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ABSTRACT

In this paper the capability of Virtual Crack Closure Integral (VCCI) methods regarding the computational fracture
analysis of 2D and 3D crack problems is presented. For the 2D case the accuracy and convergence is verified on the
basis of a reference solution for the CCT specimen and in comparison to other methods. In the 3D cases emphasis is on
the analysis of mixed mode problems involving also local 3D and different mode coupling effects, in particular where a
crack front intersects a free surface. It can be stated that the MVCCI results agree very well with the global behaviour of
the reference solutions but also remarkable deviations are found where mode coupling effects seem not to be covered by
the solutions available from stress analysis handbooks or the literature so far.

INTRODUCTION

The understanding and analysis of mixed mode fracture is an important subject in fracture mechanics because
material flaws or pre-cracks, which may have been introduced unintentionally during the manufacturing processes,
can have an arbitrary orientation with respect to a general type of loading which a component of a machine or
structure has to carry.

In the past, 2D crack extension problems under mixed mode I and II loading conditions have attracted much
attention and through many investigations the problem is now well understood. A number of fracture criteria for
predicting the onset of fracture and the direction of crack growth under mixed mode I and II crack tip loading
conditions are well established (Erdogan and Sih1; Williams and Ewing2; Sih3; Hussain, Pu and Underwood4;
Nuismer5; Wu6; Palaniswamy and Knauss7; Cotterell and Rice8; Sumi, Nemat-Naser and Keer9; Amestoy, Bui and
Dang-Vam10; Leblond and Amestoy11). In particular, the compact tension shear (CTS) specimen designed by
Richard12 in combination with the special loading device (Richard and Benitz13) and detailed experimental and
computational investigations have contributed to the current state in the field (Banks-Sills, Arcan and Bui14;
Richard15).

In this paper the capability of Virtual Crack Closure Integral (VCCI) methods regarding the computational fracture
analysis of 2D and 3D crack problems is presented. For the 2D case the accuracy and convergence is verified on
the basis of a reference solution for the CCT specimen and in comparison to other methods.

Furthermore, detailed results of 3D finite element and mixed mode analyses of four different types of fracture
specimens are presented and discussed. Special interest is taken in local 3D and mode coupling effects to be found
in stress intensity factor (SIF) or strain energy release rate (SERR) results along crack fronts, in particular adjacent
to an intersection of a crack front with a free surface of the specimen. The four specimens under consideration are a
centre cracked tension (CCT) specimen, with a crack perpendicular or inclined to the loading direction, a single
edge notched (SEN) specimen under out-of-plane shear, a quarter circular corner crack (QCCC) specimen subject
to shear and a three point bending (3PB) specimen with a crack perpendicular or inclined with respect to the mid
plane between the supports (see Fig.1 and Tab.1). The specimens and loading conditions have been chosen to suit
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the subject of this investigation and such that reference solutions are available from stress analysis handbooks or
the literature (Tada, Paris and Irwin16; Rooke and Cartwright17; Murakami18; Isida19; Pook20).

Moreover, some experimental findings are presented, showing the influence of variable mixed mode loading
conditions along the crack front on the development of 3D crack extension in the 3PB specimen with an angled
crack.
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Figure 1: Specimen types and loading conditions
               a) CCT-specimen      b) SEN-specimen
               c) QCCC-specimen   d) 3PB-specimen

CCT-spec. SEN-spec. QCCC-spec. 3PB-spec.
Lenght Le (mm) - - - 120
Height h (mm) 48 25 100 -
Width w (mm) 24 100 100 60

Thickness t (mm) 12 50 100 20
a/w (-) 0.5 0.5 0.4 0.3

Angle (deg.) 0; 45 - - 45; 90

Table 1: Geometrical parameters of the specimens
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2D AND 3D VIRTUAL CRACK CLOSURE INTEGRAL (VCCI) METHODS

 VCCI or 2C Method

With reference to Fig.2 and its notations for mode I crack tip conditions, Irwin's21 well known analytical crack
closure integral relation is given by
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Figure 2: Analytical VCCI method

