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ABSTRACT

In this paper, we cousider a slab represented by the interval 0 < z < 1, at the
initial temperature uo(z) = M > 0 having a positive constant heat flux q on the
left face and the contact perfect condition, u,(1,t) + yus(1,£) = 0 on the right face
z = 1. We consider the corresponding heat conduction problem and we assume that
the phase-change temperature is 0°C. We compare estimations of the time of the
occurrence of the phase-change obtained by means of Laplace Transform and Method
of Lines.

RESUMEN

En este trabajo, nosotros consideramos un material representado por el intervalo
0 < < 1, a una temperatura inicial ug(z) = M > 0 con un flujo de calor positivo
g en la cara izquierda y la condicién de contacto perfecto, u,(1, )+ yud1,8) =0 en
la derecha. Nosotros consideramos el correspondiente problema de conduccion del
calor y asumimos que el cambio de fase se produce a 0°C. Comparamos estimaciones
de los tiempos obtenidos por medio de la tranformada de Laplace y el método de
Ifneas.

INTRODUCTION

We consider a one-dimensional siab with its face y = £ in perfect thermal contact with mass M [
per unit area of a well-stirred fluid (or a perfect conductor) of specific heat ¢ 7- We consider the
following heat conduction problem:

Problem P
kvy = pevr,  D={(y,t):0<y<£7>0}, (1
u(y,0) = V>0, 0<y<é, (2)
kv, (0,7) = g5 >0, >0, (3)

kvy(€,7) + Mycpv, (€, 7)

0, >0, (4)
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We consider the following changes of variables:
-9
&=
kT
== pTﬁ"
v(y, 7) = cufz,1)

We consider the new problem P1:

Problem P1
Upe = Ui, D={(z,t):0<z < 1,t >0}, (5)
u(z,0) = M >0, 0<2<1, (6)
u(0,8) = ¢>0, t>0, (7)
uz(1,1) = yw(l,1), t> 0. (8)
Where:
M= CVQ,
)
k b
IMfo
=

We are interested in obtain estimations of the occurrence of the phase-change for small ¢ (i.e.
t = 0) by means of Laplace Transform (section 1) and Method of Lines(section 2). The Problem
P1 holds the following minimum principle that we use in section 1 and 2 in order to consider
only the behavior of u(z,t) for z = 0.

Lemma 1 The solution of Problem P1 holds:
u(0,t) < u{z, 1), 0<z<1, t>0.

Proof We set v = uy, the function v(z,t) satisfies the following heat conduction problem:

Vpz = Vg D={(z,t):0<z <1,t>0}, 9)
v(z,0) = 0, 0<z<1, (10)
v(0,t) = ¢>0, t>0, (11)
v(1,t) = ~vu(1,1), t>0. (12)

By using the mazimum principle for 0 < z <1 and t > 0 we have:
min v(z,t) = min{qg, 0, v(1,t)},
We suppose that v(1,1) < 0 (we remark that ¢ > 8), it follows that:
minv(z,t) = v(1,1),
by using Hopf lemma we deduce that:
vz(1,1) < 0,

which contradicts the condition (12), therefore uz(z,t) > 0 from which we obtain the thesis.
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THE LAPLACE TRANSFORM

In this section we apply the Laplace Transform at problem considered, we obtain the exact
solution of the transformed problem and we use asymptotic behavior to approximate the inverse
of the solution of the transformed problem. We approximate the solution of the original problem
in order to obtain estimations of the time of the occurrence the change-phase in the material.
The Laplace Transform is:

U(s,t) = Llu(z, 1)) = /0°° u(z, t)e”"td1,

where s is a positive parameter. We apply the Laplace Transformation to Problem 1, that is,
multiply by e~* and integrate with respect to ¢ from 0 to co. This gives:
Problem P2

