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RESUMEN
El presente trabajo trata sobre el análisis y prueba de la métrica del jacobiano normalizado, utilizada como
medida de la calidad de mallas de hexaedros. Adoptamos una medida para la calidad de nodos en lugar de la
calidad de elementos. La métrica del jacobiano normalizado es una cota de la no - ortogonalidad de las caras
y los ángulos diedros. Delineamos los pasos y algoritmos fundamentales del programa que logró elevar hasta
límites aceptables la calidad de mallas inicialmente inválidas. El programa se basa en una combinación de
movimientos de nodos guiados por el gradiente y movimientos aleatorios utilizando la técnica conocida
como “simulated annealing”. Se muestran algunos ejemplos de resultados y tiempos de corrida.

ABSTRACT
The present work deals with the analysis and test of a normalized-Jacobian metric used as a measure of the
quality of all-hexahedral meshes. Instead of element qualities, a measure of node quality was chosen. The
normalized-Jacobian metric is a bound for deviation from ortogonality of faces and dihedral angles. We
outline the main steps and algorithms of a program that is successful in rising the quality of initially invalid
meshes to acceptable levels. For node movements, the program relies on a combination of gradient driven
and simulated annealing. Some example of the results and speed are also shown.

INTRODUCTION
The optimization of a given mesh for Finite Element analysis implies that the elements must satisfy certain quality
conditions. Many methods are currently in use1,2, but it is still difficult to give a concrete meaning to the word
“quality” for a mesh.

Mesh improvement involves two main approaches, sometimes used together, smoothing and topological
operations. We are currently smoothing, i.e. repositioning nodes without changing the topology of the mesh.
Connectivity changes in all-hexahedral meshes are still unimplemented because of the lack of algorithms to handle
and operate between dual surfaces or sheets of elements3,4,5.

Until the present development we relied on relaxed Laplacian smoothing, i.e. the repositioning of each node
towards the centroid of its neighbor nodes. The drawback of the Laplacian method is the compression and even
inversion (negative Jacobian) of elements near concave areas of the boundary.
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THE GEOMETRY
Metric

We are using a technique known as optimization-based smoothing1,6, where each selected node is moved in order to
maximize (or minimize) a quality-related function called quality (or distortion) metric.

The algorithm is intended to move nodes; thus, instead of handling element qualities, we have defined a node
quality metric. The subtle difference between node and element quality has proven useful, at the implementation
stage, to evaluate the impact of each movement on the cluster of neighboring nodes.

In order to improve meshes with inverted elements, we chose a metric pushing the mesh towards ortogonality. We
tested using dihedral angles as well as edge angles, and then we found a simple bound for both of them.

Figure 1 shows a node P with one of the elements attached to it. The segments PA, PB and PC are the three
adjacent edges.

Ââ

A
a

B

C

P

b x c

υυυυ

b

c

Figure 1: Elements of a trihedron belonging to a node

The intersection of the unitary sphere centered at P (S2
p) and the element is the included unit spherical triangle

shown in gray. The unitary vectors pointing to the direction of the adjacent nodes were labeled a, b and c.

As each element defines a trihedron on each of its nodes, we will deal mostly with trihedrons rather than with
elements.

The metric used to quantify the quality of each trihedron at P is (a b c), the triple product between the directions of
the attached segments.

This metric gives a lower bound on the sine of the angle between edges:

(a b c) = a ∙ (b x c) = cos(υυυυ) sin(â)[ sin(â). (1)

The dihedral angle Â (between faces APB and APC) is the angle between a x c and a x b, so:
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thus, the given metric is also a lower bound for the sine of the dihedral angles.
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In brief: the angles between faces and between edges of a trihedron are closer to 90º than the arcsine of the
metric value.

The mapping of these three unitary vectors on the canonical tetrahedron needs a Jacobian matrix whose
determinant is exactly that triple product. So we will label this metric as j = (a b c) in the three dimensional case,
and 2j = οa x bο as its two-dimensional version.

