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The main objective of this work is to present the results obtained with a computational
code which solves the time dependent magnetogasdynamic equations (MGD) in one
dimension. This research represents the initial stage towards achieving a comprehensive
description of the ablative pulse plasma thruster (APPT) behavior. The equations that
govern MGD flows are continuity, momentum, energy and magnetic induction together
with a state equation. These equations have two parts: the fIrst one contains the
conservation terms and is hyperbolic; the second one has the diffusive terms and is
parabolic. The parabolic part of the equations is written in divergence form, so that there
is a diffusive flux. The numerical technique used to solve the equations consists of an
approximate Riemann solver that calculates the variables inside each cell by evaluating
the flux through the contour of the cells. The TVD scheme proposed by Yee, et al. is used
to evaluate the numerical flux. The "eigensystem" technique presented by Powell has also
been used and eigenvectors normalization has been carried out following the works of
Zarachay et a!., Roe and Balsara, and Bodgan. To check the accuracy of the
computational code a Riemann problem introduced by Brio and Wu has been simulated.
The obtained results are in close agreement with those reported by other authors.

RESUMEN

El objetivo principal de este trabajo es presentar los resultados obtenidos con un c6digo
computacional que resuelve las ecuaciones de la magnetogasdiruimica real dependientes
del tiempo (MGD) en una dimensi6n. Esta investigaci6n representa la fase inicial hacia
lograr una descripci6n de un m6dulo propulsivo de plasma pulsante ablativo. Las
ecuacioncs que gobieman los flujos MGD son continuidad, cantidad de movimiento,
energia e inducci6n magnetica junto con una ecuaci6n de estado. Estas ecuaciones poseen
dos contribuciones: una contiene los terminos conservativos; y la otra estAcompuesta de
los terminos difusivos. La parte difusiva 0 parab6lica de las ecuaciones se escribe en
forma de conservaci6n, entonces existe flujo difusivo. La tecnica numerica empleada
consiste de un seguidor aproximado de Riemann que calcula las variables dentro de cada
celula en funci6n del flujo a traves del contorno de las mismas. El esquema TVD
propuesto por Yee, et al. se usa para obtener los flujos numericos, ademas se ha utilizado
la tecnica de ocho ondas presentada por Powell y los vectores propios han sido
normalizados siguiendo los trabajos de Zarachay et al., Roe y Balsara, y Bodgan. Para
verifIcar el comportamiento del c6digo se ha simulado el problema del tubo de choque
magnetogasdin8mico introducido por Brio y Wu. Los resultados obtenidos verifIcan muy
bien los publicados por otros autores.

INTRODUCTION

The main objective of this work is to present the results obtained with a computational code
developed to solve the solution of real magnetogasdynamic equations (MGD).· This research
represents the initial stage towards achieving a comprehensive description of the APPT



behavior. There are previous works in which the authors use or develop numerical codes to
simulate the flow inside of magnetoplasmadynamics thruster. For example two-dimensional
codes have been developed by Toki et al. (1982), and Ao and Fujiwara (1984). Effects of the
geometry on the performances has been studied by LaPointe (1992) and Mikellides and Turchi
(1999) using the codes MACH2 and MACID to simulate the non-steady flow in two and three
dimensions. None of these works apply techniques classically used in fluid mechanics that allow
for the high resolution capture of discontinuities. The present research explores the capacity of
these techniques to simulate the plasma flow.
The equations that govern MGD flows are continuity, momentum, energy and magnetic
induction together with a state equation. These equations form a hyperbolic-parabolic system,
see Sankaran, et al. (2000). The hyperbolic terms represent the ideal MGD equations, whilst the
diffusive effects are accounted for in the parabolic terms.
A numerical technique is used which consists of an approximate Riemann solver that calculates
the variables inside each cell by evaluating the flux through the contour of the cells. The TVD
scheme proposed by Yee, et al. (1985) is used to evaluate the numerical flux. The
"eigensystem" technique presented by Powell has also been used and eigenvectors
normalization has been carried out following the works of Zarachay et al. (1994), Roe and
Balsara (1996), and Bodgan (1999). To check the accuracy of the computational code a
Riemann problem introduced by Brio and Wu (1988) has been simulated. The parabolic
components are written in conservation form and they are considered as fluxes. To obtain the
numerical flux of the parabolic contributions the technique given by Bodgan (1999) is used.

PLASMA FLOW

In many situations the plasma flow can be represented by the equations of the
magnetogasdynarnic (Dendy, 1999). In this section theses equations are introduced.

