UN ALGORITMO DE CONTACTO PARA EL ANALISIS EXPLICITO DE PROCESOS DE EMBUTICION

Fernando G. Flores 1
Departamento de Estructuras, F.C.E.F. y N.
Universidad Nacional de Córdoba
Casilla de Correos 916, 5000 Córdoba-Argentina

RESUMEN
En el presente trabajo se presentan aspectos algorítmicos para el tratamiento del problema de contacto friccional entre herramientas y chapa en la simulación de procesos de conformado de metales. El objetivo principal del trabajo es obtener un algoritmo de búsqueda efectivo y computacionalmente económico para la determinación de los puntos en contacto. Para ello se consideran las características propias de este tipo de procesos y del esquema explícito de integración. Por otro lado se pretende que el algoritmo sea suficientemente general como para tratar superficies de herramientas definidas a travez de triangularizaciones “no conformes” y que puedan presentar solapamientos o brechas (pequeñas). Se muestra en un ejemplo el tipo de mallas tratadas y los resultados obtenidos.

ABSTRACT
In this work some algorithmic aspect of frictional contact between forming tools and blanket are considered. The main target of this work is an effective and computationally economic algorithm for contact search. For that the special characteristics of metal forming processes combined with the explicit integration of equations are considered. Another important aspect is that the algorithm should be capable of dealing with surfaces of some generality. This includes “non-conforming” meshes, and (small) non-coincidence (overlapping and gaps) between the different parts of the mesh. One examples is presented showing the kind of mesh considered and the results obtained.

INTRODUCCIÓN
El modelado de problemas de conformado de metales usando técnicas de elementos finitos es actualmente algo habitual en la industria (especialmente la automotriz). Estos modelos son altamente no-lineales, lo que surge de la necesidad de considerar:

- grandes desplazamientos y rotaciones

1Investigador Adjunto de CONICET y Profesor Titular Universidad Nacional de Córdoba.
• grandes deformaciones elastoplásticas con el consecuente uso de leyes constitutivas apropiadas basadas en adecuadas medidas de tensión y deformación

• condiciones de contorno dependientes del proceso y contacto friccional con las herramientas.

En estos procesos en general las fuerzas de inercia no son particularmente importantes. El análisis de los mismos puede realizarse principalmente usando:

1. Un modelo estático (o implícito), usando una combinación del método de Newton-Raphson y técnicas de continuación para seguir el avance de las herramientas. En general el avance se asocia a un seudo-tiempo.

2. Un modelo dinámico con integración explícita de las ecuaciones de movimiento

El primer modelo presenta dos desventajas importantes:

a) requiere almacenar la matriz de rigidez (salvo que se usen métodos iterativos) que para problemas industriales típicos es muy grande y muchas veces excede las posibilidades de memoria RAM. En este último caso el acceso continuo a los sistemas de almacenamiento externo toma muy lento el proceso.

b) presenta dificultades para la definición de una matriz de rigidez algorítmica consistente. Esto debido tanto a los complejos modelos elastoplásticos como al problema de contacto, donde la fricción conduce a matrices no simétricas.

El segundo modelo no presenta estos dos defectos, pero en contrapartida requiere de un paso de avance muy pequeño debido al esquema de integración utilizado. Este paso de avance depende de la mínima dimensión de la malla, por lo cual el incremento en tiempo de CPU puede ser muy grande en mallas muy densas. Debe lograrse entonces un equilibrio en la definición de la velocidad de las herramientas durante el proceso, para que efectivamente ésta no tenga influencia en el análisis y el tiempo de cálculo sea manejable. Además el método estático muchas veces presenta problemas insolubles de convergencia, lo que no permite terminar el análisis del proceso, algo que es mucho menos frecuente en el modelo explícito.

