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ABSTRACT

Fourier analysis techniques are applied to the stabilized �nite element method recently proposed by Codina and Blasco

for the approximation of the incompressible Navier-Stokes equations, here denoted by SPGP method (Stabilization

by Pressure Gradient Projection). The analysis is motivated by spurious waves that pollute the computed pressure in

start-up ows simulation. An example of this spurious phenomenon is reported. It is shown that Fourier techniques

can predict the numerical behavior of stabilized methods with remarkable accuracy, even though the original Navier-

Stokes setting must be signi�cantly simpli�ed to apply them. In the steady case good estimates for the stabilization

parameters are obtained. In the transient case spurious long waves are shown to be persistent when the element

Reynolds number is large and the Courant number is small. This can be avoided by treating the pressure gradient

projection implicitly, though with additional computing e�ort. Standard extrapolation variants are unfortunately

unstable. Comparisons to Galerkin-Least-Squares method and Chorin's projection method are also addressed.

INTRODUCTION

Much e�ort has been devoted in the last years to the development of �nite element methods for incompressible ows

allowing for identical interpolation for velocity and pressure unknowns to be used. It is well known that the usual

Galerkin formulation violates the Babu�ska-Brezzi (BB) stability condition for such equal-order approximations, so

that stabilization is needed. Several stabilized formulations have been developed over the years. Some of them,

such as the popular GLS method,10,11 explicitly perturb the Galerkin formulation by mesh dependent terms so as to

improve stability. In other formulations, the stabilization terms are implicit within a fractional step algorithm. This

is the case, for example, of projection methods based on the early ideas of Chorin.3

The equal-order method analysed in this article combines, in some sense, the two stabilization procedures mentioned

above. An explicit stabilization term is incorporated that, in turn, mimics the e�ect of fractional step methods. To

our knowledge, the �rst precedent of this method was proposed by Habashi et al12 as the following modi�cation of

the zero-divergence constraint
div u� �r2

p = ��div g

where g = rp and � is a small parameter. Though at the continuous level the terms containing � cancel exactly,

upon �nite element discretization cancellation no longer occurs and these terms in fact stabilize the formulation.

Equivalent terms in the �nite element equations were later identi�ed by Zienkiewicz and Codina19 as explaining the



good behavior of an equal-order fractional step method. Finally, Codina and Blasco6{8 formulated and analyzed

theoretically an equal-order method based on these ideas. From the convergence analysis an elementwise estimate

� � h
2 (for h small) was derived, and optimal convergence rates obtained. We will refer to this method hereafter as

SPGP (Stabilized by Pressure Gradient Projection). Recent work by Codina5 has shown a link between this method

and the Sub-Grid Scales method.13

The main drawback of the SPGP method is the introduction of the projection of the pressure gradient as a new

unknown, thus increasing substantially the size of the �nal discrete system. However, iterative strategies may be

devised to make the cost similar to that of other stabilized methods. On the other hand, when the transient Navier-

Stokes equations are discretized using a �nite di�erence scheme, the projection of the pressure gradient can be treated

explicitly. In this case, the increase of cost is very low.

Many numerical tests have recently been performed to the SPGP method, involving steady and transient, two- and

three-dimensional ows,2,15 with quite good results. A turbulent code based on the SPGP method also exhibits

good behavior.16 Most of these tests deal with the pressure gradient projection explicitly. Comparing the SPGP and

GLS methods, it was found that the former leads to better conditioning of the system matrix and smoother temporal

behavior of the pressure �eld in transients. As drawback, spurious long-wave pressure transients in strongly accelerated

ows (such as start-up ows) were detected. One of these cases is reported below. These spurious transients do not

a�ect the velocity �eld, but render the pressure �eld useless until their extinction. Fortunately, no such phenomenon

occurs in smooth ows (such as vortex shedding ows).

Summarizing, its overall performance makes the SPGP method attractive for equal-order �nite element treatment of

incompressible ows, mainly transient ones, and further work is needed to understand and improve its properties.

In this article Fourier analysis techniques are applied to the SPGP method and some of its variants. Several sim-

pli�cations are introduced to render this analysis feasible: First, a one-dimensional model problem that mimics the

Navier-Stokes equations is introduced and discretized. Second, the domain is assumed to be (�1;+1), so that all

nodes are equivalent. Finally, the convective nonlinear term is linearized. From the Fourier analysis of the discrete

equations appropriate choices of stabilization coeÆcients are obtained. In the transient case stability is discussed.