We now have a metric to quantify the quality: The quality of a node is the worst j from the elements sharing
that node, and the quality of the mesh is the worst node quality.

Frequently some sort of mean-value is used instead of the worst one, relations between inner an outer spheres or
something alike. These values may be suitable for triangles or tetrahedrons, but are rather dangerous for quads and
hexes. They are prone to give inverted angles, and a single negative angle turns the whole mesh useless.

Internal Nodes

In order to rise the quality of a node P; we move that node while keeping fixed the adjacent ones. However, except
from a few points, j is a differentiable function of P, the element to which the worst j belongs, changes as the
position of the node changes, making this a local maximum problem.

In the two-dimensional case, we can easily show the problem: In we fixed two adjacent nodes and plotted 2j against
the node position.

Figure 2: Dependence of two-dimensional metric on the node position

The line joining the fixed nodes divides the positive half-plane from the negative one. The metric value is zero at
that line, and one or minus one at the circle with the fixed points diametrically opposite (the diameter of the circle
subtend a right angle).

For each element attached to the (moving) node, we have one of these surfaces. We must find the maximum of the
lower bound, which is the surface we can see viewing from below the set of intersecting surfaces.

In our three-dimensional case, the surfaces are difficult to see. We can say that the plane through each triplet of
nodes (belonging to each attached element) divides the positive from the negative half-spaces. The metric takes a
value of one or minus-one in the two points of intersection of the three spheres that have each pair of nodes
diagonally opposite. The existence condition for this intersection is that the triangle formed with the adjacent nodes
should have all its angles measuring less than 90º.

The kernel of a polygon is the intersection of all its internal angles7, it is a convex polygon (without internal angles
greater than 180º) included into the former one. So defined, the kernel is the set of points from which all the nodes
of the polygon can be viewed. If the starting polygon is convex, then the kernel coincides with it.
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Figure 3a) displays a node P from a two-dimensional mesh and the quadrilateral elements sharing that node. The
adjacent nodes are labeled Ai, and the diagonally opposite Di. Shown in b) is the enveloping polygon of the
adjacent nodes. The quality of P is positive only if the node is inside the kernel of that polygon.
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Figure 3: Envelope and Kernel of the adjacent nodes

In case the polygon has more than one concavity, there may be no kernel and no place with positive metric. In c),
we moved the node A0 to void the intersection between the internal angles at A4 and A1, then there is neither kernel
nor a suitable position for the inner node.

In the three dimensional case we have an enveloping polyhedron, trihedral solid angles and a convex kernel
polyhedron yielding positive metric.

The positions of the attached nodes severely restrict the maximum quality available for that node, but this position
will change in successive steps. The valence of the node (the number of attached edges), in turn, imposes a limit in
the quality that will not vary. The general function relating the upper bound on j with the number of edges has to do
with the problem of optimal packing of circles in a sphere, it is an unsolved problem of combinatorial geometry8,9.

Boundary Nodes

The boundary of the hexahedral mesh is a closed quadrilateral mesh with fixed nodes. We will show how the
quality of the given external boundary affects the interior mesh.

Our hexahedral mesh generator makes one element for each face of the outer mesh. We have explained in previous
works3,4 that a layer of elements adjacent to the boundary (like an offset) makes it possible to correct many
potential problems with the outermost hexahedral elements.
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Figure 4: Fixed boundary nodes
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The boundary mesh contains n quadrilateral elements sharing the node O (Figure 4); the corresponding n
hexahedrons share the OP segment. Intersecting all this with S2

O, we have for the metric of the ith trihedron:

ji = (ai ai+1 p ) = (ai x ai+1) ∙ p ⇒ ∇ji = ai x ai+1, with the indices cycling modulus n. (3)

Then, the maximum ji is obtained when p is perpendicular to the ith face (actually, to the triangle formed with O
and the ith quad diagonal don’t having O).

