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Abstract. This work presents a numerical technique for simulating viscoelastic free surface flows gov-
erned by the K-BKZ integral constitutive equation. The numerical method solves the governing equa-
tions using the finite difference method on a staggered grid. The equation of motion is integrated by
the GENSMAC methodology. The fluid surface is modeled by the marker-and-cell method which pro-
vides the visualization and the location of the fluid free surface. The full free surface stress conditions
are employed. The Finger tensor is computed using the ideas of the deformation fields method. The
integrand of the integral constitutive equation is approximated by a linear piecewise function which is
integrated exactly and the transport term of the Finger strain tensor is approximated by a high order
upwind scheme. Numerical results showing the convergence of the numerical method developed in this
work for the flow in a two-dimensional channel are presented. In addition, the simulations of the flow
through a planar 4:1 contraction and jet buckling are given.
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1 Introduction

The majority of numerical techniques for simulating viscoelastic fluid flows employs differential con-
stitutive models. An advantage of this approach is that the evolution of the stress depends on the velocity
and stress fields only. Over the past 20 years differential models have been numerically studied by many
researchers using finite element,1–4 finite volume5, 6 and finite difference methods.7 Nonetheless, nu-
merical methods for solving integral viscoelastic models have also been employed most of them using
the finite element method.8–11 In particular, the KBKZ integral model has been considered a realistic
constitutive model for solving industrial polymer flows.9, 12, 13

The main objective of this work is to present a finite difference technique for simulating flows gov-
erned by the integral K-BKZ constitutive equation. The conservation equations are solved following the
approach used by Tomé et al.7 To calculate the stress tensor we employ the ideas of the deformation fields
method introduced by Peters et al.9 This approach allows the Finger tensor to be calculated without the
necessity of following a fluid particle. In their paper, Peters et al.9 use the fact that the upper-convected
derivative of the Finger tensor is null in order to convect the Finger tensor in time. More recently, Hulsen
et al.14 pointed out the fact that this approach had some drawbacks and proposed a modification by
adding a term containing a derivative in respect to the elapsed time s = t − t′ into the upper-convected
derivative. However, by using finite differences this modification is not necessary if the weights used to
calculate the stress tensor are not constants; they depend on the present time t. Therefore the integral of
the constitutive equation is calculated by using the past time t′, not the elapsed time s. This procedure
implies to recalculate the values of t′ used at each time t.

This paper is organized as follows. Section 2 presents the basic equations together with the boundary
conditions; section 3 gives the discretisation of the reference time and the approximation of the extra-
stress tensor. In sections 5 and 6 the GENSMAC algorithm and the main finite difference equations are
given. Finally, in section 7 we present the numerical results obtained for the flow in a two-dimensional
channel and for the flow through a planar 4:1 contraction and jet buckling of a fluid modeled by the
K-BKZ constitutive equation.

2 Governing equations

The basic equations governing isothermal incompressible flows are the continuity equation

∇ · v = 0 , (1)

and the momentum equation

ρ0

[
∂v

∂t
+ ∇ · (v v)

]
= −∇p+ ∇ · τ + ρ0g , (2)

where D
Dt is the material derivative, ρ0 is the density, v is the velocity vector, p is the pressure, g is

the gravity and τ is the extra-stress tensor. In this work the extra-stress tensor is given by the K-BKZ
constitutive equation

τ (t) =

∫ t

−∞
M(t− t′)H(I1, I2)Bt′(t) dt

′ (3)

where M(t − t′) is the memory function, H(I1, I2) is the dumping function and Bt′(t) is the Finger
tensor measuring the deformation of a fluid particle at current time t with respect to the reference time t ′.
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I1 and I2 are the first and second invariant of Bt′(t) respectively. We will use the Papanastasiou, Scriven
and Macosko (PSM) model15 where

M(t− t′) =
∑

m

am
λm

e−
t−t

′

λm (4)

and
H(I1, I2) =

α

α+ βI1 + (1 − β)I2
. (5)

The constants am, λm, α and β are given material parameters. For simplicity we use only one relaxation
parameter a1 and λ1. The procedure using more constants is similar. Details on the calculation of the
Finger tensor will be given in the next section.