Moreover, a spurious oscillatory behavior is identi�ed that explains 2D numerical results for start-up ow around a

cylinder at Reynolds 3000. In particular, it is shown that the explicit treatment of the pressure-gradient projection

activates this spurious behaviour and that a high-Reynolds stabilization coeÆcient improves the results. Compar-

isons to GLS and Chorin's methods are also addressed. Numerical results of the 1D model problem in a bounded

domain without linearizing the convective term show that the conclusions from Fourier analysis apply in more realistic

situations.

DESCRIPTION OF THE NUMERICAL METHOD

The governing equations correspond to an incompressible, constant viscosity ow, that is

�
@u

@t
+ �(u � r)u� div (2�Du) +rp = f; div u = 0 (1)

where u is the velocity �eld, � the density, � the dynamic viscosity,D the symmetric gradient operator, i.e., (Du)ij =

(ui;j+uj;i)=2, p the pressure, and f the volumetric forces. These equations are assumed to hold in a bounded domain


, with initial solenoidal conditions for u in 
, imposed velocities on the Dirichlet boundary �D, and imposed tractions

on the Neumann boundary �N (�D [ �N = @
), �D \ �N = ;).

u(x; 0) = u0(x) 8 x 2 
; u(x; t) = g(x; t) 8 x 2 �D; (�p1+ 2�Du) � n = F 8 x 2 �N (2)

Let now Th be a �nite element partition of 
, and let Vh � H
1(
)nsd be an associated �nite element space to

approximate the velocity �eld, where nsd is the number of space dimensions. We assume that Vh consists of piecewise

linear, bilinear or trilinear vector �elds. We de�ne, as usual,

VhD = fvh 2 Vh; vh = g on �Dg; Vh0 = fvh 2 Vh; vh = 0 on �Dg (3)



and let Qh � L
2(
) be a �nite element space for the pressure. Of most interest to us is the case when the interpolants

for the pressure coincide with those used for each component of the velocity �eld. Finally, let Gh be another vector

�nite element space, that we take in general coincident with Vh (no boundary conditions imposed). The SPGP method

considered thus reads:7 Find (unh; p
n
h; g

n
h) 2 VhD �Qh �Gh such that 

�
u
n
h � u

n�1
h

�t
+ �(u�h � r)unh; vh

!
+ a(unh; vh)� (pnh; div vh)� (f; vh)�

Z
�N

F � vh d�+

+
X

K 2Th

 
�
u
n
h � u

n�1
h

�t
+ �(u�h � r)unh +rpnh � f;

�u

�
[�(u�h � r)vh]

!
K

= 0 (4)

(qh; div u
n
h) +

X
K 2Th

�
rpnh � g

n�1+�
h ;

�p

�
rqh

�
K

= 0 (5)

(�rpnh + g
n
h ; �h) = 0 (6)

for all (vh; qh; �h) 2 Vh0�Qh�Gh. In (4), a(�; �) is the viscous bilinear form, u�h can be taken as unh or un�1h , the

latter corresponding to the standard linearized treatment of convection, and �u is the SUPG intrinsic time

�u =
�(ReK)hK

2 j un�1 j
; ReK =

� j un�1 j hK
12�

; �(ReK) = min(1;ReK) (7)

and �p is a second intrinsic time. In Ref.7 the value �h2K=(12�), di�ering just by a factor of two from the low-Reynolds

formula for �u is adopted. In practice this value is slightly too large for high-Reynolds computations, a better choice

being �p = �u. Simpler formulae for the stabilization parameters were proposed by Codina.4 Notice that the previous

formulation is of the backward Euler kind, except for the appearance of g
n�1+�

h
if � < 1. For the algorithmic cost to

be competitive, the choice � = 0 is mandatory. The matrix formulation of (4)-(6) is

1

�t
MU (U

n � U
n�1) + (A+K)Un � ~BP n = F (8)

B
T
U
n +

1

�
LP

n �
1

�
D

T
G
n�1+� = 0 (9)

�CPn +MG
n = 0 (10)

where Un, P n and G
n are the vectors containing the unknowns, MU , A and K are the matrices arising from the

temporal derivative, convective and viscous terms, respectively (including the stabilization terms), and

BIJ =

Z



M
J
div N

I
d
; ~BIJ = BIJ �

Z



�urMJ � (unh � r)N I
d
; (11)

DIJ =

Z



�prMJ �N I
d
; CIJ =

Z



rMJ �N I
d
; (12)

LIJ =

Z



�prMJ � rM I
d
; MIJ =

Z



M
J
M

I
d
 (13)

M
I and N I being, respectively, the I-th basis function for pressure and velocity (N I is, thus, vectorial). The mass

matrixM can be used in consistent form or lumped form.