The direction p is unknown, thus the worst ji is also unknown; however, we can say that it is worse (lesser) than the
worst οai x ai+1ο. Therefore, the quality of the mesh is a priori conditioned by the quality of the exterior given
mesh, being the worst two-dimensional 2ji of the quads.

This simple bound is a poor approximation; the scalar product will lower too much the actual quality in acute
polyhedral angles.

As we only need the direction p, the point of interest lies in S2
O. If we plot j in a two-dimensional chart for S2

O,
may be against the spherical angles, we will find that each ji gives a square sinusoidal wave with maximum at ai x
ai+1, semi-amplitude 2ji, and 2π wavelength.

We must find a maximum on the lower envelope of the set of these surfaces giving ji. This point will lie under the
intersection of all the positive portions of the n surfaces. This intersection exists because the spherical polygon of
the intersection of S2

O
 with the quads sharing O has no crossing or coincident edges; thus the maximum angular

distance between any two ai x ai+1 will be less than ππππ.

The maximum point could belong to surface-maximum or to the intersection of two or three surfaces. Then as a
local maximum problem, the calculation of the bound has the same difficulty level as the calculation of the optimal
position of any node.

Drawbacks

There are two main drawbacks in using this metric.

An angular-only metric yields elements with other malformations. We can mix it with other aspects of quality to
maximize a weighed-sum with aspect ratios, planarity of faces, size gradient, etc. However, we are paying attention
to what happens with the ortogonality requirement only because traditional methods give us meshes with inverted
elements.

The other problem has to do with the implementation: when the node has a negative metric, the gradient of the
lower bound may address it to the wrong direction. To the left of Figure 2 the surface is negative and outside the
minus-one semicircle. Here, the gradient tells the point to move away the line, where j grows asymptotically
approaching zero, rising the metric value but in the wrong direction. In the positive portion, we don’t have such a
problem.

Thus, when the metric is negative we use the triple product without dividing it by the arm lengths. The
corresponding surface, in 2D, is a plane crossing the dividing line and tangent to the negative arc (all the
triangles/tetrahedrons with the same base and the same height have the same area/volume). This is not a new value,
because we know it is negative before dividing it by the arm lengths. In any case, one doesn’t care about the
magnitude of a negative metric, it must be reverted.

PROGRAMMING
Our goal is to move each node to a better position. To compare positions, we use the quality of the node as well
as the worst quality from the set formed by the node and its neighbors.
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D5 Cluster Envelope
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Figure 5: Envelope and Kernel of the attached elements

If we analyze Figure 3b) and Figure 5, we can easily see that rising the quality of a node may negatively affect that
of its neighbors. Even in the kernel of the adjacent nodes, where the node P is positive-metric, some of the attached
nodes can have negative metric values.

The cluster-enveloping polygon, formed with the attached elements, has a smaller kernel (with a higher
probability of being void) than the adjacent nodes envelope. In the cluster-envelope’s kernel, the node has positive
metric and does not force a negative metric on its neighbor nodes. It is evident that the centroid of the cluster
kernel is a better position for the node than the commonly used (Laplacian) centroid of the envelope.
However, if it is difficult to obtain in 2D, our 3D case is even harder. Any algorithm to do that will be welcomed.

So, in our algorithm, a position is considered as better if the worst quality of the cluster is better or if it is
equal and that of the node is better.

Every attempt we made (with serious meshes) by using analytical ways invariantly ended up with some locking
positions often with negative metric.

In the actual program we sort the nodes by quality and sweep the list of worst nodes while there are changes greater
than a given value.

To change a node position we make three main attempts:

1) Gradient driven: As was explained, the gradient direction improves the node quality but may lower that of the
attached ones. Thus, we make a minimum movement in that direction, if it rises the quality we find the maximum
successful step.

The obvious choice for the reference step is:
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This step approximates j to one, but it has proven less efficient than the mean arm length:

n
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The testing attempt is 1/128 of the reference, if it is successful, we test the reference step and then each attempt is
half the precedent. The last one is the first to be successful.
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2) Simulated annealing: If step 1 fails, the node is moved and tested randomly.