En los procesos de conformado pueden existir diferentes etapas de diferente grado de complejidad conceptual. En las que son conceptualmente más sencillas puede resultar más eficiente usar modelos explícitos. Por ejemplo en la simulación de colocar la chapa en posición previo a la embutición, o la recuperación elástica luego de retirar las herramientas. En estos casos el modelo explícito requiere de extensos tiempos de cálculo debido a la naturaleza física del problema. Por otro lado en etapas más complejas conceptualmente (como el corte de parte del material) resultan más fáciles de resolver usando el método explícito por su mayor versatilidad. Está claro que una combinación de ambos esquemas puede dar lugar a una estrategia óptima para el modelado total del proceso.

Independientemente del modelo que se use, la formulación del problema de contacto es crucial en este tipo de problemas. En el caso del algoritmo explícito resulta particularmente importante la evaluación de la matriz de rigidez consistente para mantener la convergencia cuadrática del método de Newton-Raphson lo que conduce a una matriz no simétrica al producirse el deslizamiento entre superfi cies. Además el perfil de la matriz de
rigidez puede ser variable durante el proceso dependiendo de como se modelicen las herramientas, particularmente el pisador. Para ambos métodos es muy importante también el algoritmo de búsqueda de los puntos en contacto, pero principalmente lo es para el método explícito debido a la frecuencia conque debe realizarse. En este trabajo se presenta un algoritmo eficiente de búsqueda de los punto de contacto especialmente orientado a problemas de conformado de metales usando el algoritmo explícito. Para el desarrollo del mismo se usan ambas características, es decir, que las herramientas y por lo tanto una de las superficies es indeformable, y que el paso de avance es suficientemente pequeño de forma que dos configuraciones sucesivas están muy próximas.

FORMULACIÓN DE CONTACTO

En el presente trabajo se utiliza la técnica de penalización, que es la más utilizada en modelos con integración explícita porque es la única formulación directamente compatible con tales esquemas de integración. La utilización de técnicas alternativas presentan diferentes dificultades, por ejemplo la técnica con multiplicadores de Lagrange, ampliamente utilizadas en problemas estáticos implícitos, complica mucho la solución explícita al no haber masa asociada a los multiplicadores por lo que requiere resolver un sistema acoplado de ecuaciones (en forma directa o iterativa). Se apelará a una formulación discreta del problema de contacto, es decir el cálculo directo de las fuerzas nodales equivalentes desconocidas y no a través de una presión de contacto.

Se utilizará el esquema típico de dos superficies incidente-objetivo o “slave-master” (incidente=slave, objetivo=master). Para el tipo de problemas que nos interesa analizar, la superficie incidente es la del sólido deformable (slave) y la superficie objetivo (master) es la superficie rígida (o quasi-rígida si se modela con elementos de sólido) asociada a las herramientas (matriz, punzón, pisador). En este esquema se debe verificar que cada nudo de la superficie incidente no penetre en la superficie objetivo. Este esquema no asegura que puntos intermedios de la superficie incidente no penetren. Para asegurar esto último debe usarse un algoritmo simétrico o de doble pasada consistente en invertir la condición de incidente-objetivo. Un esquema simétrico es por supuesto mucho más caro computacionalmente y debe evitarse. El esquema unilateral falla cuando se usa una discretización gruesa de la superficie incidente en zonas donde la superficie objetivo presenta detalles. Por otro lado una discretización gruesa de la superficie deformable es incompatible con el propósito de captar un comportamiento detallado del comportamiento de contacto mecánico.

Dado entonces un nudo \( I \) de la superficie incidente, definiremos la penetración \( g^I \) de dicho nudo sobre la superficie objetivo a la mínima distancia del nudo a la superficie objetivo. Obviamente la definición de mínima distancia implica medirla a lo largo de la normal a la superficie objetivo \( \mathbf{n} \) (o alguna definición ponderada de la normal si la superficie no fuera suave). Valores positivos de \( g^I \) implican que no hay contacto y no dan lugar a fuerzas de interacción, mientras que valores negativos de \( g \) representan efectivamente penetración y dan lugares a fuerzas proporcionales a la misma.