FOURIER ANALYSIS OF THE STEADY STATE

To perform the Fourier analysis, a model 1D problem is introduced that retains the main features of the Navier-Stokes

equations. We keep the notation u and p for the unknowns to make the analogy evident. The proposed equations are

�
@u

@t
+ �u

@u

@x
� 2�

@
2
u

@x2
+
@p

@x
= f;

@u

@x
= 0 (14)



Let us omit the SUPG terms (�u = 0) and linearize the problem replacing the nonlinear term �u
@u
@x

by �c@u
@x

. The

SPGP method, with M lumped and assuming f continuous and piecewise linear, leads to the following stencil

�

6�t

�
U
n
i�1 + 4Un

i + U
n
i+1 � U

n�1
i�1 � 4Un�1

i � U
n�1
i+1

�
+

+�c
U
n
i+1 � U

n
i�1

2h
� 2�

U
n
i+1 � 2Un

i + U
n
i�1

h2
+
P
n
i+1 � P

n
i�1

2h
=

F
n
i�1 + 4F n

i + F
n
i+1

6
(15)

U
n
i+1 � U

n
i�1

2h
�
�p

�

P
n
i+1 � 2P n

i + P
n
i�1

h2
= �

�p

�

P
n�1+�
i+2 � 2P

n�1+�
i + P

n�1+�
i�2

4h2
(16)

where h is the mesh size and capital letters denote nodal values of the unknowns. If �u > 0, Eq. 15 is modi�ed adding

��u

(
�c

�t

U
n
i+1 � U

n
i�1 + U

n�1
i+1 � U

n�1
i�1

2h
+ �c

2
U
n
i+1 � 2Un

i + U
n
i�1

h2
+ c

P
n
i+1 � 2P n

i + P
n
i�1

h2

)

to the left-hand side, and ��uc
Fi+1�Fi�1

2h
to the right-hand side.

The Fourier analysis of the steady state, which is restricted to Stokes ow (� = 0), roughly follows the lines of Ref.14

Let us consider the following stencil,

�(2�+ �)
Ui+1 � 2Ui + Ui�1

h2
+
Pi+1 � Pi�1

2h
=

Fi�1 + Fi + Fi+1

6
(17)

Ui+1 � Ui�1

2h
� �

Pi+1 � 2Pi + Pi�1

h2
+ 

Pi+2 � 2Pi + Pi�2

4h2
= �Æ

Fi+1 � Fi�1

2h
(18)

This stencil, with suitable values for the constants �, �,  and Æ, corresponds to the steady state formulation of the

SPGP method (Un
i = U

n�1
i = Ui, P

n
i = P

n�1
i = Pi) . It also allows for the comparison of the SPGP method

(Æ = 0, � = ) with the GLS method (Æ = �,  = 0). Let now

�
0 = 2�+ �; ~� =

��
0

h2
; ~ =

�
0

h2
; ~Æ =

Æ�
0

h2
;

and de�ning V = U�0

h2
; Gi+ 1

2

=
Pi+1�Pi

h
the stencil becomes

�(Vi+1 � 2Vi + Vi�1) +
1

2
(Gi+ 1

2

+Gi� 1

2

) =
Fi+1 + 4Fi + Fi�1

6
(19)

Vi+1 � Vi�1

2
� ~�(Gi+ 1

2

�Gi� 1

2

) +
~

4

�
Gi+ 3

2

+Gi+ 1

2

�Gi� 1

2

�Gi� 3

2

�
= �

~Æ

2
(Fi+1 � Fi�1) (20)

Assuming now that i runs from �1 to +1 and inserting Fourier modes

Vi ! V̂ e
�Iikh

; Gi ! Ĝe
�Iikh

; Fi ! F̂ e
�Iikh

;

with k the Fourier variable and I =
p
�1, and denoting � = kh=2, the following system is obtained

4 sin2 � V̂ + cos � Ĝ =

�
1�

2

3
sin2 �

�
F̂ ; cos � V̂ +

�
~ cos2 � � ~�

�
Ĝ = �~Æ cos � F̂ (21)