In order to solve equations (1)-(3) we employ the splitting

τ = S + η0γ̇ (6)

where γ̇ = ∇v + (∇v)T is the rate-of-strain tensor and η0 is the viscosity at low shear rates and S

is a non-Newtonian tensor responsible for the viscoelastic effects in the flow. Introducing (6) into the
momentum equation (2) it can be written as

ρ0

[
∂v

∂t
+ ∇ · (v v)

]
= −∇p+ η0∇

2v + ∇ · S + ρ0g . (7)

Let L,U, g, η0, ρ0, λ1 be characteristics values of length, velocity, gravity, viscosity, density and re-
laxation time, respectively. The nondimensional form of equations (1), (7), (3) and (6) can be obtained
by using the nondimensional variables:

v̄ =
v

U
, x̄ =

x

L
, t̄ =

U

L
t, ḡ =

g

g
, p̄ =

p

ρ0U2
, S̄ =

S

ρ0U2
, η̄ =

η

η0
, ρ̄ =

ρ

ρ0
, λ̄ =

λ

λ1
, ā1 =

a1

ρ0U2
.

After introducing these nondimensional variables into equations (1), (7), (3) and (6) and omitting the
bars we obtain the following non-dimensional equations

∇ · v = 0 , (8)
∂v

∂t
+ ∇ · (v v) = −∇p+

1

Re
∇2v + ∇ · S +

1

Fr2
g , (9)

τ (t) =

∫ t

−∞

a1

We
e−

t−t
′

We

α

α− 3 + βI1 + (1 − β)I2
Bt′(t)dt

′ , (10)

S = τ −
1

Re
γ̇ , (11)

where Re = ρ0UL
η0

is the Reynolds number and We = λ1
U
L is the Weissenberg number. In this work we

shall consider Cartesian two-dimensional flows with v = (u, v) and x = (x, y).
Therefore, in order to simulate two-dimensional flows governed by the K-BKZ constitutive equation

we have to solve equations (8)-(11) subject to initial and boundary conditions.
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Boundary conditions

For the momentum equations we impose the no-slip condition on rigid boundaries and on inflows the

velocity is prescribed by a parabolic Newtonian profile. On outflows we take
∂vn
∂n

= 0 and
∂vm
∂n

= 0,

where n and m denote normal and tangential directions to the outflow, respectively.

Free surface stress conditions

We consider transient free surface flows of viscous fluid flowing into a passive atmosphere and neglect
surface tension effects. In this case, the appropriate boundary conditions on the free surface can be
written as (see Tomé et al.7)

n · (σ · n) = 0 and m · (σ · n) = 0 (12)

where n and m denote unit normal and tangent vectors to the surface σ is the stress tensor given by

σ = −pI + τ

and τ is the extra-stress tensor given by (6). The finite difference equations approximating these condi-
tions will be given in Section 6.

3 Calculation of the extra-stress tensor

To compute the extra-stress tensor it is first necessary to discretize the interval [0, t] to define the
integration points t′i. The maximum value of t′, t′max, is the time t (t′max = t) and the interval [0, t′max]
is then divided into N subintervals [t′i−1, t

′
i] , i = 1, ..., N, For a fixed time t the memory function is

a fast decaying function for small values of t′ and it is not necessary to take equal values for the size of
∆t′i = t′i − t′i−1. Thus, the size of ∆t′i for t′i near t has to be smaller than the size of ∆t′i for t′i near
zero. We can split the interval in a number of different ways. In this work we use a more simple and
direct discretization of t′. The interval [M(0),M(t′max)] is divided into N equally spaced subintervals
[M(t′i−1), (M(t′i)] for i = 1, 2, · · ·N. The values of t′i are the inverse image of the points M(t′i) and are
given by

t′i = We ln

[
We

a1
M(t′i)

]
+ t . (13)

Figure 1(a) shows the discretization of the interval [M(0), M(t′max)]. To avoid that points accumulate
near t′max for large values of t, we impose some condition on the size of ∆t′i. For instance, let K > 0 be
given. if ∆t′i >

t
K we take t′i = t′i−1 + t

K and the interval [M(t′i),M(t′max)] is divided again into the
remaining number of intervals. In the results shown in this paper we used K = 15. Having obtained the
integration points t′i, i = 1, 2, · · · , N , the computation of the the extra-stress is performed as follows.