Equations of the real MGD
The equations of ideal MGD in conservative form are expressed non-dimensionally as:
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the density is indicated as p; U" Uy' U, are the components of the vector velocity; B., By,B,
represent the components of the vector magnetic field; p is the pressure; B' is defmed as:
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where r is the ratio of specific heats
The parabolic fluxes for I-D problems are given by:
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where 1],,1] y ,1), are the non-dimensional resistivities, /( is the non-dimensional thermal

conductivity and Jl is the non-dimensional viscosity. Lu, Re and Pe are the Lunquist, Reynolds
and Peclet numbers respectively.
The hyperbolic terms system of equations (1) can be recast in their quasi-linear form:
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where Ac is the flux Jacobian, the letter "c" indicates that the derivation has been carried out
with regard to the conservative state variables. However, the form of the flux Jacobian is
simpler as a function of the primitive variables (W ):
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Riemann solvers based on a system of eight waves using the matrix Ap cannot be applied
because an eigenvalue is zero and lacks of physical meaning. It is important to notice that the
formulations in primitive variables and in conservative variables are equivalent, therefore this
null eigenvalue appears in both formulations. To solve this inconvenient an alternative flux
Jacobian has been implemented (A~), as presented by Powell (1995). It is important to note that
I-D problems do not require to use this new matrix. It has nevertheless been implemented in
this work because this matrix allows for a straightforward extension to simulations in two or
three dimensions. The eigenvalues of the matrix A~ are:
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where the positive sign corresponds to fast magnetosonics waves.
Finally, the eigenvectors have been normalized to avoid problems due to the system degeneracy.

Transport coefficients
To evaluate the viscosity (J.I.), electric conductivity «(J) and thermal conductivity (/() the
expressions given by Spitzer (1956) are used:
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where M; is the atomic number of the ions in the plasma, T is the temperature, z is the mean
ion charge, A and is the number of particles in a Deybe sphere. Coefficients €, (Z), 0,(Z) and
rE(Z) are correction factors; when z ~ 1 the coefficients are rE(Z) =0.582, €,(Z) = 0.419
and 0,(Z)=0.225.

The equations outlined in the previous section are solved using an approximate Riemann solver
together with an explicit scheme. To calculate the numerical flux the TVD upwind technique of



Yee, et aJ. (1985) has been implemented, by doing so a second order approach is obtained. This
technique is used to calculate the numerical fluxes in all interior cells. The TVD method for the
system given in Eq. (1) can be expressed in the following way:

being R the matrix that contains the right eigenvectors of the matrix Ac' ell is the dissipation
vector whose elements for the second order TVD-upwind scheme are expressed by:
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Lip being the left eigenvector of the JIh wave.
To obtain the evaluation of parabolic flowis used the finite difference method. Finally, the
hyperbolic flow and parabolic flow are added.



RESULTS

In this section the results obtained for the Riemann problem proposed by Brio and Wu (1988)
are presented. This is a benchmark widely used by the MGD scientific community with the
objective of evaluating the behavior of the numerical techniques and computational codes. Brio
and Wu studied the extension to MGD of the classic shock tube used in gas dynamics. This
example is denominated coplanar Riemann problem because only components of the velocity
and magnetic field vectors in two directions are allowed. It is important to note that Brio and
Wu solved this benchmark only for ideal MGD.
The variables are given in non-dimensional form and an unit length of the magnetogasdynarnic
shock tube is considered. The discontinuity or diaphragm that separates the left and right initial
states is located in the middle ofthe tube. The initial values are:

w, , '(1.0,0.0,0.0,0.0,0.75,1.0,0.0,1.0Y

W, '" (0.125,0.0,0.0,0.0,0.75,-1.0,0.0,0.1 Y

WI and W, being the vectors that contain the primitive variables corresponding to both sides of
the diaphragm. Figures 1, 2, 3 show the transverse magnetic field (By), the velocity in the

longitudinal direction (u.), and the density (p) plotted as a function of the longitudinal
distance for ideal and real MGD. A fixed mesh with 4000 nodes is used. It can be noticed that
the present results agree satisfactorily with those published by Brio and Wu (1988), and Bodgan
(1999).
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Finally, one observes that the time required to simulate real MOD flows is greater than the time
employed in the simulation of ideal MOD, so to keep computing times comparable, a lower
number of nodes should be used. The adopted values of viscosity, electrical resistivity and
thennal conductivity are 0.00272728Pa.s, O.OOO3Nm2s I C and 0.817 N Iso K, respectively.
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The main conclusions obtained throughout this research are the followings:
I - The numerical simulation using an approximate Riemann solver together with the Yee's
TVD scheme has shown to be an effective alternative from the point of view of low
computacional cost and the accuracy of the results for ideal magnetogasdynamic.
2 - The technique developed by Powell does not introduce modifications in the results as
compared to those obtained by using seven waves.
3 - The evaluation of the parabolic terms introduces additional constraints on the CPU time.
This is larger than for the ideal MGD.
4 - To reach the solution of the real magnetogasdynamics equations is necessary to use lower
CFL numbers than for the ideal magnetogasdynamics equations.
5 - The parabolic contributions lead to smoother distributions of the mechanical and magnetic
variables. Therefore, the corresponding waves are not sharply defined.
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