The movement steps are in random directions and its magnitudes are random fractions of the mean arm length:

fap  x  =∆ , where (0,1]     ∈f . (6)

The number of attempts is a linear function of quality between 0 for quality 1 and 50 attempts when quality falls to
0 or negative.

3) Forced movement: If all the previous tricks have failed and:

a) The quality of the node is 0 or negative,

b) There are five sweeps with this node unchanged,

c) The node has at least one positive-metric neighbor node,

then the node and the attached nodes are forced to move.

This movement is in order to prevent severe locking of a node. The causes may vary but it actually happens and
this solution works out well.

The third condition lies in the fact that almost every example we tested has a near smooth layer of many negative-
metric nodes at the domain frontier. It is useless to work inside this layer and we chose to move only those nodes at
the interface with the good positioned ones.

All the factors and functions chosen were experimentally tested. Nevertheless, we don’t expect that these are the
best (fastest) values for every situation, however we can say that these values give us positive metric meshes in all
our examples and benchmarks. Many of them may seems superfluous, inefficient or extremely conservative, but
they are in order to guarantee the result, irrespective it takes a minute or an hour, the speed must no interfere with
the robustness.

EXAMPLES:
The examples were tested in an ALPHA station 500, 333 MHz with 320 MB for RAM and Digital UNIX V4.0B
operating system.

However we tested mostly benchmark, few-element-meshes, without any engineering sense, we selected three
examples of concave meshes to be shown here.

In order to test the robustness of the process, all the runs were made with the same set of parameters.

Curved Beam

The first example is a test case of a strongly curved beam, forcing the bad results from Laplacian-only smoothing.
The resulting hexahedral mesh has 1586 nodes and 1310 elements.
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Figure 6: Mesh with a strong concavity

The running test plot shows that, starting with 150 inverted nodes, the situation was reverted in a minute and that
the node quality rose to an acceptable level of quality > 0.1 (about 6º or 174º) in less than two minutes.
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Figure 7: Run plot of quality for the curved beam

Gear tooth

The second and more complex example shown in Figure 8 is a test problem of a gear tooth from a contact problem.
The planar mesh was made using a planar paving10 mesh-generator and then extended to 2½-D and refined in the
3rd dimension whit the help of a CAD program. The all-hexahedral mesh has 9286 nodes and 8210 elements.
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Figure 8: Mesh for a gear tooth

The chart shows that the initial situation with 404 inverted elements was reverted in about 10 minutes and the
quality rose to acceptable level in 15 min.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30
Time [min]

Mean 

Inverted Nodes (x100)

Min. = Mesh quality

Std. Dev.

Figure 9: Run plot of quality for the tooth.

Spherical Bearing

The external mesh for the spherical bearing shown in Figure 10 was entirely made with a standard PC CAD
program. The corresponding all-hexahedral mesh has 68689 nodes and 60112 elements.
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Figure 10: CAD Mesh for a Spherical Bearing

The following chart shows that, starting with the Laplacian smoothed mesh, the initially inverted 56 nodes were
corrected in less than a minute, and it took a total of 11 min to rise the quality.
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Figure 11: Run plot of quality for the spherical bearing starting with the Laplacian-smoothed mesh.

CONCLUSIONS
The problem of finding the best shape for the elements/nodes of an all hexahedral mesh has proven intractable by
some of the standard means used with tetrahedrons.

However we still have lack of consensus about the best quality measure for hexahedral elements, we made some
progress towards the rising of angular quality.
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Surely this metric alone is not the solution. It must be combined with suitable values for the aspect ratio and the
planarity of the faces in order to boost the overall quality of the mesh.

The method has proven to be robust and every test has given a positive result, so it can be easily extended to any
quality measuring value. The very philosophy of the object-oriented programming allows us to replace the metric
used by any other.

We are now in a position to make good quality meshes for the type of problems that can be successfully attacked
with our all-hex generator.
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