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A numerical procechn'e fur the design of optimized preforms fur UfIe in metal forming is described. The choice
of design variables and objective functions and the procedures used for the determination of sensitivities are

discussed, inttoducing new proposals. An example shows the performance of the code.

Se describe un procedimiento IlIIIllCrico para Ia optimizaci6n de preformas en conformaci6n mec8nica. Se
discutc Ia selecci6n de variables de diseflo y fimeiOllCSobjetivo para esta aplicaci6n bien como procedimientos

para la detenninaci6n de Ia sensibilidad, introduciendo nuevas propuestas. Se presenta un ejemplo que demuestra
el desempcIio del c6digo desarrollado.

Fig. lea) shows a simple direct problem in finite plasticity: the detennination of the form of
an elastoplastic cylinder under axial compression wi1h fticAAm..A classical benchmark in
preform optimization which is related to this problem is illustrated in Fig. 1(b): the
axissymmetrical form in the left has to be determined, such that, under axial compression it
deforms into the form of the perfect cylinder in the right.
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Fig 1. Preform optimization of a cylinder.
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This is a kind of inverse problem in mechanics, and can be solved with optimization
techniques. As in all optimization problems, there are design variables (that determine the
shape) and an objective function to be minimized. In preform optimization. the objective
function is usually the difference between the obtained and the desired shapes, measured in an
adequate norm. Some care must be taken with these concepts.

In principle, the design variables could be the coordinates of FE nodes, as initially proposed
by Zienkiewicz & Campbell [1]. However, this approach is not efficient because of two main
reasons: firstly, the number of design variables is mesh dependent and unnecessarily high and
second, because as the nodes can change their positions independently, COcontinuity of the
shape cannot be assured and a jagged boundary is often obtained (see Haftka & Grandhi [2]),
thus demanding a post processing stage for boundary smoothing at each iteration.

The modern approach is to parameterize the boundary of the preforms using NURBS. In this
case, one possibility is to define the spline by its control points which are employed as design
variables. Another one is to define the spline through a number of keypoints that it must
match. At each keypoint a normal vector to the spline is calculated and the design variables
are the variations of the original positions of the keypoints following the normal directions.

The last approach was adopted successfully by Chenot et al. [3] to solve the basic benchmark
displayed in Fig. 1. Following a similar procedure we noticed that the results are vel)'
dependent on the initial positions of the keypoints. Thus, we inttoduced as new design
variables the keypoint displacements tangent to the spline at each keypoint. Although the
analytical sensitivity with respect to tangent displacements is zero, due to numerical
approximation we expected to obtain a lower dependence on the choice of the initial position
of the keypoints. On the contraty, difficulties in convergence and geometrical degeneracy
were found in some cases [4]. We believe that the dependency on the initial position of the
keypoints is related to local minima and a solution based on the enrichment of the design
space is currently being developed.

Many research works adopt the NURBS control points as design variables. Among them we
can cite the ones developed by the groups leaded by Zabaras [5] and Grandhi [6]. One
advantage of this approach is related to the calculation of design sensitivity. If control points
are used as design variables, the derivative of any quantity '¥ that depends on the boundary
shape (and implicitly on the design variable) can be expressed by

O'¥ £HI aX(t) £HI aY(t)-=---+---
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where X(t) and Y{t) are the coordinate equations of the parameterized boundaries. Changing
notation we can represent X{t) or Y(t) by a cubic NURBS as

Q;{t) = P;-A-3.4{t)+ P;_2b;_2.4(t)+ p;_lb;_1.4{t)+ P;b;,4{t)

where P; is the i-th control point and t; is the i-th knot [7]. If Q; (t) is the X coordinate of the
point, Pi is the X coordinate of the control point and accordingly to coordinate Y. A simple



inspection shows that this equation is explicitly dependent on the control points coordinates
while this does not happen with respect to the keypoints locations~ Thus, the spline derivative
at point t is explicitly given by

The terms fJ¥/ax and C1¥/oY are usually explicitly available. Another advantage of this
approach is that it is possible to impose tangent continuity between two adjacent splines
through linear equality constraints on their control point coordinates [8]. If keypoints were
being used as design varia))les, ..highly nonlinear equality constraints could be necessary.
These are always difficult to satisfY and it is a good practice to avoid them. The main
disadvantage of this approach is the computational cost, since at each control point one has
one design variable for each degree of freedom, while in the former approach there is only
one design variable per keypoint.

The objective function is determined, in the work of most researchers, as indicated in Fig. 2.
and Eq. (4). In the Figure and Equation, {x;oyJ and {X1+1'YI+J are the nodal coordinates of
the i-th and (i+ l)-th boundary nodes.

_.- ...•.,
(X1'YI) (X1+1'yl+I)\ _

Fig. 2. Objective function as presented by Zhao et a1. [6].
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In order to find the coordinates {X01,YoJ, the procedure needs to find pointwise projections of
the desired boundary on the obtained one. These projections are not always unique and this
fact can lead to inadequate results. Furthermore, the minimimtion of Eq. (4) may not
represent the proper matching of the obtained and desired geometries. These issues are
depicted in Fig. 3.
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Fig.3. Drawbacks of the usual objective function.