For the FE analysis of the related crack problem Eq.(1) can be written in the following FE representation
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which is holding for a FE discretisation as given in Fig.3a. By Eq.(2), in which t denotes the thickness of the
specimen, the SERR GI is calculated on the basis of the work to be done by the nodal point force Fy,i(a) against the
relative nodal point displacement ∆uy,j-1(a + ∆a) in order to close the crack by ∆a again (Fig.3a). By Eq.(2) the
numerical VCCI method is defined for a 2D crack problem under mode I. In this paper it will be shown that
through this method, which can be classified as a local energy approach, good results are obtained even for non-
singular, low order standard elements and rather coarse FE meshes, if the layout of the mesh around the crack tip is
homogeneous.
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Figure 3: Computational VCCI methods for 2D and 3D low order element discretisations
a) 3- and 4-node membrane or   b) 6- and 8-node volume elements
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Here the VCCI method is also named and marked as 2C method (2 calculations), because two FE analyses of the
model have to be performed, respectively (for the crack lengths a and a + ∆a), in order to compute one SERR result
G2C(a + ∆a/2) as mean value in the interval of finite crack extension ∆a. But with respect to this effort it should be
emphasised that by Eq.(2) the SERR is computed numerically exact for the actual FE discretisation under
consideration, even for finite crack extensions ∆a >> 0. On that account no term lim∆a→0 is expressed in Eq.(2)
and the notation G2C(a + ∆a/2) stresses its meaning as the mean value of the SERR in the interval ∆a of finite crack
extension (from crack length a to a + ∆a), which has to be correlated to a + ∆a/2, the corresponding mean value of
the crack length in the interval under consideration.

MVCCI  or 1C Method

Rybicki and Kanninen23 have introduced the modified virtual crack closure integral (MVCCI) method in order to
avoid the additional effort of a second FE analysis for an extended crack of length a + ∆a, respectively. This can be
achieved if, with reference to Eq.(2) and to Fig.3a, the required relative nodal point displacement ∆uy,j-1(a+∆a) from
the extended crack is replaced by the corresponding relative nodal point displacement ∆uy,i-1(a) of the original crack
with crack length a. By this numerically highly effective MVCCI  or 1C method (1 calculation) the SERR is
calculated from
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The assumptions under which Eq.(3) is holding are the same as for Eq.(2). Through the term lim∆a→0 in Eq.(3) it
is expressed that the MVCCI or 1C method is an approximate approach, with convergence to the exact solution
(Eq.(1)) only for ∆a→0. But Rybicki and Kanninen23 have shown, that for small ∆a also a good accuracy with
respect to reference solutions can be achieved by the MVCCI method.

In the case of in-plane mixed mode loading conditions at the crack tip or in the 3D case including out-of-plane
shear the additional mode II or mode III SERRs can be obtained readily by substituting the relevant x- and z-
components of the nodal point forces and the relative nodal point displacements into Eq.(3). The total SERR at the
crack tip or at a nodal point located along the crack front is then defined by

( ) ( ) III. II, I, = ior            III,i           ,G = 
i

1C
i

1 =∑ aaG C
T                                       (4)

This numerically highly effective MVCCI method for 2D fracture analysis can be generalised in conjunction with
low order volume element discretisations in a rather straight forward way in order to cover also complex 3D
fracture problems. Firstly Eqs.(2)-(4) have to be evaluated at all nodal point positions k =1, 2... along the crack
front (Fig.3b) and they have to be interpreted there with respect to a locally defined crack front coordinate system,
respectively. Secondly the  constant thickness t at the 2D problems has to be replaced by an effective thickness ∆tk,
which is correlated to the nodal point position k under consideration and evaluation (Fig.3b). The resulting
formulae are
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which are holding for 6- and 8-node volume element discretisations (Fig.3b). In the following it will be shown that
also in the 3D case through this method, which again can be classified as a local energy approach, good results are
obtained even for non-singular, low order standard elements and rather coarse FE meshes, if the layout of the mesh
around the crack front is homogeneous.

The corresponding formulae for the VCCI-method for 3D crack problems can readily be developed from Eq.(2)
and Eqs.(5a,b,c), respectively.

Through further generalisations of the method, also the numerically more effective non-singular, higher order
elements can be utilised for the fracture analysis of 2D and 3D crack problems (Buchhholz24; Krishnamurthy et
al25: Raju26; Sethuraman and Maiti27; Buchholz et al28,29; Narayana et al30; Shivakumar, Tan and Newman31;
Buchholz32) and also other methods have been developed (Chan, Tuba and Wilson33; Parks34; Hellen35; Kuna36;
Nikishkov and Atluri37; Mi and Aliabadi38; Wawrzynek et al39; Dhondt40,41).