First we write the constitutive equation (10) as

τ (t) =

∫ 0

−∞

a1

We
e

t
′

WeF (Bt′(0))dt
′ +

∫ t

0

a1

We
e−

(t−t
′)

We F (Bt′(t))dt
′ (14)

where the function F (Bt′(t)) is given by

F (Bt′(t)) =
αBt′(t)

α− 3 + βI1 + (1 − β)I2
. (15)
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Figure 1: Discretization of the interval [t′0, t
′

max].

For negative values of t′ we adopt de deformation history at t′ = 0. The first integral in (14) is solved
exactly while the second integral is written as

∫ t

0

a1

We
e−

(t−t
′)

We F (Bt′(t))dt
′ =

N∑

i=1

∫ t′
i

t′
i−1

a1

We
e−

(t−t
′)

We F (Bt′(t))dt . (16)

The integrals in (16) can be calculated by a second order integration formula using the undetermined
coefficients method or the Trapezoidal Rule. In order to calculate the integrals in (16) the Finger tensor
Bt′

i
(t) is required. In this work we use the ideas of the deformation fields approach introduced by Peters

et al.9 and improved by Hulsen et al.14 However, we introduce a modification on the procedure adopted
by these authors. We compute the Finger tensor at the past time, t′i, which is then convected to the time
tn+1 according to the equation (see Peters et al.9)

∂Bt′

∂t
+ ∇ · (vBt′) = (∇v)T · Bt′ + Bt′ · ∇v , (17)

together with the condition B|t′=t = I, where I is the unit tensor. The components of the Finger tensor
are calculated and stored for each past time t′i, i = 0, 1, · · · , N . The corresponding finite difference
equations for the calculation of Bt′(t) are given in Section 6.

4 Calculation of the Finger tensor on mesh boundaries

When calculating the Finger tensor using equation (17) we employ a high order upwind method to ap-
proximate the convective terms. In this work we use the CUBISTA method (Convergent and Universally
Bounded Interpolation Scheme for the Treatment of Advection) developed by Alves et al.16 This scheme
requires the values of the variables either remote-downstream or remote-upstream to the flow. Therefore,
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for points near the boundaries the values of the components of the Finger tensor on mesh boundaries are
required. These are obtained as follows.

Rigid boundary parallel to the x-axis

On these boundaries we have u = v = 0 =⇒
∂u

∂x
=
∂v

∂x
=
∂v

∂y
= 0 (by continuity). In this case,

equation (17) leads to the following equations

∂

∂t
Bxx
t′ = 2

∂u

∂y
Bxy
t′ ,

∂

∂t
Bxy
t′ =

∂u

∂y
Byy
t′ ,

∂

∂t
Byy
t′ = 0 . (18)

Equations (18) are easily solved using finite differences. The calculation of the Finger tensor on rigid
boundaries parallel to the y-axis is similar.

Calculation of the Finger tensor on inflows

On inflows we consider fully developed shear flows. For instance, if we consider inflows parallel to
the y-axis, then the Finger tensor is given by (e.g. see Bird et al.17)

Bxx =

(
∂u

∂y

)2

(t− t′)2 + 1 ; Bxy =

(
∂u

∂y

)
(t− t′) ; Byy = 1 . (19)

Calculation of the Finger tensor on outflows

On outflows we assume that a homogeneous Neumann condition for the Finger tensor holds. For
instance, if the outflow is parallel to the y-axis, we have

∂Bxx

∂y
=
∂Bxy

∂y
=
∂Byy

∂y
= 0 . (20)

5 Numerical method

In order to solve equations (8)-(11) we use the ideas presented by Tomé et al.7 We solve the momen-
tum equations together with the mass conservation equation followed by the solution of the equations
related to the K-BKZ model, as follows.

Given the velocity field and the extra-stress tensor at time tn, with the respective boundary conditions
we use the following procedure to compute the velocity field, pressure and extra stress tensor at the time
tn+1 = tn + ∆t.