Symbolic manipulation18 was used to get V̂ and Ĝ. Its expansions around � = 0 read

SV :=
V̂

F̂
= ~�� ~Æ � ~ +

�
�4~�2 �

2

3
~(�1 + 6~Æ + 6~) + ~�

�
1

3
+ 4~Æ + 8~

��
�
2 +O(�4) (22)

SG :=
Ĝ

F̂
= 1 +

�
�
1

6
+ 4(�~�+ ~Æ + ~)

�
�
2 +O(�4) (23)



Notice that the exact dependences (if � 6= 0) are V̂ = 0, Ĝ = F̂ , or, in other terms, SV = 0 and SG = 1. For the

scheme to coincide with these values at � ! 0 the only condition is ~� � ~ � ~Æ = 0. Both the GLS and the SPGP

methods satisfy this condition. Let us impose thus ~ = ~�� ~Æ. In this case,

SV =

�
~��

2

3
~Æ

�
�
2 +O(�4); SG = 1�

�
2

6
+O(�4)

From this we learn, on the one hand, that asymptotic accuracy (as kh! 0) cannot be improved beyond second order

(which is the expected spatial accuracy), as SG is second order accurate for any choice of ~� and ~Æ. On the other hand,

accuracy in the velocity could be improved by choosing a linear combination of the GLS and SPGP methods, namely

~� = 2
3
~Æ (implying ~ = �1

3
~Æ). The gain is however not signi�cant, since in general accuracy in velocity is much higher

than in pressure.

The selection of ~� and ~Æ must be made examining the accuracy when kh is far away from zero, as the behavior in the

vicinity of zero does not depend on these parameters. We have focused on two cases: GLS (~� = r, ~Æ = r, ~ = 0) and

SPGP (~� = r, ~ = r, ~Æ = 0). Comparison is made for r = 10�1, 10�2 and 10�3. Plots of SG vs. � can be seen in

Figs. 1 and 2.
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Figure 1: SG vs. � for GLS method

with r = 10�1, 10�2 and 10�3.
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Figure 2: SG vs. � for SPGP
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Figure 3: Problem geometry and

de�nition of a, b and L.

By direct inspection of Figs. 1 and 2 it becomes clear that, for both the SPGP and GLS methods, r = 10�2 is the

best choice. For r = 10�1 SG is signi�cantly lower than the exact value one for � as low as 0:75. For r = 10�3

SG exhibits a peak near the mesh mode (� = �
2
), evidencing that the Galerkin formulation is not properly stabilized.

From the observation that r (and thus ~�) must roughly be equal to 10�2, since
�p
�
= � = ~�h2

�0
it follows that a good

choice for
�p
�
is

�p
�
= h2

100�0
for both methods, which is consistent with usual adopted formulae for GLS.11

START-UP FLOW: SPURIOUS PRESSURE WAVE

To motivate the von Neumann's analysis of the next section, we briey report here on a numerical test. The problem

consists of the start-up ow around a circular cylinder at Re = 3000, de�ned as Re = �U
1
D=�, U

1
being

the unperturbed ow velocity and D the cylinder's diameter. The domain is 
 = (�5; 15) � (�5; 5) n C , with

C the cylinder of unit diameter centered at the origin. This problem has been studied both experimentally1 and

numerically.17 Starting from rest, U
1

is impulsively modi�ed to U
1

= 1, with D = 1, � = 3000 and � = 1. The

ow is characterized by the formation and growth of two main symmetric vortices downstream of the cylinder, with

some secondary vortices also appearing (see Fig. 3). The simulation time is 3 units, with a time step of �t = 0:001.

Numerical parameters were: �u according to (7), �p = �u, � = 0. The mesh consisted of 11518 P1 triangles, re�ned

near the cylinder. The main fact is that the velocity �eld is accurately predicted. In Fig. 4 a quantitative comparison

of the time evolution of a, b and L with experiment is shown.

The behavior of the pressure is quite surprising. A typical evolution of the pressure at a point in the domain is shown

in Fig. 5. A spurious oscillation is observed, roughly a sinusoidal function with decaying amplitude. This is associated

to a long-wavelength, quasi-1D wave, that can be seen in Fig. 6 at time t = 0:4. This wave persists for approximately

1 time unit and is superposed to the correct pressure �eld, though it does not a�ect the velocity �eld since its gradient

is small. The decay time is empirically seen to be almost independent of �t. This numerical artifact motivated the

von Neumann analysis reported in the next section. It should be kept in mind, however, that for less severe transients
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Figure 6: Pressure �eld at time t = 0:4. Notice the spurious wave, with wavelength of the order of the domain size.

no spurious wave appears. Vortex shedding at Re = 100, 200 and 400, e.g., is accurately simulated.

