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ABSTRACT

Phase change is a very complex physical phenomenon that governs a lot of industrial situations. Due to
the inherent difficulties that arise in manufacturing activities they need a numerical treatment using models
to predict the behavior of the different phases involved in the process. Historically, solidification problems
were solved considering only the solution of an energy balance with isothermal phase change including con-
duction and or convection in the material. Nowadays computational fluid dynamics (CFD) is becoming
a well-suited numerical technique to investigate all kind of transport phenomena, especially when coupled
fields are involved. This trend has addressed the research in solidification problems towards the solution
of models combining incompressible Navier-Stokes equations coupled with heat and mass transfer including
phase change. In this work we present a phasewise discontinuous numerical integration method to solve
thermal phase change problems in a fast and accurate way. This methodology was extended to coupled fluid
flow, energy balance and species transport with success. Future trends are oriented towards the application
of this methodology to multicomponents alloy solidification with macrosegregation.

INTRODUCTION

The computational modeling in metallurgical process is becoming more and more attractive during the last
decade mainly because the difficulties to make observations of fluid flow inside molds, the fact that the molds
and the molten metal are opaque, the temperatures are very high and the conditions are highly transient
and risky. Therefore, CFD is usually the most economical and practical way to get information about
what is going on inside a casting device and it is often the only feasible way. Besides these technical and
economical reasons there are some others related with the mathematical complexity to treat industrial scale
solidification problems. Absorption or release of latent heat makes phase change problems nonlinear and
exact solutions are only restricted to few problems involving pure substances in very simple domains. The
inability of these solutions to address multidimensional effects, non-discrete or non-isothermal phase change,
advection dominated situations, has moved the attention towards numerical procedures. In thermal phase
change problems it is very popular to divide the numerical methods in two main methodologies: multiple
region or variable grid methods, where independent conservation equations for each phase are formulated
and they are coupled by boundary conditions at the interface, and single region or fixed grid formulation
that are generally developed from volume-averaged techniques based on classical mixture theory or by a
continuum formulation. They eliminate the need for separate phase conservation equations producing one
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phase form models for the mixture. In the solidification of industrial alloy the several different substances
are generally added to improve the quality of the cast yield. This multicomponent mixture promotes a
phase change that covers a temperature range with a behavior that depends on phase change environment,
composition and thermodynamic descriptions of specific phase transformation. Assuming no phase transition
in the solidification process we focus only on liquid-solid phase change occurring in a region called mushy
zone where both phases are present. This zone is often formed by solid dendrites and interdendritic liquid
that separates the fully solidified and melted regions as a permeable crystalline-like matrix coexisting with
the liquid phase. Dendrites grow naturally due to a nucleation mechanism with an inherent scale of the
order of 10 pgm and with a highly irregular morphology. This fact makes the single domain techniques more
attractive. Early attempts to treat conduction phase change problems using continuum formulation have
shown to be succesful. Bennon and Incropera' have extended its application to advection dominated flows
coupling momentum, heat and species transfer in binary alloy, starting a very interesting scientific discussion
about mathematical modeling of these phenomena. Considerations about multiphase region morphology and
relative phase velocities were addressed in this paper. Others single domain models of binary solidification
have presented in recent years. Voller and Prakash? and Voller et al.>* have used this formulation for
coupling momentum, energy and mass transfer in solidification problems. They have focused their attention
in different ways to model the interface interaction assuming different morphology for solid and liquid
phases. Beckermann and Viskanta® chose to cite volume-averaging literature instead of mixture literature
as a justification for the conservation equations associated with individual phases. Ganesan and Poirier®
have begun a fruitful discussion since they stated that both approaches, volume-averaged and continuum
formulation, were quite different. Prescott et al.” have demonstrated that the two models yield essentially
equivalent results. While continuum formulation is questionable by the way in which phase interactions
source terms appear, also it should be mentioned that volume-averaged approach needs some additional
information to be supplied concerning with the treatment of mathematical operators applied to volume-
averaged quantities. Other explicit goal of continuum formulation is that related to put the conservation
equations in a single-phase (mixture) form adding source terms to arrive to the right balance equations.
This methodology makes continuum formulation very suitable to be solved by standard CFEFD codes and
to clarify the physical meaning of the different terms. On the other hand the volume-averaged approach
generally arrives to a momentum transfer equation expressed in terms of liquid phase velocity instead of
mixture velocity. Moreover, the dominant physical mechanisms governing fluid flow in the mushy zone are
quite different from those belonging to the whole liquid region, so the continuum formulation needs some
criteria for neglecting or retaining terms according to the phase involved. In this work a special numerical
integration method based on temperature model is introduced in order to avoid some of the difficulties
introduced by the discontinuities presented in most of the fixed grid phase change formulations. In this way
it is possible to get the exact jacobian matrix of the Newton scheme retaining the quadratic convergence
rate. This strategy was extended to include the solution of thermally coupled fluid flow with phase change
and it has shown to be very efficient in several tests. Another important remark is about the robustness of
this strategy to solve not only mushy phase change, also almost isothermal phase change problems. This idea
was originally presented as a discontinuous integration scheme by Steven® to solve Poisson equation with
discontinuous coefficients and lately by Crivelli et al.? and Storti'® for isothermal phase change problems.
In recent papers Fachinotti et al.''!? have adopted this technique to solve the conductive and/or convective
heat equation with isothermal or mushy phase change, oriented to continuous casting processes. In these
last two papers the authors have adopted an exact integration scheme only over the phase change terms. We
emphasize that the central contribution of this paper is around the phasewise numerical integration to solve
incompressible Navier-Stokes equations augmented by mushy or almost isothermal phase change equation
in a monolithic way. The layout of this paper is as follow: the second section introduces the mathematical
model used for the solidification process. The third section deals with the numerical discretization of the
problem and the following shows particularly details about the phasewise numerical integration method.
Finally numerical results and conclusions are presented.
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MATHEMATICAL MODELING