Step 1 Let p̃ be a pressure field that satisfies the correct pressure condition on the free surface. This
pressure field is computed from the free surface stress condition n · (σ · n) = 0 .

Step 2 Calculate the intermediate velocity field, ṽ(x, tn+1), using equations

∂ũ

∂t
= −

∂p̃

∂x
−
∂(u2)

∂x
−
∂(uv)

∂y
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
+
∂Sxx

∂x
+
∂Sxy

∂y
+

1

Fr2
gx (21)

∂ṽ

∂t
= −

∂p̃

∂y
−
∂(uv)

∂x
−
∂(v2)

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
+
∂Sxy

∂x
+
∂Syy

∂y
+

1

Fr2
gy (22)
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Step 3 Solve the Poisson equation:

∇2ψ(x, tn+1) = ∇ · ṽ(x, tn+1) (23)

with the condition ∂ψ
∂n = 0 on rigid boundaries and inflows; ψ = 0 on the free surface and outflows.

Step 4 Compute the velocity field

v(x, tn+1) = ṽ(x, tn+1) −∇ψ(x, tn+1) (24)

Step 5 Compute the pressure

p(x, tn+1) = p̃(x, tn+1) +
ψ(x, tn+1)

∆t
(25)

Step 6 Compute the stress-tensor τ by the following steps:

6.1 Calculate the integration nodes t′i, i = 1, · · · , N , using the procedure described in Section 3

6.2 Compute the components of the Finger tensor on rigid boundaries, inflows and outflows according
to the equations presented in Section 4.

6.3 Calculate the components of the Finger tensor Bt′(t) from equation (17).

6.4 Compute the components of extra-stress tensor τ (t) from (14).

Step 7 Compute the components of the tensor S by using (11)

Step 8 Update the markers positions: The last step in the calculation is to move the markers to their new
positions. This is performed by solving

dx

dt
= u ,

dy

dt
= v , (26)

for each particle. The fluid surface is defined by an ordered list containing these markers and the
visualization of the free surface is obtained simply by connecting them by straight lines.

6 Basic finite difference equations

For solving the equations of the numerical method presented in Section 5 we employ the finite dif-
ference method on a staggered grid with cell spacing δx and δy. Figure 2a displays the position of the
variables in a given cell. We shall be concerned with problems having a moving free surface so that a
scheme for identifying the fluid region and the free surface is required. To affect this, the cells within
the mesh can be of several types: empty cells (E-cell), full cells (F-cell), surface cells (S-cell), boundary
cells (B), inflow cells (I-cell) and outflow cells (O-cells). E-cells do not have fluid while a F-cell contains
fluid. S-cells contain fluid and is required to be in contact with an E-cell: these cells contain the fluid
free surface. B-cells describe a rigid boundary; I-cell and O-cell are cells simulating inflow and outflow
boundaries, respectively. Figure 2b displays the types of cells within the mesh in a given time.

The equations of Step 1 to Step 5 and Step 8 are the same as those used for computing the flow of an
Oldroyd-B fluid and the corresponding finite difference equations have been presented by Tomé et al.7

Therefore, in this work we shall present only the finite difference equations for calculating Step 6 and
Step 7, as follows:
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Figure 2: a) Typical cell for fluid flow calculation. b) Types of cells within the mesh.

Approximation of the Finger tensor

The Finger tensor (see equation (17)) is approximated as follows: the time derivative is calculated

using the explicit Euler method while the derivatives
∂u

∂x
,
∂v

∂y
,
∂u

∂y
and

∂v

∂x
are computed using central

differences. For the convective terms of equation (17) we employ the high order upwind scheme CU-
BISTA (see Alves et al.16). Details of the implementation of the CUBISTA scheme for two-dimensional
flows can be found in.18 Therefore, the components of the Finger tensor are calculated by

Bxx
t′
k

(tn+1) = Bxx
t′
k

(tn) + ∆t
{
−conv(uBxx

t′
k

(tn)) − conv(vBxx
t′
k

(tn))

+2

[
∂u

∂x
|i,jB

xx
t′
k

(tn)|i,j +
∂u

∂y
|i,jB

xy

t′
k

(tn)|i,j

]} (27)