La fuerza normal de contacto \( \mathbf{f}_n \) aplicada sobre el nudo esclavo o incidente se supondrá igual a

\[
\mathbf{f}_n = -\frac{\gamma_m}{2(\Delta t)^2}m \ g \ \mathbf{n} = -c_n \ g \ \mathbf{n}
\]

donde:

- \( m \) es la masa nodal del nudo incidente
• \( g \) es la penetración del nudo incidente en la superficie objetivo.
• \( n \) es la normal a la superficie en el punto de incidencia
• \( \Delta t \) es el incremento de tiempo en el esquema de integración explícita
• \( \gamma_n \) es el factor de penalización, definido de tal forma de que por un lado los valores de penetración sean aceptablemente pequeños, y por otro no se afecte en forma significativa el incremento de tiempo \( \Delta t \) del esquema de integración. Se ha encontrado que valores razonables para este factor resultan en el intervalo \([0.05, 0.5]\). A su vez cuanto más pequeño sea el incremento de tiempo (asociado a una malla más densa), más puede disminuirse este valor.
• \( c_n \) es el coeficiente de penalización normal

Para el caso del conformado de una lámina delgada, asumiendo una discretización uniforme de la lámina con paso \( \Delta L \) en ambas direcciones, la expresión 1 conduce a que la presión de contacto sea de la forma (aproximadamente)

\[
\sigma_c = \frac{|f_n|}{(\Delta L)^2} \approx \gamma_n E \frac{h g}{\Delta L \Delta L}
\]

donde

• \( E \) es el módulo de elasticidad del material
• \( h \) es el espesor de la lámina.

El tratamiento de la fricción se realiza usando una ley de Coulomb “no clásica”. Un nudo inicialmente entra en contacto en un determinado instante de tiempo con la superficie objetivo en una posición \( x^0 \) (un punto material). En instantes posteriores y en forma similar a la fuerza normal se calcula la fuerza tangencial como

\[
f_t = \frac{-\gamma_n}{2(\Delta t)^2} m (x - x^0)
\]

\[
= -c_t (x - x^0)
\]

\[
= -c_t \left| x - x^0 \right| t
\]

donde:

• \( x \) es el nuevo punto (material) de incidencia
• \( \gamma_n \) es el factor de penalización asociado a fuerzas tangenciales, que puede coincidir o no con \( \gamma_n \).
• \( c_t \) es el coeficiente de penalización tangencial
• \( t = \frac{(x - x^0)}{|x - x^0|} \) es la dirección de la fuerza tangencial
La ley de Coulomb especifica que el valor de la fuerza tangencial no puede exceder de

\[ |\mathbf{f}_t| < \mu |\mathbf{f}_n| \]

donde \( \mu \) es el coeficiente de fricción. El valor de \( \mu \) puede ser constante (ley lineal de Coulomb) o depender de \( |\mathbf{f}_n| \), por otro lado es posible definir un valor de \( \mu_S \) (fricción estática) previo a alcanzar el máximo permitido (condición de adherencia) y un valor de \( \mu_D \) una vez que se ha alcanzado el máximo y las superficies deslizan una sobre la otra. Una vez superada la fuerza de adherencia debe realizarse una actualización del punto original de incidencia \( \mathbf{x}^0 \), dicha actualización se realiza en forma conceptualmente idéntica al algoritmo de retorno radial de plasticidad infinitesimal. Luego:

- Si no ha habido deslizamiento relativo y \( |\mathbf{f}_t| < \mu_S |\mathbf{f}_n| \) entonces \( \mathbf{x}^0 \) no cambia.
- Si se supera el valor \( \mu_S |\mathbf{f}_n| \) entonces

\[ \mathbf{f}_t = -\mu_D |\mathbf{f}_n| \mathbf{t} \]

y se actualiza el valor de \( \mathbf{x}^0 \) a

\[ \mathbf{x}^0 = \mathbf{x} - \mathbf{t} \left( \frac{\mu_D |\mathbf{f}_n|}{c_t} \right) \]

**SUPERFICIE OBJETIVO**

Las superficie objetivo se supondrá discretizada mediante segmentos de tres nodos (triángulos). La densidad de segmentos dependerá de la precisión deseada en la definición de las herramientas. En principio las características deseables de la triangulación son:

- Triangularización **conforme**, en el sentido de una discretización por elementos finitos. Esta condición es estandar en la mayoría de los algoritmos de contacto e implica una superficie orientada en el sentido matemático y sin solapamientos ni brechas.
- Segmentos con una adecuada relación de aspecto, definida en este caso como la longitud del lado más largo del triángulo dividido por la distancia de dicho lado al nudo opuesto. Para un triángulo equilátero dicha relación es 1,15.
- Segmentos que tengan todos sus ángulos agudos.