The conservation equations have been derived on the basis of a continuum model for binary alloy.® In the
continuum model classical mixture theory is used to develop the governing equations for the entire domain.
The unknown variables of these single-phase models are usually the mixture properties.

Conservation equations. Taking the same assumptions as in the paper of Bennon and Incropera' we
arrive to the following set of conservation equations:

Mass conservation

o+ V() =0 (1)

Momentum conservation

p(%—lt1 +u-Vu)—V-0=—pgApr(T —T) — pgABc(c — coo) — ,ulejl(u —ug)
o = —pl + 2ue(n) , c(u) = F(Vu+ (V') , = fops + fyu (2)

having considered equal density values for both solid and liquid phases and the following assumptions:

1. there are only two phases, liquid and solid,

2. constant phase densities,

3. solid matrix is free of internal stress ,

4. solid matrix translates at a prescribed velocity ug,

5. viscous stress from local density gradients are negligible V(-[%) =0,

6. the fluid is assumed to behave as Newtonian with p as the dynamic viscosity.

Even though the turbulence plays a central role in the definition of transport properties here we neglects
its influence assuming a laminar viscosity for the liquid phase y; The material solidification that takes place
within the mushy zone produces a decrement of the mixture velocity. This effect may be modeled assuming
an augmented viscosity for the solid phase or treating the mushy region as a porous medium. While in
the former case the solid phase viscosity is enlarged by a factor fmushy relative to the liquid viscosity, in
the latter one the morphology of the mushy region is characterized by a permeability tensor K, obtained
by experimental evidences. FEven though the incompressibility hypothesis does not allow density variations,
these may be incorporated as buoyancy forces in the momentum equations. In this work the Boussinesq
linear theory is used to account for the contraction and the expansion of the material due to local thermal
and solutal gradients. AfBr and Afc represent the thermal and solutal volumetric expansion coefficients
and T, co represent the temperature and the solutal concentration reference values used for the constant
density computation.
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FEnergy conservation

BT 4+ Vo(uT) = V-(EVT) = E(& fi + V-(usfi)) (3)
Kk = fsks + fiki (4)

where, for simplicity, we have assumed that both phases have the same density and specific heat (ps =
pr = p,Cp. = Cp, = Cp) with constant values. Also we have used the assumption of saturated systems
(fs + f1 = 1) with s representing the mixture conductivity.

Species conservation

%C +V-(ue;) = V-(fiD Ve, + fsDsVes) + V-((¢ — c)uy) (5)

Closure equations. In order to complete the mathematical model it is necesary to introduce the closure
equations.