Bxy

t′
k

(tn+1) = Bxy

t′
k

(tn) + ∆t
{
−conv(uBxy

t′
k

(tn)) − conv(vBxy

t′
k

(tn))

+
∂v

∂x
|i,jB

xx
t′
k

(tn)|i,j +
∂u

∂y
|i,jB

yy

t′
k

(tn)|i,j

}
,

(28)

Byy

t′
k

(tn+1) = Byy

t′
k

(tn) + ∆t
{
−conv(uByy

tn−sk
) − conv(vByy

tn−sk
)

+2

[
∂v

∂x
|i,jB

xy

t′
k

(tn)|i,j +
∂v

∂y
|i,jB

yy

t′
k

(tn)|i,j

]}
,

(29)

where

conv(uBxx
t′
k

(tn)) =
∂

∂x
(uBxx

t′
k

(tn)), conv(vB
xx
t′
k

(tn)) =
∂

∂y
(vBxx

t′
k

(tn)),

conv(uBxy
t′
k

(tn)) =
∂

∂x
(uBxy

t′
k

(tn)), conv(vB
xy
t′
k

(tn)) =
∂

∂y
(vBxy

t′
k

(tn)),

conv(uByy
t′
k

(tn)) =
∂

∂x
(uByy

t′
k

(tn)), conv(vB
yy
t′
k

(tn)) =
∂

∂y
(vByy

t′
k

(tn)) ,
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∂u

∂x
|i,j =

(
ui+1/2,j − ui−1/2,j

)

∆x
,

∂v

∂y
|i,j =

(
vi,j+1/2 − vi,j−1/2

)

∆y
,

∂u

∂y
|i,j =

(
ui,j+1/2 − ui,j−1/2

)

∆y
,

∂v

∂x
|i,j =

(
vi+1/2,j − vi−1/2,j

)

∆x
.

Terms which are not defined at cell position are obtained by averaging. For instance,

ui,j+ 1
2

= 0.25
(
ui+ 1

2
,j + ui+ 1

2
,j+1 + ui− 1

2
,j + ui− 1

2
,j+1

)
,

vi+ 1
2
,j = 0.25

(
vi,j+ 1

2
+ ui+1,j+ 1

2
+ vi,j− 1

2
+ ui+1,j− 1

2

)
.

These equations are solved for each past time t′k, k = 0, 1, · · · , N . They convect the fields Bt′
k
(tn)

at past times t′k to the next time t = tn+1. Having calculated Bt′
k
(tn+1), the new values of t′k(tn+1)

in the interval [0, tn+1] are obtained using the procedure described in Section 3 and the values of
Bt′

k
(tn+1)(tn+1) are then computed using linear interpolation. For instance, if we consider simple shear

flows, figure 3 shows how we compute the component Bxy at the times t′k(tn+1). Having computed
the Finger tensor for t′k(tn+1), k = 0, 1, · · · , N , the values of the stress tensor are obtained by solving
equation (14) componentwise according to equation (10) (see Section 3).

n+1B(t     )

t´ (t   )
0 n t´ (t   )n1

t´  (t  )k n

0 t´ (t     )
2 t´ (t     )

31 4n+1 n+1 n+1 n+1t´ (t     )

t´ (t   )n t´ (t   )n2 3
t´ (t   ) = tn4 n

t´ (t     ) = t n+1

t´

B

n+1t´ (t     )

k
B               ( t     )t´ (t      )n+1

B             ( t      )

n+1

n+1

Figure 3: Calculation of the Finger tensor at times t′k(tn+1) by using linear interpolation. For times t′ < t′0 we
used the deformation at the time t′0.
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Approximation of the free surface stress conditions

By using two-dimensional cartesian coordinates, the stress conditions (12) can be written as

−p̃+
2

Re

[
∂u

∂x
n2
x +

(
∂u

∂y
+
∂v

∂x

)
nxny +

∂v

∂y
n2
y

]
+ Sxxn2

x + 2Sxynxny + Syyn2
y = 0, (30)

1

Re

[
2

(
∂u

∂x
−
∂v

∂y

)
nxny +

(
∂u

∂y
+
∂v

∂x

)
(n2
y − n2

x)

]
+ (Sxx − Syy)nxny + Sxy(n2

y − n2
x) = 0. (31)

To apply these conditions we follow the ideas of Tomé et al.7 We assume the mesh is sufficiently fine
so that, locally, the free surface can be approximated by vertical/horizontal and 450-sloped surfaces. For
these surfaces, the normal vector takes the form of n = (0, 1) or n = (1, 0) or n = (±

√
2

2 , ±
√

2
2 ).

