0,5$			
E_{1}/E_{2}	<i>K</i> _{máx}	β_{1}	$K_{ m mín}$	β_2	K_{0°	K_{90°
1	2,17436	45°	1,85050	-	1,85050	1,85050
2	2,08923	90°	1,94119	48,60000	2,06230	2,08923
3	2,25403	90°	1,84063	50,40000	2,14533	2,25403
4	2,38620	90°	1,78055	51,30000	2,19140	2,38620
5	2,49921	90°	1,73872	53,09990	2,22128	2,49921
6	2,59934	90°	1,70727	53,99990	2,24250	2,59934
7	2,69006	90°	1,68250	53,99990	2,25848	2,69006
8	2,77355	90°	1,66197	54,89990	2,27103	2,77355
9	2,85125	90°	1,64451	55,79990	2,28120	2,85125
10	2,92420	90°	1,62952	56,70000	2,28963	3,49837
20	3,49837	90°	1,53855	59,39990	2,33251	3,49837
40	4,27614	90°	1,44948	63,89990	2,35978	4,27614

			$G/E_2 = 0,6$			
E_{1}/E_{2}	$K_{ m máx}$	β_1	<i>K</i> _{mín}	β_2	K_{0°	K_{90°
1	2,28731	45°	1,75715	-	1,75715	1,75715
2	2,05287	49°	1,95100	90,0000	1,96483	1,95100
3	2,07993	90°	1,95394	50,4000	2,04523	2,07993
4	2,18124	90°	1,89567	51,3000	2,08943	2,18124
5	2,26673	90°	1,85572	53,0999	2,11790	2,26673
6	2,34176	90°	1,82592	53,9999	2,13798	2,34176
7	2,40927	90°	1,80264	53,9999	2,15303	2,40927
8	2,47106	90°	1,78360	54,8999	2,16479	2,47106
9	2,52832	90°	1,76750	55,7999	2,17428	2,52832
10	2,58188	90°	1,75457	57,6000	2,18211	2,58188
20	2,99934	90°	1,67264	59,3999	2,22145	2,99934
40	3,56032	90°	1,59877	63,0000	2,24585	3,56032

Tabla 5: Valores del Factor de tensiones *K*.

Tabla 6: Valores del Factor de tensiones *K*.

			$G/E_2 = 0,7$			
E_{1}/E_{2}	$K_{ m máx}$	β_1	$K_{ m mín}$	β_2	K_{0°	K_{90°
1	2,38005	45°	1,68738	-	1,68738	1,68738
2	2,14557	49°	1,84718	90,0000	1,89161	1,84718
3	2,04873	50°	1,94877	90,0000	1,96979	1,94877
4	2,02648	90°	1,99254	50,4000	2,01242	2,02648
5	2,09087	90°	1,95466	53,0999	2,03967	2,09087
6	2,14664	90°	1,92666	53,9999	2,05879	2,14664
7	2,19630	90°	1,90495	53,9999	2,07304	2,19630
8	2,24139	90°	1,88747	54,8999	2,08412	2,24139
9	2,28289	90°	1,87278	55,7999	2,09301	2,28289
10	2,32149	90°	1,86030	55,7999	2,10034	2,32149
20	2,61734	90°	1,78902	59,3999	2,13658	2,61734
40	3,00781	90°	1,72840	63,0000	2,15843	3,00781

$G/E_2 = 0,8$									
E_{1}/E_{2}	$K_{ m máx}$	β_1	$K_{ m mín}$	β_2	K_{0°	K_{90°			
1	2,45796	45,0000	1,63312	-	1,63312	1,63312			
2	2,22408	48,6000	1,76613	90,0000	1,83443	1,76613			
3	2,12955	50,4000	1,84609	90,0000	1,91072	1,84609			
4	2,07579	52,1999	1,90509	90,0000	1,95199	1,90509			
5	2,03980	53,0999	1,95272	90,0000	1,97820	1,95272			
6	2,01387	55,7999	1,99313	89,0999	1,99313	1,99315			
7	2,02858	90,0000	1,99353	53,9999	2,01003	2,02858			
8	2,06034	90,0000	1,97749	53,9999	2,02051	2,06034			
9	2,08925	90,0000	1,96437	53,9999	2,02890	2,08925			
10	2,11590	90,0000	1,95315	55,7999	2,03577	2,11590			
20	2,31411	90,0000	1,89161	59,3999	2,06928	2,31411			
40	2,56630	90,0000	1,84341	63,0000	2,08884	2,56630			

Tabla 7: Valores del Factor de tensiones *K*.