Si la superficie objetivo se modela con elementos finitos deformables, la condición de conformidad se cumple en forma explícita. Si por el contrario se modela como rígida, la condición de conformidad no es imprescindible. Más aún el no utilizar mallas conformes permite disminuir substancialmente la cantidad de segmentos utilizados. Usualmente la definición geométrica de las herramientas se realiza con utilidades de CAD, por lo que la triangularización se logra a travez de una interface. La complejidad de las superficies a tratar hace difícil generar interfaces eficientes e infalibles, por lo cual la malla de triángulos suele tener diferentes defectos. Entre los más comunes pueden mencionarse altas relaciones de aspecto, solapamientos y falta de orientación unívoca de la superficie. Las características indicadas de la superficie objetivo deben tenerse en cuenta al momento de realizar una verificación de la triangulación (para aceptarla o rechazarla y generar un listado de errores o advertencias) y al generar el algoritmo de búsqueda para evitar su
fracaso. En general deberá aceptarse que la superficie objetivo sea “no conforme”, es decir formada por grupos de segmentos con bordes comunes pero definidos a partir de nudos distintos. A su vez estos bordes comunes podrán coincidir en forma precisa (lo ideal) o dejar lugar a brechas o solapamientos, en general pequeños frente a la magnitud de los segmentos. Además deberá tenerse en cuenta que podrán existir segmentos con alta relación de aspecto, del orden de 100 e incluso superiores. La utilización de triángulos para la definición de la superficie objetivo tiene dos ventajas sobre la utilización de cuadriláteros (la otra opción usual)

1. En general resulta mucho más sencillo generar la malla y refinarla en zonas con detalles. Si bien actualmente los generadores de cuadriláteros han mejorado mucho, las interfaces con superficies complejas definidas con CAD no son tan efectivas.

2. La normal al segmento resulta única en todo el segmento, a diferencia de los cuadriláteros que al ser bilineales pueden tener normal variable. Esto resulta particularmente importante por dos aspectos. Primero que la proyección del nodo incidente sobre el segmento objetivo es directa en el caso de triángulos, en tanto que requiere un esquema iterativo en cuadriláteros alabados. Segundo que el jacobiano de la transformación al segmento objetivo es constante el caso de triángulo y permite medir en forma sencilla deslizamientos del nodo incidente sobre el segmento a los efectos de calcular la fricción.

**ALGORITMO DE BUSQUEDA**

Dada una configuración en un tiempo $t$, para determinar si un nodo incidente de coordenadas $x^S$ está en contacto con una superficie objetivo formada por $n^M$ nudos de coordenadas $y^M$ pueden usarse diferentes métodos. El más seguro es el siguiente:

1. Buscar entre todos los nodos de la superficie objetivo el más cercano a $x^S$ que denomínaremos $y^N$

2. Verificar si el nudo incidente ha penetrado alguno de los segmentos conectados a $y^N$. Esta verificación en general se realiza sobre todos los segmentos conectados al nudo y si hay más de un segmento sobre el que penetra (superficies convexas) se realiza un ponderado de las normales y las penetraciones.

3. Si no ha penetrado ninguno de los segmentos verificar si al menos el nudo proyecta en forma efectiva sobre alguno de los segmentos

4. Si el nudo no proyecta sobre alguno de los segmentos, pueden darse varias alternativas

   - Que se encuentre sobre el propio nodo, o sobre una arista, en tal caso el uso de tolerancias permite determinar si el nudo proyecta sobre los segmentos “expandidos”, definidos expandiendo la superficie del segmento en forma uniforme en las dos direcciones del plano usando alguna medida de tolerancia.