These surfaces are identified by S-cells having only one face in contact with an E-cell or S-cells having
two-adjacent faces in contact with E-cell faces (see figure 4). For instance, if consider the S-cell having
the (j + 1

2)-face in contact with an E-cell in figure 4a then we take n = (0, 1) and equations (30)-(31)
reduce to

−p̃+
2

Re

∂v

∂y
+ Syy = 0 , (32)

1

Re

(
∂u

∂y
+
∂v

∂x

)
+ Sxy = 0 . (33)

Considering figure 4a, the values of vi,j+ 1
2
, ui+ 1

2
,j+1 and p̃i,j are required. They are calculated as

follows: the value of vi,j+ 1
2

is obtained by applying the continuity equation at the cell centre while

ui+ 1
2
,j+1 is computed by discretizing equation (33) at the cell corner (i+ 1

2 , j + 1
2) yielding

vi,j+ 1
2

= vi,j− 1
2
−
δy

δx
(ui+ 1

2
,j − ui− 1

2
,j) ,

ui+ 1
2
,j+1 = ui+ 1

2
,j −

δy

δx
(vi+1,j+ 1

2
− vi,j+ 1

2
) − δy ReSxy

i+ 1
2
,j+ 1

2

,

(34)

respectively. The pressure p̃i,j is then calculated from (32) applied at the cell centre, giving

p̃i,j =
2

Re

(vi+1,j 1
2
− vi,j+ 1

2
)

δy
+ Syyi,j . (35)

Other types of S-cells having only one face in contact with an E-cell face is treated similarly. For S-cells
with two adjacent faces in contact with E-cell faces the treatment is similar. For instance, for the S-cell
shown in figure 4b we take n = (

√
2

2 ,
√

2
2 ) and the stress conditions (30)-(31) become

−p̃+
1

Re

(
∂u

∂y
+
∂v

∂x

)
+

1

2
(Sxx + 2Sxy + Syy) = 0 , (36)

1

Re

(
∂u

∂x
+
∂v

∂y

)
+

1

2
(Sxx − Syy) = 0 . (37)
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The values of ui+ 1
2
,j and vi,j+ 1

2
are obtained by applying the mass conservation equation and stress

condition (37) at the cell centre, giving

(ui+ 1
2
,j − ui− 1

2
,j)

δx
+

(vi,j+ 1
2
− vi,j− 1

2
)

δy
= 0 , (38)

(ui+ 1
2
,j − ui− 1

2
,j)

δx
−

(vi,j+ 1
2
− vi,j− 1

2
)

δy
=
Re

2
(Sxxi,j − Syyi,j ) . (39)

Equations (38) and (39) form a (2×2)-linear system for the unknowns ui+ 1
2
,j and vi,j+ 1

2
yielding

ui+ 1
2
,j = ui− 1

2
,j +

δx

4
Re (Sxxi,j − Syyi,j ) , vi,j+ 1

2
= vi,j− 1

2
−
δy

δx
(ui+ 1

2
,j − ui− 1

2
,j) . (40)

After calculating ui+ 1
2
,j and vi,j+ 1

2
, the pressure at the cell centre is computed from (36) applied at the

cell centre which gives

p̃i,j =
1

Re

[
(ui,j − ui,j−1)

δy
+

(vi,j − vi−1,j)

δx

]
+

1

2
(Sxxi,j + 2Sxyi,j + Syyi,j ) (41)

where the values of ui,j and vi,j are given by

ui,j =
ui+ 1

2
,j + ui− 1

2
,j

2
, vi,j =

vi,j+ 1
2

+ vi,j− 1
2

2
.