VON NEUMANN'S ANALYSIS OF THE TRANSIENT CASE

Stability analysis

The stability of the SPGP method has been addressed by Codina and Blasco in7 for the Navier-Stokes problem using

variational methods. We address here the stability analysis of the SPGP method for the model 1D problem (14) using

von Neumann's technique. The advantage of this simpli�ed setting (linear, 1D, domain = (�1;+1)) is that it is

possible to scrutinize the algorithm's temporal behavior, but of course the assumption that the Navier-Stokes problem

will behave alike is not rigorous. However, in next paragraphs we show some evidence in this direction.

Consider the stencil (15)-(16). It corresponds to the SPGP method as analyzed in Ref.7 After the substitution

U
n
i ! Ar

n
e
�Iikh

; P
n
i ! Br

n
e
�Iikh (r is now the ampli�cation factor) we obtain a homogeneous linear

system of two algebraic equations for the two unknowns A and B. To avoid trivial solutions the determinant of

the system must vanish. This condition provides a relation between r and the six free parameters �t; h; c; �; �; k,

from which the two eigenvalues (denoted r1 and r2) were obtained by symbolic manipulation using Mathematica .18

The number of parameters can be reduced to three, the mesh Reynolds number, Reh = �ch=�, the CFL number,

C = c�t=h and the nondimensional wavenumber � = kh.

By inspection of Mathematica's plots, and as predicted in Ref.,7 the SPGP method is stable (jrj < 1) both for

� = 0 and � = 1. Graphs of jrj := maxfjr1j; jr2jg for the case � = 0 are shown in Fig. 7 (a) and (b). Part (a)

corresponds to Reh = 0:01, and three values of C are considered: 0:05, 0:5 and 5. The same is done in part (b)

for Reh = 100. Due to the incompressibility constraint (in 1D), both eigenvalues r1 and r2 are zero in the exact

problem for any k > 0. This means that waves of �nite wavelength are instantaneously damped and only uniform

(rigid) motions are allowed. However, jrj is not zero in the discrete problem as shown in the graphs. In general the

eigenvalues are complex, so that the uniform motion is reached after a spurious oscillatory transient in which decaying

waves are observed. For low Reh and waves with kh � 2 the amplitude is multiplied by � 0:1 each time step. Long

waves kh � 0 become more persistent as CFL decreases. This spurious behavior aggravates in the high-Reh regime.

Both long and short waves become very persistent (jrj � 1) for small CFL. In Fig. 8 the typical decay time � of long
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Figure 7: Ampli�cation factor of the SPGP method for the case

� = 0. Two values of Reh are considered (0:01 and 100), and

three values of the CFL number (C = 0:05, 0:5, 5). Treatment

of the momentum equation: (a) and (b) Galerkin, (c) and (d)

SUPG.

0 20 40 60 80 100

5

10

50

100

500

Figure 8: Long waves (k = 0). �

�t
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method, � = 0, no upwinding.

waves relative to �t is shown as a function of CFL (for such long waves jrj is independent of Reh, � is de�ned as

the time elapsed before the amplitude of the wave reduces to 1 % of its initial value). Notice that �
�t
!1 as CFL

! 0. This phenomenon constitutes a remarkable spurious temporal behavior of the the SPGP method with explicit

treatment of the pressure gradient projection (� = 0). No such behavior is found, as shown later on, if the pressure

gradient projection is dealt with implicitly (� = 1) or if GLS or Chorin's stabilization techniques are used, since in

these cases jrj ! 0 when kh! 0.

Figs. 7 (c) and (d) show the e�ect of adding SUPG stabilization to the momentum equation. The low-Reh regime

remains the same as expected. For high Reh the damping of short waves (kh � �) is increased, but no improvement

is brought to long-wave damping. It has to be remarked that convection must be taken into account in the design of

�p. In fact, if the expression �p =
�h2

12�
used in7 (based on the viscous-dominated case) is adopted, the situation gets

worse.