OTHER METHODS OF COMPUTATIONAL FRACTURE ANALYSIS

Global Energy Method

According to Irwin22 the change of the total elastic potential Π(a) due to a crack extension from length a to a+∆a in
an elastic solid is related to the total SERR GT (a) by
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( t = const., thickness of the solid ). The total elastic potential is defined as
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denoting the elastic potential of the applied loads and the elastic strain energy of the solid, respectively (U
displacement vector, F load vector, K stiffness matrix of the solid, respectively).

For a finite crack extension ∆a in the FE model of a cracked solid the global energy method EN2 is given by
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the global energy method EN3 is established. Based on computational experience with different FE codes, FE
discretisations and element types, Eqs.(10) and (11) will give reliable and accurate results for the total SERR as
long as the crack is modelled in a homogeneous FE mesh (see Figs.5 and 6) and furthermore, ∆a is chosen
reasonably large in order to avoid extreme small numbers for ∆Π and reasonably small to avoid a poor FE
modelling of the crack. On the other hand the global energy methods EN2 and EN3 have the disadvantage that the
total SERR can not be decomposed into separated SERRs  Gi(a), i=I,II, although these are of high importance for
all mixed mode fracture problems. Nevertheless, the global energy methods are very useful for cross-checking the
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accuracy of other methods of computational fracture analysis, like the local energy methods VCCI and MVCCI, by
which the total SERR  GT(a) is calculated through the separated modes Gi(a), i=I,II or i=I,II,III by Eq.(4).

Extrapolation Method

In order to verify the performance of the local and global energy methods, they will be compared with one of the
classical methods of computational fracture analysis. Here the displacement extrapolation method DE180 is
chosen, because through computational experience it is known, that by this method generally a better accuracy is
achieved, compared to the alternative stress extrapolation method SE000, which is based on the singular stress field
at the crack tip (Fig.2, ϕ=0). In case of mode I the DE180 method is based on the crack tip displacement field
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(Fig.2, ϕ=π) and the mode I SIF is given by
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Through Irwin’s21 analytical virtual crack closure relations (for i=I see Eq.(1)) the SERRs  Gi  are related to the SIFs
Ki by
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DISCUSSION OF RESULTS

Accuracy and Convergence

In order to test and verify the accuracy and convergence of the local energy methods VCCI and MVCCI, compared
to the global energy method EN3 and the displacement extrapolation method DE180, the CCT specimen Fig.4 is
considered because for this problem a detailed reference solution is available. Due to the symmetry of the problem
only one quarter of the specimen has to be modelled (Fig.4).

The three different FE meshes C, M and F under investigation are shown in Fig.5. They are characterised by
increasing mesh refinements adjacent to the crack and a homogeneous mesh along the crack line, respectively. In
Fig.6 the deformed FE meshes C and F of the specimen are plotted from the analysis with 4-node quadrilateral
elements, respectively.
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Figure 4: CCT specimen as a 2D problem with a reference solution (Isida19)
(a/w=0.5, h/w=2, w=24mm)

Coarse mesh C
w/∆a=12

∆a/a=0.167
∆a=2mm

Medium mesh M
w/∆a=24

∆a/a=0.083
∆a=1mm

Fine mesh F
w/∆a=48

∆a/a=0.042
∆a=0.5mm

Figure 5: FE meshes of the CCT specimen (one quarter) with homogeneous mesh refinement along the crack line
(4-node quadrilateral elements)
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Figure 6: Deformed meshes C and F of the CCT specimen
(4-node quadrilateral elements)