ThUs, a new procedure which uses Boolean XOR operations· to measure the "difference"
between the desired and achieved final shapes was implemented [4]. This method uses no
normals and avoids the usual objective function's pitfall. On the other hand. we found
situations in which the code would converge towards a shape not correct, as in Fig. 4.

This was solved introducing the boundary dimension (perimeter in a 2D case) as an additional
term in the objective function proposed, which became

where WI and Wz are weights (WI=W;t=O.5 in this worlc), A and Ao are the XOR area and its
initial value, P and Po are the obtained perimeter and its initial value, and Pd is the desired
perimeter. The strategy showed up to behave very robustly.

The determination of sensitivities (i.e. objective function and constraints derivatives with
respect to the design variables) is a crucial point of any optimization problem. If the
sensitivities are inaccurate the convergence rate may be severely affected and the procedure
may even diverge. On the other hand, sensitivity evaluation is usually one of the most
expensive parts of optimization processes. Therefore it is highly desirable to use analytical
derivatives when available. If this is not the case, a semi-analytical approach is a good option
[9]. If one aims to test a formulation regardless of efficiency, finite differences is acceptable.

In non-linear analyses, the term semi-analytical sensitivity is usually employed for the
application of finite cliftenmces to differentiate the non-linear iteration residual with respect to
the design variables. In this work we use the term semi-analyticol meaning that a chain rule is
applied and some terms are evaluated analytically, while others are obtained using regular
finite differences. Thus, differentiating Eq. (5) with respect to the j-th design variable, we get
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where/is the objective function,pj is the j-th design variable (in this case, a shape parameter)
and ", is the i-th nodal displacement vector. The tenn OXJOpj is called ''velocity field" in
the literature and its value on the boundary is explicitly known through the spline equation
(2). In this work, the computation of dill/tip j was obnuned using regular forward finite

differences. This demands special routines to assure that the mesh topology is not changed
during the design variable perturbations. The inverse power Laplacian relocation scheme was
used for this purpose, following [10]. The power value adopted was 1.5.

Up to the present stage we have tested basically two mathematical programming algorithms.
The fll'St one is sequential linear programming, which was successful but very inefficient
because heuristic: move limits had to be imposed throughout the procedure in order to assure
the validity of the linearizations [4]. The second optimization algorithm employed was
Svanberg's Globally Convergent Method of Moving Asymptotes - GCMMA [11]. This was
applied together with a structured mesh generation approach and. overall fmite difference
sensitivity. Excellent results were obnrined leading to a much more efficient procedure [12].
Nevertheless the efficiency is still not as desired because of the finite differences. In the
present work we will present the same optimization algoritbm but this time together with a
non-structured mesh generation scheme and semi-analytical sensitivity. As already pointed
out, these issues demand proper atteotion and the adopted procedure will be detailed in a
forthcoming paper [13]. The non-structured mesh generation allows to model complex
domains concentrating fine elements near the boundary while employing a fairly coarse
discretization elsewhere. The non-structured mesh generation was accomplished using GiD
6.1.2. - a general purpose pre and post-processor [14] developed by the Universidad
Politecnica de Catalunya and the forging simulation was performed using METAFOR - a
metal forming elastiC>'plastic finite element program [15] developed at the University of
Liege. A managing code was developed which iteratively calls GiD, METAFOR, calculates
the sensitivities and calls GCMMA,leading to the solution of the problem.

The example presented in Figs. 5-8 considers the upsetting of an axissymmetrical preform in
order to achieve a perfect cylinder after 20010height reduction. The component's material is
steel (E=210000 MPa, v=O.3, Isotropic Hardening Modulus = 2100 MPa, (j. =270 MPa).
Sticking contact exists between the component and the die ..A penalization factor a=107 was
applied to impose normal contact .

Due to symmetry conditions ouly the upper right quadrant of the longitudinal section was
modeled and discretizJed. Fig. 5 presents the geometric model which uses a cubic B-spline
with 7 <;ontrolpoints. There arc 11 design variables; the horizontal coordinates of points 4, 5,
6, 7, 8 and 9, and the vertical coordinates of points 5, 6, 7, 8 and 9. The unstructured mesh
generated for the initial design is depicted in Fig. 6.



Two procedures were applied for optimization. In both, the sensitivity was calculated using
the semi-analytical approach with a perturbation of 5xlO·3 times the spline length. In the first
procedure the mesh topology is kept unchaoged during each optimization iteration so that the
sensitivity information keeps consistent in each subproblem. In this stage the mesh is
modified proportionally to the velocity field, calculated in the domain using an inverse power
Laplacian smoothing. After convergence of each subproblem, mesh regeneration including
topology modification is allowed so that a less distorted mesh is defined for the new
geometry. In the second procedure, only Laplacian relocation is allowed in the whole process.

The final shapes achieved using the optimization procedW'es without and with remeshing are
presented in Fig. 7 and Fig. 8, respectively.
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Th~ .graphs .displayed .in Fig. 9. show that wI;I.ileboth strategies work well, the one that
includes rem.eshing achieves a lower objective function in the same number of iterations. We
believe that this behavior can be attributed to a less distorted initial mesh in each subproblem.
Hence, the larger the deformations, the more pronounced this effect is expected to be.
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A code for the optimization of preforms is descril;led. The use of adequate design variables
and a new objective function has made it fairly robust The use of an inverse Laplacian
relocation scheme provides the sensitivities efficiently. The procedure is still under
development and test.
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