Thermodynamic equilibrium at interface

First, we need some relationships between temperature and concentration given by experimental evi-
dences. In binary systems it is very common to use a thermodynamic equilibrium diagram that allows to
relate solid and liquid solute concentrations with temperature as:

= CZ(T) = Cs = CS(T) = kpcl ) Ty =Tm+m c (6)

c
4 felkp—1)

where k£, is the partition coefficient, m; is the liquidus line slope and c is the solute concentration in the
binary mixture. On the other hand it is necessary to introduce some law for the solid fraction in terms of
temperature and concentrations. While lever rule is preferred in those situations with high back diffusion
in the solid phase (typical of iron carbon systems), Scheil law may be used in the other extreme situation,
where the assumption is no solid phase diffusion with perfect mixing in the liquid phase. In the former case
the expression for the liquid fraction is as follows:

fi =l-tlergt=1-1; (7)

Mushy region treatment

For solving incompressible Navier-Stokes applied to solidification problems, it is necessary to include
some numerical strategy to treat the influence of material solidification over the velocity field. Experimental
evidences show that the flow in the vicinity of the phase change region is induced to adopt the solid
phase velocity. To do this, several authors prefer to choose a very large viscosity value for the solid phase
(augmented viscosity) while others prefer to restrict the velocity field assuming that this region is similar to
a porous medium, characterized by a permeability tensor. While in the former the solid viscosity is defined
as flg = fmushy 11, in the later the definition of the permeability tensor follows the Karman-Kozeny law.
In this paper we have adopted an isotropic tensor characterized by
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f?)
K, =57l : Dy = 180/d2,,., (8)
where (dgeng ~ 0.01m) represents the dendritic secondary arm spacing.

NUMERICAL DISCRETIZATION

The incompressible Navier-Stokes equations coupled with energy and species conservation equations with
mushy phase change are spatially discretized by finite elements. As it is very well known the incompressibility
and advection terms play a crucial role in finding the numerical solution to the mathematical model presented
in the above section. The former is responsible for numerical instabilities in the pressure field producing
checkerboard modes in the solution that may be avoided using an adequate pair of interpolation functions
for velocities and pressure. Historically the CFD scientific community has adopted mixed elements to
solve incompressible Navier-Stokes equations at low Reynolds number, needing the usage of some numerical
stabilization on the velocity field to achieve reasonable results when using Galerkin method at high Reynolds
numbers. During the last decade there is a strong tendency to use equal order interpolation functions with
some stabilization in order to circumvent both numerical instabilities, incompressibility modes and advection
dominated flows. Among the large amount of stabilized equal order numerical schemes the SUPG-PSPG!?
seems to be very effective, simple and robust and due to these reasons it was adopted for this work. For
the energy and species balances we have chosen an SUPG finite element method.'* In the next sections we
describe in more details an efficient and accurate method to solve not only single-phase change problems
but also coupled solidification problems.

PHASEWISE NUMERICAL INTEGRATION

As we have mentioned in the introduction, in this paper we present a fast and accurate methodology to
solve mushy phase change problems based on temperature model. This technique was especially designed to
treat non-isothermal problems but also it has shown to be very robust to solve a broad range of situations
including very thin mushy zone problems. This strategy is classified as a fixed grid method but in some sense
it works like a variable grid method adding the contribution of each phase in a separate way. Here we extend
this technique using a numerical quadrature integration method well suited to most of the finite element codes
and this discontinuous integration is applied to the coupled momentum, heat and mass transfer equations.
So, it is possible to use the very attractive features of this technique to solve coupled field problems where
material properties could have sharp variations inside those element with more than one phase. In the next
section we present details about this strategy applied to thermal problems with mushy phase change. The
extension of this methodology to solve coupled incompressible Navier-Stokes equations with thermal phase
change, typical model of a lot of industrial casting processes is straightforward.

The thermal phase change case with conduction and convection. The application of the phasewise
discontinuous integration method for the solution of thermal phase change problems consists of dividing the
element integration domain in several element subdomains according to the distribution of phases within
the element. In this work we have restricted the methodology only to triangular type elements and the
extension to tetrahedral elements is straightforward. In each iteration the nodal solid fraction of each
element is computed and the corresponding case is detected. Figure 1 shows one example for each different
situation taken into account in this development. In this figure the original triangular element of nodes
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A, B, C is analyzed according to the number of interfaces crossing through the element domain. The notation
[[JK] represents the number of interface-edge intersections at each edge, for example [120] represents one
intersection at the first edge, two at the second and no intersection at the third edge. Two different interfaces
cannot intersect an edge at the same point. So, before computing the contribution of each element a special
routine identifies the corresponding case according to the nodal solid fraction. To do this it is necessary to
compute the intersection coordinates at each triangle edge with the solidus and liquidus line coming from
the thermodynamic equilibrium diagram. This is equivalent to map the triangle to this diagram. Then the
intersections arise from equalizing the liquidus or solidus line with the edge line.