The quantitative results for the normalised SIFs, computed by the different methods for the meshes C,M and F, are
plotted in Fig.7, together with the reference value (Isida19). It can be seen that the results for the global energy
method EN3 and the local energy method VCCI coincide for all meshes and with increasing mesh refinement also
the small deviations of the MVCCI results disappear. For the larger deviations of the DE180 method this is not
observed, but with further mesh refinement, compared to mesh F, convergence can also be expected. Based on
Eq.(13) the extrapolation procedure for the DE180 method is shown in Fig.8 for the meshes C, M and F. For
r/a<0.4 increasing deviations from the extrapolation lines are found for all meshes, confirming that the strong
gradients of the crack tip fields can not be modelled accurately by low order standard elements, like the 4-node
quadrilateral elements under consideration. But still the relative error ∆rel=-3.20% for the DE 180 method and
mesh F is acceptable and so is ∆rel=-2.19% for the other methods and mesh F, as given in Tab.2. If a higher
accuracy is desired or required, this can be achieved easily through further mesh refinements or by choosing higher
order standard elements (e. g. 8-node quadrilateral elements) for the same meshes C, M and F. In this case ∆rel<-
1% is found for all methods, already for mesh M, and ∆rel<-0.5% for mesh F, respectively.
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Figure 7: Accuracy of norm. SIFs computed by diff. methods with 4-node quad. elements and meshes C, M, F
(FE-code ABAQUS)
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Figure 8: Accuracy of norm. SIFs computed by DE180 method with 4-node quad. elements and meshes C, M, F
(FE-code ABAQUS)

       l/w=2.0
     a/w=0.5

   KIn-ref=1.187
mesh C

w/∆∆∆∆a=12
a/∆∆∆∆a=0.167

M
w/∆∆∆∆a=24
a/∆∆∆∆a=0.083

F
w/∆∆∆∆a=48
a/∆∆∆∆a=0.042

method KIn ∆∆∆∆rel  %%%% KIn ∆∆∆∆rel  %%%% KIn ∆∆∆∆ rel  %%%%
DE180 1.095 -7.75 1.129 -4.89 1.149 -3.20
EN3 1.141 -3.88 1.155 -2.70 1.161 -2.19
VCCI (2C) 1.141 -3.88 1.155 -2.70 1.161 -2.19
MVCCI (1C) 1.131 -4.72 1.152 -2.95 1.161 -2.19

Table 2: Accuracy of norm. SIFs computed by diff. methods with 4-node quad. elements and meshes C, M, F
(FE-code ABAQUS)

Based on the presented results the global and local energy methods EN3 and VCCI and MVCCI have achieved the
best accuracy for all meshes C, M and F under consideration. But the local energy methods have the advantage of
delivering the separated SERRs  Gi(a), i = I, II in the mixed mode cases. Because by the MVCCI or 1C method (1
calculation) this is achieved by just one analysis of the FE model, this method is computationally most effective
and thus has been chosen for the following fracture analyses of different 3D problems, involving mixed mode
loading conditions and also different 3D and mode coupling effects.

Centre cracked tension (CCT) specimen

Also for the 3D problems the investigation begins by considering the CCT-specimen first, in order to test the
MVCCI method regarding the correlated 3D FE model (Fig.9) and to verify its computational accuracy concerning
the low order standard elements that have been chosen (8-node volume elements). Also for the 3D model of the
CCT specimen this can be confirmed based on the results given in Fig.10 and in Tab.3, although for the 3D case no
reference solution is available. The way how to relate the results of the 3D model of the CCT specimen to the 2D
reference solution is to suppress all displacements in the thickness direction of the specimen (z- or 3-direction, see
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Fig.9) by setting uz0(x,y,z/t=±0.5)=0 as boundary conditions (BCs) at the front and rear surface of the specimen
(1,2-planes). By this trick plane strain conditions are enforced on the 3D model of the CCT specimen. In
consequence these surfaces of the deformed specimen remain plane, even at crack front intersections. (see the
corresponding mesh detail in Fig.9), and the SERRs evaluated along the crack front through the thickness of the
specimen should be constant and related to the corresponding 2D reference value (Isida19). In order to find a
common basis for the comparison of the results the SERRs calculated by the MVCCI method are converted into
SIFs by the aid of Eq.(14) for i=I, II and by Eq.(15) for i=III. This finally results in the normalised SIFs as plotted
in Fig.10 and given quantitatively in Tab.3. They are found to be perfectly constant along the crack front and
through the small relative error of ∆rel=-1.60 %, compared to the 2D plane strain reference value (Tab.3), this 3D
FE model of the CCT specimen and the 3D generalisation of the MVCCI method can be assessed as qualified for
the analysis of more general 3D cases.