Tabla 8: Valores del Factor de tensiones K.

$G/E_2 = 0,9$									
E_{1}/E_{2}	$K_{ m máx}$	β_{1}	$K_{ m mín}$	β_2	K_{0°	K_{90°			
1	2,52459	45,0000	1,58966	-	1,58966	1,58966			
2	2,29165	48,6000	1,70097	90,0000	1,78846	1,70097			
3	2,19949	50,4000	1,76335	90,0000	1,86312	1,76335			
4	2,14802	52,1999	1,80710	90,0000	1,90320	1,80710			
5	2,11408	53,0999	1,84104	90,0000	1,92850	1,84104			
6	2,08980	54,8999	1,86892	90,0000	1,94604	1,86892			
7	2,07154	54,8999	1,89271	90,0000	1,95897	1,89271			
8	2,05697	55,7999	1,91354	90,0000	1,96893	1,91354			
9	2,04508	55,7999	1,93213	90,0000	1,97686	1,93213			
10	2,03513	56,7000	1,94896	90,0000	1,98334	1,94896			
20	2,06675	90,0000	1,98297	58,5000	2,01440	2,06675			
40	2,20413	90,0000	1,94671	63,0000	2,03191	2,20413			

	$G/E_2 = 1$									
E_{1}/E_{2}	$K_{ m máx}$	β_{1}	$K_{ m mín}$	β_2	$K_{0^{\circ}}$	K_{90°				
1	2,58242	45,0000	1,55403	-	1,55403	1,55403				
2	2,35058	48,6000	1,64739	90°	1,75065	1,64739				
3	2,26076	50,4000	1,69517	90°	1,82387	1,69517				
4	2,21154	52,1999	1,72621	90°	1,86292	1,72621				
5	2,17962	53,0999	1,74873	90°	1,88741	1,74873				
6	2,15710	53,9999	1,76614	90°	1,90429	1,76614				
7	2,14051	54,8999	1,78019	90°	1,91668	1,78019				
8	2,12738	55,7999	1,79187	90°	1,92618	1,79187				
9	2,11690	55,7999	1,80181	90°	1,93370	1,80181				
10	2,10818	56,7000	1,81041	90°	1,93982	1,81041				
20	2,06548	59,3999	1,86060	90°	1,96869	1,86060				
40	2,04039	63,8999	1,90085	90°	1,98431	1,90085				

Tabla 9: Valores del Factor de tensiones *K*.

Tabla 10: Valores del Factor de tensiones *K*.

$G/E_2 = 0,1$								
E_{1}/E_{2}	$K_{ m máx}$	β_1	$K_{ m mín}$	β_2	K_{0°	K_{90°		
1,0	3,40440	90°	1,18503	45,0000	3,40440	3,40440		
1,1	3,51518	90°	1,15878	45,9000	3,44333	3,51518		
1,2	3,62067	90°	1,13542	45,9000	3,47699	3,62067		
1,3	3,72155	90°	1,11502	45,9000	3,50647	3,72155		
1,4	3,81838	90°	1,09644	46,7999	3,53254	3,81838		
1,5	3,91161	90°	1,07980	46,7999	3,55582	3,91161		
1,6	4,00159	90°	1,06465	47,7000	3,57677	4,00159		
1,7	4,08865	90°	1,05060	47,7000	3,59574	4,08865		
1,8	4,17304	90°	1,03781	47,7000	3,61303	4,17304		
1,9	4,25499	90°	1,02587	48,6000	3,62887	4,25499		
2,0	4,33470	90°	1,01465	48,6000	3,64344	4,33470		

$G/E_2 = 0,5$									
E_{1}/E_{2}	$K_{ m máx}$	β_1	$K_{ m mín}$	β_2	K_{0°	K_{90°			
1,0	2,28731	45,0000	1,75715	_	1,75715	1,75715			
1,1	2,13624	45,9000	1,88093	90,00000	1,88631	1,88093			
1,2	2,10341	45,9000	1,90912	90,00000	1,91689	1,90912			
1,3	2,07476	46,7999	1,93569	90,00000	1,94336	1,93569			
1,4	2,04938	46,7999	1,96079	90,00000	1,96654	1,96079			
1,5	2,02677	47,70000	1,98460	89,09990	1,98702	1,98461			
1,6	2,00739	85,4999	2,00517	6,30000	2,00529	2,00732			
1,7	2,02903	90,0000	1,98772	45,90000	2,02169	2,02903			
1,8	2,04986	90,00000	1,97095	46,79990	2,03651	2,04986			
1,9	2,06991	90,0000	1,95547	47,70000	2,04999	2,06991			
2,0	2,08923	90,0000	1,94119	48,60000	2,06230	2,08923			

Tabla 11: Valores del Factor de tensiones *K*.