The following step comnsists of dividing the original triangular domain in several one phase triangular
subdomains. At this stage each quadrangle is divided in two triangles and each pentagon is divided in
three triangles, so only triangular regions are involved in the numerical integration task. Once the case is
identified, the contribution of the original element to the jacobian matrix and the residual vector is computed
as the sum of several contributions, each one coming from single-phase triangular subdomains. Then the
thermal residual computation is equivalent to:

Rr =Y72¢ 252/1 an/(T,c) "VT( - (88_71; tu-VI)+V- (ﬁVT)JF
A+, V) ) a0y (9)

with Ne the number of elements in the whole mesh, Ne' the number of triangular subdomains inside each
original element, Wy the perturbed weight function of the thermal equation according to SUPG formulation*
and Q. the triangular subdomain. In order to adapt this computation to standard finite element codes, we
need to use only information involving nodes of each triangular subdomain (1,2,...) and finally add their
contributions to the nodes of the original triangular element (A, B,C') (see figure 1). To do this we define
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a variable change between the original coordinates and those belonging to each triangular subdomain. Let
x = |x,y| be a given point interior to the original element and belonging to only one of the subdomains
shown in figure 1. This point may be placed in terms of the original shape functions w or in terms of those
corresponding to the subdomain just mentioned w*. So,

YA . y
y —wiyi=w | yp | =wiyf =w* |
Yo Y3
WA w1
W= (wg) wh = (wg) (10)
We w3
1 1 1 1 1 1
Aw=A'w* | A= |z4 7 20 A= | 21 z9 73 (11)
YA YB Yo o Y2 Y3

where x4 p ¢ and 12,3 are the spatial coordinates of both, the original triangle and the triangular subdomain
(see figure 1). The jacobian matrix is computed as the derivative of the each nodal residue (4.1) respect
to each nodal temperature using also the phasewise strategy and the transformations (4.1) and (4.2) above
presented.

NUMERICAL EXAMPLES

In order to check the efficiency and accuracy of the present method we have done several tests with
sucess. In this work we include only some of them.

Steady 2-D axisymmetric mushy phase change problem with convection (Continuous Casting
Problem). This example is devoted to the numerical simulation of a round billet obtained by continuous
casting processing. The problem is described in the upper left plot of figure 2. The liquid metal is poured into
an open mould through a nozzle. This water-cooled mould extracts enough heat from the liquid, solidifying
an external thin shell, which is capable of containing the melt inside. Figure 2 shows on the upper left the
main geometrical parameters, at the primary cooling zone the molten metal is poured through a nozzle of
re radius and suddenly the flow is expanded filling the whole mould diameter D,,. At the wall the strand
is in contact with a cooper mould cooled by counterflow water, whose length is L. Several water sprays,
followed by rolling until the complete section solidifies represent the secondary cooling zone. This process is
considered stationary. The shading area corresponds to the simulated length (Ls). Following to the right we
have included the main boundary conditions of this problem, where at the inlet nozzle temperature is fixed
to T, = 1530.°C' and at the meniscus, centerline and at the outlet the normal derivative of temperature
is negligible. At the mould wall we have assumed a heat flow removal given by a heat flux law similar to
Savage-Pritchard

qs[W/m?| = A—B,/& +Cz+d2* (12)
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with z[m] the axial coordinate and us = Uy = 0.03[m/s] the casting velocity. We have used the following
constant values: A = 2.1974 x 10, C' = 3.3737 x 10%, B = 5.6467 x 10°, D = 0.16054 x 10°, adjusted by
experimental measurements to take into account the air gap formation in this zone. At the water sprays a
convective boundary condition is imposed, with a film coefficient hgprqy and a water external temperature
of Tamb-

Particularly, the material consists of a 0.3 wt% carbon content steel, with the following properties:
p = 7200kg/m®, Kk; = ks = 34W/(m K), C, = 680J/(kg K), L = 272,000J /kg, Ts = 1455°C', T; = 1493°C,
T = 1537°C, hgpray = 500W/(m? K) and Tymp = 40°C' The following geometrical data were used: Uy, =
0.8895m/s, Dy, = 2 x 0.106m, rs = 0.02m, Ly, = 0.6m and Ls = 1.5m.

Thermal conductivity, density and heat capacity are assumed constant for the current application. The
domain of analysis is extended from the top until a small distance below the mould, as it is shown by the
shading area in figure 2.