   - En el caso de superficies objetivos no cerradas, el nudo más cercano puede ser un nudo del contorno

   - Que sea necesario buscar en segmentos que son vecinos al nudo mas cercano pero que no lo incluyen directamente. Esto se denomina “busqueda extendida”.
Este método se denomina de “Fuerza bruta”[1] y no hace uso de información previa, ni siquiera de algunos aspectos que aparecen durante la verificación. Es altamente ineficiente e impracticable en problemas industriales.

El hecho de que las superficies objetivo sean rígidas conduce a que durante el proceso dichas superficies no modifiquen su forma. Por otro lado al usar un algoritmo de integración explícita la posición relativa entre dos nudos cambia muy poco entre dos configuraciones sucesivas. Esto permite realizar una serie de hipótesis o simplificaciones durante la búsqueda de los puntos en contacto.

En la evaluación de las fuerzas de contacto la búsqueda de los puntos de contacto es lo que más tiempo demanda y es allí donde debe ponerse énfasis. Para aplicaciones industriales es común que en la definición de las herramientas se usen del orden de $10^5$ nudos, por lo cual resulta necesario que el algoritmo de búsqueda sea medianamente independiente de tal discretización de las herramientas.

El objetivo principal es entonces hacer uso de las características de la geometría y del proceso para generar un algoritmo que minimice los tiempos de búsqueda, para ello se proponen las siguientes modificaciones al algoritmo anterior:

1. Buscar entre todos los nudos de la superficie objetivo el más cercano a $x^S$ que denominaremos $y^N$. Esta búsqueda se realiza una sola vez en forma global, es decir sobre todos los nudos que conforman la superficie objetivo. Este primer paso es idéntico al método de “fuerza bruta”. Este paso es costoso en tiempo de CPU, para disminuirlo podrían usarse algoritmos más eficientes en base a un ordenamiento espacial de los puntos[1], sin embargo dado que esta búsqueda se realiza una sola vez, su influencia global en el proceso es muy baja.

2. Verificar si el nudo incidente ha penetrado alguno de los segmentos conectados a $y^N$. La verificación aquí se detiene al encontrar el primer segmento donde se detecte una proyección efectiva del nudo incidente, independientemente de que haya penetrado o no. Esto puede dar lugar a errores en superficies con ángulos muy pronunciados entre los segmentos, ya sean concavos (menores a $\frac{\pi}{2}$) o convexos (mayores a $\frac{\pi}{2}$). Sin embargo esto es poco común en conformado de metales y puede evitarse con otro tipo de controles como se verá más adelante.

3. Durante la verificación anterior resulta importante recordar dos aspectos para futuras decisiones si no se se detecta una proyección efectiva (es decir que el punto más cercano del plano definido por el segmento este fuera del segmento):

- Observar si en caso de penetración negativa el nudo incidente proyecta sobre el segmento expandido. En tal caso se reserva la arista a lo largo de la cual hay “quasi” proyección para considerar como proyección compartida con el elemento vecino si este a su vez existe y está en la misma condición.
- Observar si la proyección del nudo incidente se produce en el sector delimitado por las dos semirrectas que parten del nudo $y^N$ pero más allá del contorno del elemento. Puesto en términos de coordenadas triangulares del punto de incidencia, si la coordenada local asociada al nudo $y^N$ es negativa y las otras son positivas, entonces debe hacerse una búsqueda extendida en esa dirección. Encontrar esta condición puede dar lugar a abandonar la verificación anterior.
 dependiendo de la calidad de la triangularización. Si la superficie está correc-
tamente orientada esto puede hacerse sin más y proseguir la búsqueda en el
segmento que comparte con éste el lado opuesto al nudo más cercano.

A partir del segundo paso esta búsqueda queda condicionada por tres aspectos.

- Si el nudo ha penetrado en el paso anterior, no se realiza la búsqueda, se asume que
  el nudo incidente continuará en contacto con segmentos ligados al nudo \( y^N \).

- Si el nudo no ha penetrado pero se encuentra próximo y proyecta sobre un elemento
  asociado al nudo más cercano, la búsqueda tampoco se realiza, y se utiliza como
  nudo de prueba el mismo del paso anterior.