Figure 9: Deformed 3D FE model of the CCT specimen (θ=0 deg.) and crack details with/without pl. strain BCs in
thickness direction

(6- and 8-node vol. el., w/∆a=24, ∆a/a=0.083, ∆t/t=0.083, ∆a=∆t=∆h=1mm)
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Figure 10: Norm. SIFs along the crack front of the CCT specimen with/without pl. strain BCs in thickness direction
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For the real 3D analysis of the CCT specimen the KIn values are found to be nearly constant along the crack front in
the inner part of the specimen (-0.25<z/t<0.25), but show slightly decreasing values where the crack front meets the
free surfaces of the specimen (z/t→±0.5), see Fig.10. This behaviour is well known and is related to the laterally
less constrained strains there and results in the surface displacements clearly to be recognised in the corresponding
mesh detail in Fig.9. Certainly the slightly curved and convex crack fronts, which are found in most mode I fatigue
experiments, are correlated to this 3D effect through reduced fatigue crack growth rates for z/t→ ±0.5.

Figure 11: Deformed 3D FE model of the CCT specimen (θ=45 deg.) and crack details with pl. strain BCs in
thickness direction

 (6- and 8-node vol. el., w/∆a=24, ∆a/a=0.083, ∆t/t=0.083, ∆a=∆t=∆h=1mm)
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Figure 12: Norm. SIFs along the crack front of the CCT spec. (θ=45 deg.) with pl. strain BCs in thickness direction

Secondly an inclined crack in a 3D FE model of the CCT specimen (Figs.1a and 11) is analysed. In this case mode
I and mode II loading conditions are generated at the crack tip by the unidirectional tension loading of the specimen
and for the 2D case this problem is also thoroughly investigated and documented (Murakami18). Again we can refer
to these data, by enforcing plane strain BCs to the corresponding 3D model of the specimen (Fig.11). Also for this
in-plane mixed mode case the norm. SIF values KIn(a,z/t) and KIIn(a,z/t) are perfectly const. along the crack front
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through the thickness of the specimen (Fig.12) and the small relative errors of –1.42% and –2.12%, respectively
(see Tab.3), with respect to the 2D plane strain reference solution (Murakami18), confirm again the accuracy of the
FE model and the MVCCI method.

Finally the 3D model of the CCT specimen is analysed without enforcing plane strain boundary conditions. For this
real 3D problem no reference solution is available, but since the thickness of the specimen is rather small (t=12mm,
Tab.1) the 2D reference values should still be applicable. Inside the specimen for -0.4<z/t<0.4 this is confirmed by
Fig.14 and Tab.3, but adjacent to the locations, where the crack front intersects the free surfaces of the specimen
(z/t=±0.5), some minor 3D effects are found. A slight decrease in KIn(a,z/t) is analysed for z/t→±0.5 and a slightly
more pronounced increase in KIIn(a,z/t) is found, which means that the 2D results are no more conservative through
this local 3D effect. But furthermore the 3D analysis shows that also mode III loading conditions are ensued along
the crack front, although the external loading of the CCT-specimen obviously does not contain an out-of-plane
shear component.

Figure 13: Deformed 3D FE model of the CCT specimen (θ=45 deg.) and crack details
(6- and 8-node vol. el., w/∆a=24, ∆a/a=0.083, ∆t/t=0.083, ∆a=∆t=∆h=1mm)
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Figure 14: Norm. SIFs along the crack front of the CCT specimen (θ=45 deg.)
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Here the mode III loading conditions along the crack front are due to a mode coupling effect between the mode II
loading component of the specimen (due to the inclined crack) and mode III. This coupling effect is related to
Poisson’s ratio and the laterally less constrained strains adjacent to the free surfaces of the specimen. Consequently
in Fig.14 KIIIn(a,z/t) vanishes for the mid plane of the specimen (z/t=0) and shows increasing values of opposite
sign for -0.4<z/t<0.4 and higher gradients for z/t→±0.5, where the crack front intersects the free surfaces of the
specimen. The correlated surface displacements can clearly be recognised in the mesh detail of Fig.13 (
displacement magnification factor 30 ). They are induced by the mode II loading component of the crack through
the Poison’s ratio effect. Based on the computational fracture analysis results of the CCT specimen presented and
discussed above it finally can be stated, that, with respect to the fairly coarse mesh and the standard 8 node volume
elements for the FE-model under consideration, the accuracy of the method, as documented in Figs.10, 12 and 14
and Tab.3, is very promising for the analysis of the following 3D mixed mode problems.