One concludes that, though the SPGP method with � = 0 is indeed stable , spurious transients appear that may

pollute the results during many time steps, especially in those regions of the domain where theCFL is smallest (because

of larger mesh size or smaller velocity). Notice that this already explains the spurious behavior of the previous section.

In fact, far from the cylinder we had h � 0:3 leading to Reh � 900 and C � 0:003, values that fall well within the

range of long-wave persistence.

As said above, let us now show that this phenomenon is linked to the choice � = 0. In Fig. 9 we show similar plots for

� = 1. SUPG stabilization has been applied to the momentum equation to damp the short waves (velocity wiggles).

In the low-Reh regime all wavelengths are strongly damped (jrj < 0:01). For high Reh and low CFL some persistence

of waves in the range 0:1 < kh < � is predicted, but jrj is small enough (jrj � 0:8 or lower) to damp perturbations

after a few (� 30) time steps.

A cure for long spurious transients is thus to take � = 1. This is however not practical since the computational cost

becomes prohibitive. An alternative may come from extrapolation. We have considered two possibilities:

EXTRAP1: D
T
M

�1
CP

n � DT
M

�1
C(2P n�1 � P

n�2)

EXTRAP2: D
T
M

�1
CP

n � 2DT
M

�1
CP

n�1 � LP n�2

Unfortunately, both are unstable. Plots of jrj show that, irrespective of Reh and C , there exist waves with jrj > 1.

In agreement with these predictions, when these extrapolation schemes were coded exponential instability was found.
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Comparison to GLS and Chorin's methods

It is interesting to compare the results above to those corresponding to GLS and Chorin's methods. The ampli�cation

factors jrj for these methods are plotted as functions of kh for high-Re and low-Re regimes in Fig. 10. Both have

jrj ! 0 as kh ! 0. Both are stable and lead to some (in fact small) persistence of waves only if Reh is large and

C small, as does the SPGP method with � = 1. Least prone to this phenomenon is Chorin's method (the short

waves with kh � � can be damped introducing upwinding in the momentum equation, which was not done). The

predictions are however comparable for the three methods.

One more variant: Stabilization by residual projection

The SPGP method, in the case of Stokes ow, can be regarded as a modi�cation of the GLS method. The only

di�erence is that the projection of the residual, �hR, onto Vh is subtracted from the residual itself within the

stabilization term. Consistency is not lost, since for the exact solution the residual vanishes. With this interpretation

one could proceed analogously for the transient Navier-Stokes problem, arriving at a variant of the SPGP method. In

this case the residual is

R(uh; ph) = �
@uh

@t
+ �(uh � r)uh � 2div (�Duh) +rph � f (24)

For non-zero Re the residual of the incompressibility constraint also enters the GLS formulation,10 times a mesh-

dependent constant ÆK = � juj2�u and thus, assuming linear elements, the stabilization terms are

X
K 2Th

�
(�(uh � r)uh +rph)��h(�(uh � r)uh +rph);

�u

�
(�(uh � r)vh +rqh)

�
K

+



+
X

K 2Th

ÆK (div uh ��hdiv uh; div vh)K (25)

An almost equivalent formulation is proposed in,5 where it is shown that it is in fact a sub-grid scale method13 with a

particular choice for the space of sub-scales. Von Neumann's analysis of this method yields results that resemble those

of the SPGP method. In this case the possibility also appears of dealing with the residual projection either implicitly

(� = 1 in the SPGP method) or explicitly (� = 0), and again the only reasonable choice (from the computational

point of view) is the latter. The results are not shown here for lack of space.

NUMERICAL TESTS

The predictions of the previous section are based on the linearized version of the model problem (14), disregarding

boundary e�ects. We now check that the conclusions are not overruled as soon as these simplifying hypotheses are

dropped.

Comparison on a 1D model problem

Considering �rst the full (nonlinear) 1D model problem (14), to be solved for t > 0 in 
 = (0; 1) with f = 0

and initial and boundary conditions u(x; t = 0) = 0; u(0; t > 0) = 1; p(1; t > 0) = 0. The exact solution is

u(x; t) = 1; p(x; t) = 0.

A series of numerical experiments on this problem were performed using the SPGP method. Linear 1D �nite elements

were used. Experiences were made with � = 1, � = 1=45000, for di�erent values of h and �t. The computed

pressure is seen to oscillate around zero with an amplitude that decays to zero. This is a spurious pressure transient

that is activated by the sudden imposition of u = 1 on the left boundary. The period of the oscillations, and the decay

behavior, are not predictable a priori due to the nonlinearity of the problem. Our aim here is to compare them with

the predictions from von Neumann's analysis (that rigorously apply just to the linearized model with no boundary).