- Si en el paso anterior se ha detectado que la mínima distancia \( g_{MIN} \) del nudo a la
  superficie es mayor que \( N \) veces el máximo incremento de desplazamiento relativo
  \( \Delta u \) entre puntos posible

\[
 g_{MIN} > N \Delta u
\]

donde dicho incremento se calcula en función de la máxima velocidad \( v_{MAX} \) de
cualquier punto del modelo y el incremento de tiempo \( \Delta t \)

\[
 \Delta u = \Delta t v_{MAX}
\]

entonces durante los próximos \( N \) pasos el nudo se asume que no penetrará y no
se realiza ninguna verificación sobre él. En caso de producirse un aumento de la
velocidad con la cual se realizó la comparación debe recalcularse en que momento
se realizará la próxima verificación.

Resumiendo, en los dos primeros casos se asume que el nudo más cercano es el mismo
que en el paso anterior. Por otro lado al proyectarse el nudo incidente sobre el segmento,
puede deducirse en función de la proyección si corresponde mantener como nudo más
cercano el original o cambiarlo por otro de los nudos en el segmento si correspondiera.
En el tercer caso, luego de \( N \) pasos sin realizar verificación, a partir del último nudo más
cercano se realiza una comparación exclusivamente con los nudos conectados al mismo
para ver si continúa siendo el más cercano o ha cambiado.

Como se mencionó anteriormente resulta necesario que el algoritmo pueda tratar mallas
“no conformes”. Este tratamiento depende de la forma en que se ordene la base de datos
necesaria para organizar la búsqueda. Una posibilidad es que para cada nudo de la super-
ficie objetivo se tenga almacenado los segmentos concurrentes sobre los cuales se realiza
la verificación. En tal caso cuando dicho nudo corresponda a una “interface interna” de
la superficie, la verificación debe también realizarse sobre los segmentos concurrentes a
nudos que se encuentran en el borde opuesto de la interface (ver Figura 1).

Finalmente resulta importante limitar el máximo valor de penetración que es aceptable.
Esto previene la posibilidad de que algunas superficies con ángulos muy marcados con-
duzcan a proyecciones efectivas pero que no correspondan a penetraciones reales. También
previene errores de superficies incorrectamente definidas. Dicha máxima penetración en
general no debe exceder de la décima parte del espesor de la lámina. Esta idea debe
usarse como criterio de exclusión cuando se detecta una proyección efectiva y proceder a
descartar el segmento.
Figura 1: Discretización típica de una matriz (detalles)

RESULTADOS NUMÉRICOS

Las ideas expresadas anteriormente han sido implementadas en un código de elementos finitos explícito de propósito general con orientación a problemas de conformado de chapas metálicas [2]. En la Fig. 1 se muestran detalles de la discretización de la matriz en zonas que pueden presentar problemas. Se observan diferentes casos de no conformidades, brechas y solapamientos, e incluso errores en la definición de una única superficie. En algunas zonas la relación de aspecto es muy alto, no son raros los elementos donde esta relación supera a 100. Se utilizaron del orden de 50 mil elemento para la definición de la superficie de la matriz (del orden de 25 mil nodos). La modelización de la lámina se ha realizado con un elemento de lámina delgada adecuado para problemas de embutición[3]. Se utilizaron 15500 elementos de 3 nodos para la discretización del panel. La ecuación constitutiva se integró en cuatro capas en el espesor del elemento con un punto por elemento. A pesar de diferentes “defectos” de la malla el algoritmo ha funcionado bien obteniéndose resultados correctos para el proceso analizado. En la Fig. 2 se muestra la lámina deformada. El tiempo de CPU dedicado a las tareas de contacto es del orden del
16%, en tanto que la evaluación de las fuerzas residuales consume el 70% del tiempo de cálculo.

Figura 2: Configuración final de la lámina

AGRADECIMIENTOS

Este trabajo ha sido financiado con subsidios otorgados por CONICET y CONICOR.

REFERENCIAS