Other types of S-cells having two adjacent faces in contact with E-cell faces are treated similarly. For
surface cells having two-opposite faces in contact with E-cells faces we do not have an approximation
for the normal vector. In these cells, the pressure p̃i,j is set to zero and one velocity is adjusted so that
the continuity equation is satisfied for these cells.

a)

p
i, j

v i, j+1/2

ui+1/2, j+1

S

E

n

b)

p
i, j

ui+1/2, j

vi, j+1/2

S

E

E
n

Figure 4: S-cells having one and two faces in contact with E-cell faces.
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7 Numerical results

In this section we present numerical results for fully developed channel flow and for the planar 4:1
contraction problem. We also present numerical results showing the simulation of jet buckling using the
K-BKZ constitutive equation. The results on the channel flow are performed to study the convergence
of the numerical method presented in this paper while the simulation of the flow through a planar 4:1
contraction shows the effect of the Weissenberg number on the size of the corner vortex.

In the results that follow we used U = 1ms−1, L = 0.01m, ρ0 = 1, 000kg/m3 and η0 = 10Pa.s
so that Re = ρ0 U L

η0
= 1.

Fully developed channel flow

We applied the numerical technique presented in this paper to simulate the flow in a two-dimensional
channel governed by the K-BKZ model. We considered a 2D-channel formed by two parallel walls at
a distance L from each other and having a length of 10L. In the K-BKZ equation we used α = 500,
β = 0.1, a1 = 2, 000 and λ1 = 0.005 so that the Weissenberg number was We = λ1

U
L = 0.5.

We solved this problem using three different meshes: Mesh M1 with 10 × 100 cells; Mesh M2 with
20 × 200 cells and Mesh M3 with 30 × 300 cells. The simulation started with the channel full with null
velocity. The Finger tensor was set to unit in all the cells and a Newtonian parabolic profile for the veloc-
ity was imposed on the inflow. We ran this problem until the contour lines were parallel indicating that
the steady state was reached. Under these conditions, we expect that the numerical solution converged to
the respective exact solution of the K-BKZ model for the flow within the channel. Indeed, figure 5 shows
the values of the components of the extra-stress tensor and the component u of the velocity obtained in
the middle of the channel using the three meshes. As we can see in figure 5, the agreement between the
three solutions is very good which shows that the numerical method developed in this work converges as
the mesh is refined.

Simulation of the flow through a planar 4:1 contraction

We considered the flow through a planar 4:1 contraction. A schematic diagram of this geometry is
displayed in figure 6. At fluid entrance we imposed a parabolic Poiseuille flow and on the contraction
walls the velocity field satisfies the no-slip condition. To simulate this problem we used a mesh with
320 × 80 cells and the Reynolds number was fixed to Re = 1 as in the channel flow simulation (U =
1.0, L = 0.01, η0 = 10.0, ρ0 = 1, 000). We solved this problem using three Weissenberg numbers:
We = 0.01 so that we used a1 = 105 and λ1 = 10−4, We = 1.0 (a1 = 1, 000 and λ1 = 10−4) and
We = 2 (a1 = 500 and λ1 = 0.02). The parameters α and β were set to 500 and 0.1, respectively.
We ran this problem until the steady state was reached. The results are displayed in figure 7 (due to
symmetry, only the superior half of the flow domain is shown). We can observe in figure 7 that the size
of the corner vortex decreases as We increases. These results agree with those published in the literature
(eg. see Phillips and Williams19).

Numerical simulation of jet buckling

The phenomenon of jet buckling appears in various industrial applications and consequently it has
been the subject of several investigators.20–22 However, although this problem has not been fully un-
derstood Cruickshank and Munson20 and Cruickshank23 have presented experimental and theoretical
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estimates for predicting the buckling of Newtonian jets. In particular, they found that a two-dimensional
Newtonian jet will undergo buckling if the following conditions are satisfied:

Re < 0.56 and H/L > 3π (42)

where H is the height of the inlet and L is the inlet size.
To illustrate the effect of buckling on thin jets governed by the K-BKZ constitutive equation, we

performed two simulations which showed different behaviour from each other. We considered an empty
box of dimensions of 5 cm × 10 cm with an inlet situated at the box entrance. The size of the inlet
was L = 5 mm and the velocity at the inlet was U = 1 ms−1. In the first simulation we employed a
Newtonian jet while in the second simulation the fluid was modeled by the K-BKZ equation. In these
simulations the lengh and velocity scales were L and U , respectively. The Newtonian viscosity and the
parameters for the K-BKZ model were defined so that the Reynolds number was Re = 0.6 for both
simulations and the Weissenberg number was We = 0.5. Thus, the Cruickshank’s restriction on the
Reynolds number is not satisfied and we do not expect that the Newtonian jet will present the buckling
phenomenon. However, for the viscoelastic jet governed by the K-BKZ constitutive equation we can
not predict the buckling phenomenon since Cruickshank’s results are restricted to Newtonian jets. The
results of these simulations are displayed in figure 8. As we can see in figure 8 the Newtonian jet
did not buckle (confirming Cruickshank’s prediction) while the viscoelastic jet governed by the K-BKZ
constitutive equation did undergo the buckling phenomenon. We believe the K-BKZ jet buckled due to
the high extensional viscosity developed within the jet as it flows onto the rigid plate.

8 Concluding remarks

This paper presented a numerical technique for simulating viscoelastic flows governed by the integral
K-BKZ constitutive equation. The numerical method developed is based on the finite difference method
on a staggered grid. The equation of motion was solved using the ideas of Tomé et al.7 and the fluid was
modeled by the Marker-and-Cell method using marker particles on the fluid surface only (see Tomé et
al.24). The flow in a two-dimensional channel was simulated using mesh refinement and the results were
good showing the convergence of the numerical method developed in this work. The simulation of the
flow through a planar 4:1 contraction was simulated for various values of the Weissenberg number and the
results showed that the size of the corner vortex diminishes as the Weissenberg number is increased: this
result is in agreement with those published in the literature. Furthermore, we presented the simulation of
thin jets impinging onto a rigid plate. It is known that under certain conditions based on the jet diameter
and on the Reynolds number the jet will not flow radially and therefore undergo buckling. Indeed,
Cruickshank’s23 presented an upper limit for the Reynolds number so that for a Reynolds number beyond
this limit a thin Newtonian jet will not produce the phenomenon of jet buckling. Two simulations were
performed in which the Reynolds number was above Cruickshank’s23 prediction. The results showed that
the Newtonian jet did not buckle confirming Cruickshank’s prediction. However, the thin jet modeled by
the K-BKZ constitutive equation produced jet buckling. We believe this was due to the high extensional
viscosity developed at the time the jet touched the rigid plate.
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[24] M.F. Tomé, A. Castelo, J. Murakami, N. Mangiavacchi, J.A. Cuminato, R. Minghim, M.C.F.

Oliveira, and S. McKee. Numerical simulation of axisymmetric free surface flows. J. of Com-
putational Physics, 157, 441–472 (2000).

131



a)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2

Mesh M3
Mesh M2
Mesh M1

b)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1

Mesh M3
Mesh M2
Mesh M1

Figure 5: Results for the channel flow simulation. Numerical solution at the middle of the channel using Re =
1,We = 0.5 on the three meshes: a)velocity u, b) τxx, c) τxy, d) τyy.

132



c)

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1

Mesh M3
Mesh M2
Mesh M1

d)

 1.97

 1.975

 1.98

 1.985

 1.99

 1.995

 2

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1

Mesh M3
Mesh M2
Mesh M1

Figure 5: Continued.
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Figure 6: Domain used to simulate the planar 4:1 contraction.

We = 0.01 We = 1 We = 2

Figure 7: Numerical results for the flow through a planar 4:1 contraction with Re = 1 for increasing values of the
Weissenberg number.
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t = 0.06 t = 0.12 t = 0.14 t = 0.16

Figure 8: Numerical simulation of jet buckling: Fluid flow visualization at different times. Top row: Newtonian
jet with Re = 0.5; Bottom row: Viscoelastic jet (K-BKZ model) with Re = 0.5andWe = 0.5
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t = 0.18 t = 0.20 t = 0.24 t = 0.26

Figure 8: Continued.
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