Tabla 12: Valores del Factor de tensiones *K*.

$G/E_2 = 0,6$									
E_{1}/E_{2}	$K_{ m máx}$	β_{1}	$K_{ m mín}$	β_2	K_{0°	K_{90°			
1,0	2,28731	45,0000	1,75715	-	1,75715	1,75715			
1,1	2,24855	45,9000	1,78234	90,0000	1,79245	1,78234			
1,2	2,21538	45,9000	1,80568	90,0000	1,82254	1,80568			
1,3	2,18641	46,7999	1,82746	90,0000	1,84855	1,82746			
1,4	2,16093	46,7999	1,84792	90,0000	1,87128	1,84792			
1,5	2,13812	46,7999	1,86724	90,0000	1,89135	1,86724			
1,6	2,11777	47,7000	1,88556	90,0000	1,90922	1,88556			
1,7	2,09929	47,7000	1,90301	90,0000	1,92525	1,90301			
1,8	2,08243	47,7000	1,91967	90,0000	1,93971	1,91967			
1,9	2,06705	48,6000	1,93565	90,0000	1,95284	1,93565			
2,0	2,05287	49,0000	1,95100	90,0000	1,96483	1,95100			
2,1	2,03976	48,6000	1,96578	90,0000	1,97582	1,96578			
2,2	2,02758	48,6000	1,98004	90,0000	1,98593	1,98004			
2,3	2,01625	49,5000	1,99381	89,0999	1,99528	1,99384			
2,35	2,01095	52,1999	1,99965	0,9000	1,99969	2,00057			
2,4	2,00728	85,4999	2,0039	0,9000	2,00395	2,0072			
2,5	2,02016	90,0000	1,99569	45,9000	2,01201	2,02016			

$G/E_2 = 0.8$						
E_{1}/E_{2}	<i>K</i> _{máx}	β_{1}	$K_{ m mín}$	β_2	K_{0°	K_{90°
5,0	2,03980	53,0999	1,95272	90,0000	1,97820	1,95272
5,1	2,03680	54,8999	1,95704	90,0000	1,98032	1,95704
5,2	2,03397	54,8999	1,96129	90,0000	1,98236	1,96129
5,3	2,03121	54,8999	1,96548	90,0000	1,98433	1,96548
5,4	2,02853	54,8999	1,96960	90,0000	1,98624	1,96960
5,5	2,02592	54,8999	1,97367	90,0000	1,98808	1,97367
5,6	2,02338	54,8999	1,97767	90,0000	1,98987	1,97767
5,7	2,02091	54,8999	1,98162	90,0000	1,99160	1,98162
5,8	2,01850	54,8999	1,98551	90,0000	1,99327	1,98551
5,9	2,01712	54,8999	1,98791	90,0000	1,99430	1,98791
6,0	2,01387	55,7999	1,99313	89,0999	1,99313	1,99315
6,1	2,01165	55,7999	1,99686	89,0999	1,99801	1,99689
6,2	2,00949	59,3999	2,00054	89,0999	1,99950	2,00058
6,3	2,00754	60,3000	2,00090	0,9000	2,00095	2,00423
6,4	2,00787	85,4999	2,00228	6,3000	2,00235	2,00783
6,5	2,01139	90,0000	2,00254	45,0000	2,00372	2,01139
6,6	2,01491	90,0000	2,0009	45,0000	2,00505	2,01491
6,7	2,01839	90,0000	1,99905	51,3000	2,00634	2,01839
6,8	2,02182	90,0000	1,99718	53,9999	2,00760	2,02182
6,9	2,02522	90,0000	1,99533	53,9999	2,00883	2,02522
7,0	2,02858	90,0000	1,99353	53,9999	2,01003	2,02858

Tabla 13: Valores del Factor de tensiones *K*.