FE-model method KIn KIn-ref ∆rel KIIn KIIn-ref ∆rel
3D θθθθ=0 deg

(pl. strain BC)
MVCCI 1.168 1.187 -1.60 % - - -

3D θθθθ=0 deg
(at z/t=0)

MVCCI 1.169 - - - - -

3D θθθθ=45 deg
(pl. strain BC)

MVCCI 0.6032 0.6119 -1.42 % 0.5342 0.5458 -2.12 %

3D θθθθ=45 deg
(at z/t=0)

MVCCI 0,6320 - - 0.5493 - -

Table 3: Normalised SIF results for the CCT specimen and reference values

Single edge notched (SEN) specimen

The second specimen under consideration is the SEN specimen subject to out-of–plane shear loading through
prescribed displacements as shown in Fig.1b. From the axonometric and the top view of the FE model (Fig.15) the
global mode III deformation of the specimen as well as its local deformation at z/t=0.5 can be clearly recognised. In
the inner part of the specimen for -0.3<z/t<0.3 the computational results for KIIIn(a,z/t), see Fig.16, agree very well
with the reference solution (Murakami18). However, for |z/t|>0.3 the reference values KIIIn-ref(a,z/t) decrease
continuously to zero, whereas from the MVCCI method KIIIn(a,z/t)>0 is found, which seems to be in agreement
with the distinct local mode III deformation to be observed at the crack tip for z/t=0.5 in Fig15.

Figure 15: Deformed FE model of the SEN specimen under out-of-plane shear loading
(6- and 8-node vol. el., w/∆a=100, ∆a/a=0.02, ∆t/t=0.02, ∆a=∆t=∆h=1mm)
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Figure 16: Norm. SIFs along the crack front of the SEN specimen under out-of-plane shear loading

Furthermore, in Fig.16 remarkable mode II conditions along the crack front are analysed by the MVCCI method
and the reference solution, although the specimen is subject to pure out-of-plane shear displacements.
Consequently, in the SEN specimen a strong mode coupling effect from mode III to mode II is effective, which
mainly seems to be due to the global deformation behaviour of the specimen under the applied out-of-plane shear
loading. But the strong gradients found for KIIn(a,z/t) for z/t→±0.5 by the MVCCI method seem to be induced by the
mode III loading of the crack front adjacent to the free surfaces of the specimen and the Poisson’s ratio effect.

Quarter circular corner crack (QCCC) specimen

The third specimen type to be investigated here is the QCCC specimen, which differs from the other specimens
through the curved crack front. The specimen is loaded in shear by prescribed displacements, as given in Fig.1c,
such that along the quarter circular crack the loading conditions could be expected to vary continuously from mode
III, for the crack front position Ф/(π/2)=0, to mode II for Ф/(π/2)=1 (Fig.1c). However, the situation is more
complex as can be seen from the results given in Fig.18. For Ф/(π/2)=0 not only mode III is acting due to the
external shear loading of the specimen, but also mode II of about the same magnitude and for Ф/(π/2)=1 not only
mode II is acting due to the shear loading, but also a considerable mode III portion. In Fig.17 this can also be
recognised at the deformed FE model of the QCCC specimen and more pronounced, at the crack surface detail by
the local dislocations of the crack tip meshes at both crack front positions, respectively. This means that at both
crack front edges mode coupling takes place, mode II induced by mode III for Ф/(π/2)→0 and mode III induced by
mode II for Ф/(π/2)→1. Here the mode coupling seems to be caused by a combination of the global deformation
behaviour of the specimen and Poisson´s ratio effects.