Upe(s,z) — sU(s,2) = —~M, (13)
Ue(s,0) = 1, (14)
ysU(s, 1)~ Up(s,1) = M. (15)
We remark that v < 0.
The solution of Problem P2 is given by:
. M
U(s,z) = A(s)exp (—v/sz) + B(s)exp (Vsz) + - (16)
where
—(vs— v/s)exp(v/9)g :
A(s) = g(7 V's) p(/‘) ’ (17)
25(ysz cosh (1/s) — ssinh (1/5)
and
25(ys% cosh (1/s) — ssinh (/3)
After simple calculation we obtain the following expression for U(s, z):
U(s,z) = —yssinh (v/s{1 - 2)) + /s cosh (/3(1 — z)) + ﬂ, (19)

q
85 cosh (v/8) — s?sinh (1/5) 8

Remark 1 If we consider ¢ = 0, (19) implies that U(s,z) = % In this case u(z,t) = M for
0<r<landit>0.

Lemma 2 Suppose that the Laplace transform F(s) = L(f(1)) has an asymptotic ezpansion:
o0
F(s) ~ Za,,s"\" § — +00,
v=1

where
A< <Al
then

N ay vl
HOEDY o - e
y=1\"¥ ’
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For more details, we refer [1].
Theorem 1 For the Problem P1 an estimation of the time of change of phase is given by the

Jollowing equality:
(%)
ten = .
2q

Proof We need consider only the behavior of (19) for large s and & = 0, so that

. M
U(s,0)m = - ;‘-{i—, 5 — +00. (20)
2

Therefore we can obtain the asymptotic behavior for u(0,t) for small t:

w(0,6)~ M - —=qt?, t-s0, (21)

We consider the flux ¢ as a variable and the fiz initial condition M.
We need u(0,t) = 0 in order to have @ change phase in the material, that is:

2
M- Zqt? =
Wi 0, (22)

then the time of change phase holds the following equality:

= () | )

Remark 2 The estimation given by theorem 1 is valid for t 75 0 which is equivalent to ¢ > M.
We can see that the estimation does not depend on the constant .

Remark 3 In the problem PI when v — —oco we obtain the following problem

Uy = w, D={(z,8):0<z<1,1>0}, (24)
We,0) = M>0, 0<z<1, (25)
uw(0,t) = ¢>0, >0, (26)
w(l,t) = C, t>0, 27

where C is a constant. This problem was studied in [3] and the authors obtain the following
expresion for the time t* of change of phase

whick is the same that in the theorem two.

In order to obtain an expresion for the time of change of phase which depends on 7, in the next
section we will use the method of lines.
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METHOD OF LINES

In this section we apply the method of lines to Problem P1 in which the partial differential
equation is replaced by a sequence of ordinary differential equations at discrete time levels. For
 this purpose, we shall define a partition {0 =ty < {; < ... <ty = T} of [0, T}, which for ease of
notation is assumed to have equal subintervals At = ¢; —t;_; and i = 1,.., N. The simplest, and
most commonly used, method of lines approximation for Problem P1 requires the substitution

u(z,t,) — ulx,t,_
ut(z1tn)x ( )At( L 1)1

which reduces the partial differential equation (1) to a second order differential equation

Atu:(:c) = Un{(2) = ~tp_y(2),

T i d
for n=1,..,N and At = =, where u, = u(z,t,) and u, = 1;7;(;) The boundary conditions
are transformed in the following equations:
4, (0) = ¢ (28)
~ARL(1) +Yun(1) = Yt (1) (29)

The method of lines approximation for the heat conduction problem P1 is given by:
Problem P3(n)

Atuy(z) - un(z) = —tp_y(z), n=1,..N (30)
u,(0) = g, (31)
—Atuy (1) +7un(1) = Fup_1(2). (32)

The solution of Problem P3(n) has the representation:

n(2) = Appexp (—%z) + B, exp (%:L) + go(2), (33)

where

9=k +2)exp () = 17U (1) + K, 1(1) - gua(1))

Ang = (34)
* 2(sinh(i—) - %cosh(%))
o B+ (1) = gan (D) - alk 4 pexp(~ 1)
nk = »
2(sinh (-’1;) - % cosh (%))
k= VAt,

and g, k(z) is a particular solution of Problem P3(n). We remark that A and B depends on n
and k. The particular solution g, x(z) is given by:

Dusle) = 1 /0 " sinh (£ (s — 2))un-ads. (35)

Henceforth, in order to simplify the notation we omit the indices k. We consider one iteration
(i.e. n=1),in this case the solution of problem P3(1) is given by:
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1 1 M [* 1
uy{z) = Ay rexp (—Ex) + By sexp (Ea:) + 7{/0 smh(;(s — z))ds. (36)

We consider this solution only for + = 0 (Lemma 1), after some algebraic manipulation, we
obtain:

0(0) = Gy (k)M + F,(k)q, (37)
where
7 sinh (%) — k cosh (%)
Ey(k) = - i P T (38)
sinh (-k:) % cosh (E)
and
sinh (-1-) - kcosh(l) + 1=y
Gy(k) = —= s P (39)
’ inh (1) ~ L cosh (1)
sinh () - - cos (k
We look for k satisfying:
ur(0) = G(k)M + F,(k)q = 0,
this equation is equivalent to:
M
Hoy(k) = ——, (40)
q
where
o1 1
7 sinh (E) — kcosh (E)
H(k) = ) i i =5 (41)
sinh (Z) - k:wsh(;) + =

1t is easy to verify that H,(k) possesses the following propertie

Lemma 3 The function H.(k) holds the following properties:
1. Iim H,(k) = 0 when k — 0% for ally > 0.
2 H(k)<O0fork~0 forally>0.

Proof

vk sinh (%) ~ k% cosh (-]t—)

H’Y(k) = 1 i1
ksinh(E) - cosh(z) +1~-49

(=K% + vk)el/* — (k? + yk)e~1/k
(k- 1)el/* — (k—1)e=Vk £ 2(1 — 7))
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flence, the behavior of H,(k) for k = 0 is given by

A T

k=0, (42)

From (42), (1) and (2) holds.

We use the expresion (42) which holds for k£ = 0 in order to solve the equation (40). Firstly, we
remark that the estimations are comparables. From theorem 1 we have:

M 4
TS Ve (43)
where we note that ¢t = k?. Now we define the following function:
2k M
Rk)= —— = ——. 44
)=~ =% (44)
We know from the (40) that:
M
Hy(k) = ~—, (45)
q
where
Lo 1 1
7 sinh (E) — kcosh (E)
H(k)= ' ] T g (46)
sinh (ic-) — k cosh (E) + &

We may immediately verify the following lemma which implies that the times given by theorem
1 and 2 are comparable :

Lemma 4

im k) _ v
k—0 R(E) 2

In order to adjust the estimation given by the theorem 1 we consider the following function:

e(r,k) = Hy(k) - R(K), (47)

from (42), the behavior for k£ & 0 for this function is given by:

2
R (48)
= ¢(7,0)+¢€ (7,0)k + O(k?) (49)

-—

2 2
(77 + 1k + O(K"). (50)
By using the last expresion combined with theorem 1, we obtain a new expresion for the time
of change of phase in Problem P1 where the parameter v appears.
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Theorem 2 For the Problem P1 an estimation of the time of change of phase is given by the
Sollowing equality:

t= (T LY

ch = 2\ 4 72 q2 ‘

Remark 4 If we consider the case where the domain is seminfinity (t.e. 0 < T < +00), then
the exact solution is given by:

z

u(z,t) = M — 2qVt ierfc(zﬂ) (51)
where
erf(z) = %/: exp (—t2)dt,
and

erfe(z) =1 —erf(z), terfe(z) = ﬂ\%%ﬁ} — zer fe(x).

The time of change of phase (i.e. u(0,t) = 0) is given by:

t= (‘/2’7;" s (52)

In this case, we consider the following problem P2, (the Laplace Transform):

1}

Upe(s,z) — sU(s,z)
U(s,0)

-M, (53)
(54)

[

Now, the ezact solution for problem P2y, tn z = 0 is given by:

M
U(0,s) = —;—5"/—2 + =

Therefore, we obtain that:
-2
u(0,1) = .\/77‘/“ M.

The time of phase change is equal to (52).
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