$G/E_2 = 0.9$						
E_{1}/E_{2}	K _{máx}	β_1	$K_{ m mín}$	β_2	$K_{0^{\circ}}$	K_{90°
5,0	2,11408	53,0999	1,84104	90°	1,92850	1,84104
5,1	2,11130	53,0999	1,84406	90°	1,93053	1,84406
5,2	2,10861	53,0999	1,84702	90°	1,93249	1,84702
5,3	2,10599	53,0999	1,84993	90°	1,93439	1,84993
5,4	2,10345	53,0999	1,85278	90°	1,93622	1,85278
5,5	2,10099	53,0999	1,85559	90°	1,93799	1,85559
5,6	2,09859	53,0999	1,85835	90°	1,93970	1,85835
5,7	2,09629	53,9999	1,86106	90°	1,94136	1,86106
5,8	2,09406	53,9999	1,86372	90°	1,94297	1,86372
5,9	2,09188	53,9999	1,86634	90°	1,94453	1,86634
6,0	2,08980	54,8999	1,86892	90°	1,94604	1,86892
6,1	2,08777	54,8999	1,87146	90°	1,94750	1,87146
6,2	2,08579	54,8999	1,87397	90°	1,94893	1,87397
6,3	2,08386	54,8999	1,87643	90°	1,95031	1,87643
6,4	2,08198	54,8999	1,87886	90°	1,95165	1,87886
6,5	2,08014	54,8999	1,88125	90°	1,95296	1,88125
6,6	2,07834	54,8999	1,8836	90°	1,95423	1,8836
6,7	2,07658	54,8999	1,88543	90°	1,95546	1,88543
6,8	2,07486	54,8999	1,88822	90°	1,95666	1,88822
6,9	2,07318	54,8999	1,89048	90°	1,95783	1,89048
7,0	2,07154	54,8999	1,89271	90°	1,95897	1,89271

Tabla 14: Valores del Factor de tensiones *K*.

$G/E_2 = 1$						
E_{1}/E_{2}	$K_{ m máx}$	$eta_{ ext{i}}$	$K_{ m mín}$	β_2	$K_{0^{\circ}}$	K_{90°
5,0	2,17962	53,0999	1,74873	90°	1,88741	1,74873
5,1	2,17703	53,0999	1,75066	90°	1,88937	1,75066
5,2	2,17452	53,0999	1,75255	90°	1,89126	1,75255
5,3	2,17208	53,0999	1,75439	90°	1,89309	1,75439
5,4	2,16971	53,0999	1,75618	90°	1,89485	1,75618
5,5	2,16741	53,0999	1,75794	90°	1,89656	1,75794
5,6	2,16521	53,9999	1,75965	90°	1,89821	1,75965
5,7	2,16310	53,9999	1,76133	90°	1,89980	1,76133
5,8	2,16105	53,9999	1,76297	90°	1,90135	1,76297
5,9	2,15905	53,9999	1,76457	90°	1,90284	1,76457
6,0	2,15710	53,9999	1,76614	90°	1,90429	1,76614
6,1	2,15521	53,9999	1,76768	90°	1,90570	1,76768
6,2	2,15336	53,9999	1,76918	90°	1,90707	1,76918
6,3	2,15162	54,8999	1,77065	90°	1,90839	1,77065
6,4	2,14992	54,8999	1,77210	90°	1,90968	1,77210
6,5	2,14826	54,8999	1,77351	90°	1,91093	1,77351
6,6	2,14664	54,8999	1,77490	90°	1,91214	1,77490
6,7	2,14505	54,8999	1,77626	90°	1,91332	1,77626
6,8	2,14350	54,8999	1,77759	90°	1,91447	1,77759
6,9	2,14199	54,8999	1,77890	90°	1,91559	1,77890
7,0	2,14051	54,8999	1,78019	90°	1,91668	1,78019

Tabla 15: Valores del Factor de tensiones *K*.

Figura 3: Factor de concentración de tensiones $K_{máx}$ en función de la relación E_1/E_2 , para G/E_2 .

Figura 4: $K_{\text{máx}}$ en función de la relación E_1/E_2 , para distintas relaciones G/E_2 (detalle).

Figura 5: $K_{\text{máx}}$ en función de la relación E_1/E_2 , para distintas relaciones G/E_2 (detalle).

Figura 6: $K_{\text{máx}}$ en función de la relación E_1/E_2 , para distintas relaciones G/E_2 (detalle).