In Fig. 11 we present results for some selected cases. Plotted is the pressure at x = 0. The solid lines correspond

to the numerical experiments and the dashed ones to von Neumann's analysis predictions. To be precise, the dashed

lines correspond to (the real part of) the functions

u(x = 0; n�t) = Ar
n
; p(x = 0; n�t) = Br

n

where r is the ampli�cation factor of the method. As von Neumann's analysis does not predict the initial magnitudes

and phases of u and p (i.e., A and B), these have been adjusted so that they coincide with the numerical result at

the �rst positive peak. The value of r was obtained with Mathematica for the values of h, �t, � and � used in each

simulation. The wavenumber k was assigned the value zero, since long waves are the most persistent ones for the cases

considered, and c was set to one.

The values of�t and h are shown in the inserts of each graph. Except for a short initial transient (probably dominated

by nonlinear e�ects), the computed pressure exhibits practically the same temporal behavior as the one predicted by

von Neumann's analysis. Both the oscillation period and the decay time are in good agreement. This supports the

use of the results of the previous section to draw conclusions about the temporal behavior of the SPGP method in a

broader class of cases than that to which the von Neumann's analysis rigorously applies.

Comparison to 2D start-up ow results

Finally, let us analyze the more interesting situation of the two-dimensional start-up ow around a cylinder solved by

�nite elements, as described in Section . Parameters for this case were taken from the 2D problem: h = 0:3; C = c�t
h

=

3:33 � 10�3; Reh = 900. As in this case we have again a high Reh and a low C , von Neumann's analysis predicts

that the most persistent wave would correspond to k = 0. In Fig. 12 the full line represents the computed pressure

value behind the cylinder. The dashed line is the real part of Arn, with n = t
�t

and r being the ampli�cation factor

corresponding to the parameters listed above. This time, the continuous and dashed curves were put into coincidence

(by adjusting A) at the second positive peak because during the �rst period of the simulation a second mode can be

observed, superimposed to the most persistent, long-wave one.



It can be appreciated that both extinction time and period of oscillation compare well to (though being slightly

larger than) those of the �nite element calculation. In spite of the di�erences between both situations (2D vs. 1D,

nonlinearity vs. linearity, irregular vs. regular meshes, etc.), the coincidences are remarkable. The simple model

captures the basic features of this spurious wave phenomenon.

CONCLUDING REMARKS

A detailed Fourier analysis and several numerical tests have been reported on the recent SPGP method. These

complement and extend previous theoretical results by Codina and Blasco.7 Unconditional stability is predicted,

irrespective of the choice of �. SUPG treatment of the momentum equation has no deleterious e�ect on stability and

damps, as expected, velocity wiggles. In fact, a better choice of the stabilization parameter �p is the SUPG intrinsic

time �u as given by expression (7). An alternative way of incorporating convection in the design of the intrinsic time

can be found in Ref.4

Numerical tests on start-up ow around a cylinder at Re = 3000 show that the velocity �eld is accurately predicted.

However, a spurious pressure transient pollutes the pressure �eld during about half of the simulated time. This

phenomenon, not previously reported, should be considered when using the SPGP method for, e.g., drag calculations

or uid-structure interaction, where accuracy in the pressure �eld is needed. Less demanding calculations such as

vortex shedding have not shown this problem.

Fourier analysis identi�es these spurious transients as coming from explicit treatment of the pressure gradient projection

(� = 0). It is predicted to be most critical when Reh is large and CFL small. This situation is typical of regions

within the computational domain where the mesh is coarse or the velocity small (stagnant regions). No cure was found

by means of extrapolation, since the scheme becomes unstable.

Finally, it should be remarked that all predictions coming from Fourier analysis made above do not account for �nite

domain size and boundary conditions. Notice that trigonometric functions are not eigenfunctions of the exact problem

in bounded domains unless periodicity is assumed. Heuristically, our approach has been to draw conclusions from

the in�nite-domain case and consider them appliccable to more realistic situations. The numerical tests reported in

the previous sections (especially those in Fig. 11) support our approach, as remarkable coincidences between the

predictions from von Neumann's analysis and actual computations have been obtained.
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