Let us remark that the complete solidification of the billet is expected to occur at a distance greater than
10 m from the bottom of the mould. We use a structured mesh of 4536 triangles, 2368 nodes. It is denser
at the contour, especially next to the mould. The computed temperature field using the SUPG formulation
is depicted as isocurves in lower left plot of figure 2 . Figure 2 plots at the upper right part the axial
distribution of temperature at external radius, just lying on the mould wall and the water sprays. Maximum
differences of 5 °C' between this techniques and an standard method!'® were found. Lower right plot of figure
2 shows the convergence rate for the standard code (named old) and the new methodology presented in this
paper. In less than 10 iterations the residual has decreased more than 10 orders of magnitude while the old
version demands more than 100 iterations. These results are in very good agreement with those obtained
by Fachinotti et.al'’ using an exact integration scheme. For solving this problem the fixed velocity field
was obtained previously by solving the incompressible Navier-Stokes equations with fixed temperature and
concentration. The boundary conditions for the inlet and outlet velocities combined with the casting speed
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u; = Uy satisfied the mass balance. This velocity field is kept frozen during the temperature computation.

Solidification in an ingot cast mold by Navier-Stokes equations coupled with mushy phase
change model. This test problem, proposed by Voller & Prakash,? consists of freezing an initially liquid
material in a thermal square cavity of size (1 x 1) under natural convection. Initially the cavity is completely
filled with liquid material at Top = T = 0.5 > T; = 0.1 and the temperature of the left wall is decreased to
T, = —0.5 < Ty = —0.1, keeping insulated the top and bottom cavity walls. So, a phase change is set up.
While the solidus line shows an almost planar shape the deformation of the liquidus line is more pronounced
due to convective effects. The thermal gradient promotes the establishment of buoyancy forces in the gravity
direction and this phenomenon induces more convection that enhances the deformation, especially in the
lower wall making the bulge at the bottom more acute. This example was solved by Voller et al.?* on a set
of several grids from 10 x 10 to 40 x 40 uniform meshes with a fixed time step of At = 10 seconds until to a
final time of ¢ = 1000 seconds. In that paper the authors reported that in each time step almost 50 iterations
were used to solve the discretized equations without under relaxation. They have used a SIMPLFE algorithm
outlined by Patankar'® implemented on Phoenics code. The main parameters were taken from the reference.?
The performance of our methodology was successful, with a very fast convergence rate of about 5 iterations
per time step using linesearching and backtracking. We have done several simulations using different grid
sizes and time steps in order to determine the influence of the discretization over the results. Figure 3
shows the time evolution of the solid and liquid interfaces at four different times, ¢ = 100s, 250s, 500s and
t = 1000s using in this particular case At = 10 and h = 1/40. These results are qualitatively in a good
agreement with those presented by Voller et.al.* More details about the physical meaning of these results
may be found in%.* Here, we are only interested in the comparison of both results with emphasis on accuracy
and convergence rate.

Solidification of a binary alloy in a static cast mold. The last problem included in this paper was
also proposed by Voller et al. in 1989. It consists of the solidification of a binary alloy in a static cast mold
where the main goal is the prediction of the final macrosegregation pattern. The definition of this problem is
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similar to that of the previous example but here we allow the solute concentration to change in time during

the solidification. According to the Voller paper here we have used a columnar dendritic representation of the
mushy zone (model B in that paper). Due to thermal natural convection it first appears a counterclockwise
motion that interacts with the solidification front deforming its shape. The thermodynamic equilibrium
forces the solute to reject from solid phase to liquid phase and the fluid flow transport them to other zones
in the liquid domain. After approximately 250 seconds a secondary vortex at the bottom of the cavity, close
to the mushy-liquid interface, is initiated producing a later change in the flow motion. This fact becomes
evident at 500 seconds where the flow is completely clockwise. This effect was predicted in the original
Voller paper and it was reproduced later by several authors. Physically at the initial stage the thermal
buoyancy forces are the main cause of motion being dominant over the solutal ones. After 250 seconds
the solute rejection at the interface taken into account by this model produces solutal buoyancy forces that
counterbalance and overimpose the thermal one. This example allows the code testing in situations where
double diffusion plays an important role and the mushy zone acts like a porous media. Figure 4 plots the
macrosegregation pattern at t=3000 seconds being this result in good agreement with Voller one.?

CONCLUSIONS

This paper has presented an numerical integration method based on a phasewise criterion to solve
solidification problems coupled with fluid flow. Its efficiency has been proved through several examples.
We wish to remark that the discontinuity in the model coefficients is not only a drawback for the heat
equation, also for the flow motion. So, the results included in this work confirm the success of this strategy
for solidification models that incorporate also the fluid flow. This strategy promises to be an interesting
possibility to account for coupled field with mushy or nearly isothermal phase change as in the case of
thermomechanical interaction between the mould and the solidified material or in the macrosegregation
analysis of casting process.
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