Figura 7: Ángulo β_1 en radianes, en función de la relación E_1/E_2 .

Figura 8: Ángulo β_1 en radianes, en función de la relación E_1/E_2 (detalle de Fig. 7)

Figura 10: *K* en función de θ , para G/ $E_2 = 0,3$.

E_{1}/E_{2}	Modelo Eleme	ntos finitos	Modelo continuo	
	$K_{ m máx}$	β_1	<i>K</i> _{máx}	β_1
1	3,40440	90°	3,37639	90°
2	4,33470	90°	4,42314	90°
3	5,03769	90°	5,21774	90°
4	5,62442	90°	5,88477	90°
5	6,13658	90°	6,47107	90°
6	6,59538	90°	7,00036	90°

Tabla 16: Tabla comparativa de Kmáx, modelo de elementos finitos y del modelo continuo $G/E_2 = 0.1$.

Tabla 17: Tabla comparativa de K_{min} , modelo de elementos finitos y del modelo continuo $G/E_2 = 0.1$.

E_{1}/E_{2}	Modelo Elem	entos finitos	Modelo continuo		
	<i>K</i> _{mín}	β_2	<i>K</i> _{mín}	β_2	
1	1,18503	45,0	1,18470	45,0	
2	1,01465	48,6	1,04810	48,3	
3	0,93264	50,4	0,98232	50,1	
4	0,87906	52,2	0,94070	51,3	
5	0,83889	54,0	0,91096	52,2	
6	0,80646	54,9	0,88815	53,0	

4 CONCLUSIONES.

El análisis de las tensiones que se generan en el entorno de un orificio circular, de una placa ortótropa cuando está sometida a tensiones hidrostáticas en su plano, surge, que tal como se esperaba, es fuertemente afectado por las características elásticas del material del modelo en consideración. Los factores de concentración de tensiones $K_{máx}$ para materiales con $G_{E_2} = 0,1$ y diferentes relaciones de módulos de Young resultan ser los más importantes. Para las relaciones de $G_{E_2} = 0,1$ hasta 0,3 los puntos de máxima tensión se producen sobre el eje coordenado "y", en tanto que para relaciones mayores, los puntos de máxima tensión se desplazan del eje tal como se observa en las tablas 4, 5, 6, 7, 8 y 9. Este comportamiento requirió de un análisis más minucioso, para poder estudiarlo, y se presenta en las tablas 11, 12, 13 14 y 15 y en las figuras 4 a 6. En la figura 7, se grafica la posición, ángulo β_1 para el cual se produce la máxima concentración de tensiones. El ángulo se encuentra expresado en radianes. La figura 8 amplía la zona de E_1/E_2 comprendida entre los valores 5 y 8, y permite

visualizar como se produce la variación del ángulo.

5 AGRADECIMIENTOS.

El presente estudio ha sido auspiciado por la Secretaría General de Ciencia y Tecnología de la Universidad Nacional del Sur y por el Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

6 REFERENCIAS

- [1] P. A. A. Laura and V. Sonzogni. (1997), "Kirsch Problem and the Lower Natural Frequencies of a Clamped Square-Plate", Ocean Engineering Vol. 24 No 10, pp. 985-988.
- [2] P. A. A. Laura y M. J. Maurizi, "Introducción a la Mecánica del Sólido", EUDEBA, Buenos Aires (1979).
- [3] S.G. Lekhnitskii, "Anisotropic Plates", Gordon and Breach Science Publishers, New York (1968).
- [4] D. V. Bambill, S. Maíz, R. E. Rossi y P. A. A. Laura, "Numerical Experiments on the Determination of Stress Concentration Factors in an Orthotropic, Finite Plate With a Circular Hole Subjected to Uniform, In-Plane Loading in One Direction", Sometido a publicación, (2004).
- [5] M. Sánchez., N. Troyani, "Factor Teórico de Concentración de esfuerzos en piezas cortas de materiales anisotrópicos", ENIEF 2003, Mecánica Computacional, Vol. XXII, 2135-2144. (2003).
- [6] S. Maíz, R. E. Rossi, P. A. A. Laura y D. V. Bambill, "Efectos de la ortotropía sobre el factor de concentración de tensiones: extensión del problema de Kirsch, Mecánica Computacional, Vol. XXIII, 673-692 (2004).
- [7] ALGOR, "Professional Mech/VE", Algor Inc., Pittsburgh, PA. USA. (2001).