On the other hand, the overall behaviour of the MVCCI results is similar as in the previous case, where along the
inner part of the crack front the computational results agree well with the reference solution (Murakami18) and
adjacent to the crack front intersections with the free surfaces of the specimen distinct deviations are found,
respectively. But it should be mentioned here, that all the MVCCI results presented in this paper for the four
different specimens under consideration have recently been strongly confirmed (Buchholz, Chergui, Dhondt42) by
findings from another approach, based on a different modelling technique (Dhondt41) and utilising singular quarter
point volume elements (Dhondt40).
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Figure 17: Deformed FE model of the QCCC specimen under shear loading and crack surface details
(6- and 8-node vol. el., w/∆a=38.2, ∆a/a=0.065, ∆t/(aπ/2)=0.042)
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Figure 18: Norm. SIFs along the crack front of the QCCC specimen under shear loading

Three point bending (3PB) specimen

The last specimen type to be analysed in this investigation is the 3PB specimen as given in Fig.1d. Through the
angled crack of γ=45 deg. primarily mode I and mode III loading conditions are generated along the crack front,
which are given by a reference solution for a specimen of infinite thickness (Pook20), see Fig.20. For our specimen
with a thickness of only t=20mm these values can no more be taken as reference data, but still the courses of
KIn(a,z/t) and KIIn(a,z/t), evaluated by the MVCCI method for this 3D case, show only reasonable deviations from
the plane strain solution. But again a strong mode coupling effect is found between mode III and mode II, due to
the global deformation behaviour of the specimen, resulting in values KIIn(a,z/t) > KIIIn(z/t) adjacent to the crack
front intersections at z/t=±0.5. That these results are not artificial or irrelevant can be seen from the deformation of
the deformed FE model of the 3PB specimen in Fig.19, but more pronounced from the crack tip detail also shown
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in Fig.19. Here the mesh behind the crack tip clearly show in-plane sliding displacements in addition to the opening
and out-of-plane displacements, which are directly due to the three point bending configuration with the angled
crack.

Figure 19: Deformed FE model of the 3PB specimen and crack surface detail
(6- and 8-node vol. el., w/∆a=96, ∆a/a=0.031, ∆a=0.625mm, ∆tmin=0.1mm)
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Figure 20: Norm. SIFs along the crack front of the 3PB specimen

In Fig.21 the strong impact of these effects on the development of further crack growth can be realised. In this case
crack growth is no longer self similar and the crack kinks off from the original notch or crack plane, corresponding
to the locally effective mixed mode ratio of mode I, II and III along the crack front. On a macro level this results in
a crack twisting from its original plane into a new plane, where the crack will only experience mode I loading
conditions with respect to the external loading of the specimen (Fig.21a). This global twisting behaviour of the
originally plane crack is not fully understood, but a computational test performed by Dhondt41 has shown that it can
be modelled by considering only the variable mode I and II loading conditions along the crack front on the basis of
the well known mixed mode I/II criteria (Richard15). On a meso level the crack surface of the twisted crack is not
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smooth, in particular at the beginning of crack growth, but reveals narrow facets forming some angle with the
direction of the overall crack growth (Fig.21b). This seems to be due to the superimposed mode III component
generated by the external loading of the specimen with regard to the angled notch plane and has also been observed
and discussed by Pook43, Hull44, but without considering the remarkable mode II portion of the locally effective
crack front loading conditions. The governing relations concerning the local onset and direction of crack growth
still have to be established for this rather complex case of 3D fracture. So far the 3PB specimen in combination
with increasingly angled notch or crack planes seems to be suitable for this purpose.

a)
b)

Figure 21: Crack development in the SEN specimen with γ  = 45 deg.
a) global twisting behaviour,  b) local facet forming

SUMMARY AND CONCLUSIONS

In conclusion it can be stated that the accuracy and convergence of the Virtual Crack Closure Integral (VCCI)
methods has fully been verified regarding the computational fracture analysis of 2D and 3D crack problems. For
the 2D problems this has been done on the basis of a reference solution for the CCT specimen and in comparison to
other methods. In the 3D cases ( CCT, SEN, QCCC, 3PB ) emphasis was on the analysis of mixed mode problems
involving also local 3D and different mode coupling effects, in particular where a crack front intersects a free
surface. It can be stated that the MVCCI results agree very well with the global behaviour of the reference
solutions, but also remarkable deviations have been found where mode coupling effects seem not to be covered
sufficiently by the solutions available from stress analysis handbooks or the literature. Also experimental evidence
has been presented for the mode coupling effects analysed by the MVCCI method. Furthermore the MVCCI results
have recently been strongly confirmed by findings from another approach, based on a different modelling technique
and utilising singular quarter point volume elements.
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