Mecánica Computacional Vol 20. pp. 312 — 319 Compilado por Fernando G. Flores Córdoba, 30 de octubre - 2 de noviembre de 2001

ALGUNOS PROBLEMAS BÁSICOS DE VIBRACIONES TRANSVERSALES DE PLACAS CIRCULARES ANISÓTROPAS

Diana V. Bambill, Carlos A. Rossit, Patricio A. A. Laura, Raúl E. Rossi Departamento de Ingeniería, Universidad del Sur y CONICET Av. Alem 1253, 8000 Bahía Blanca, Argentina e-mail: <u>dbambill@criba.edu.ar</u>

RESUMEN

Hace 90 años J. Airey publicó la primera tabulación de coeficientes de frecuencias naturales de placas circulares isótropas ("The vibration of circular plates and their relation to Bessel functions" Proc. Phys. Soc. Londres, vol. 23, págs. 225-232).

Dada la importancia del tema en múltiples situaciones, han surgido posteriormente numerosas publicaciones mejorando y completando los valores de Airey y considerando complejidades adicionales.

En cambio son limitados los trabajos que consideran ortotropía rectangular en las propiedades constitutivas del material de la placa o losa y prácticamente la cantidad de resultados es nula en el caso de anisotropía generalizada, considerando configuraciones circulares.

En este trabajo se presenta una reseña de resultados obtenidos recientemente en la Universidad Nacional de Sur. habiéndose estudiado las siguientes configuraciones estructurales:

- placas macizas simplemente apoyadas y empotradas en el contorno.

- placas anulares con contorno exterior empotrado o simplemente apoyado y borde interior libre.

- placas macizas con contorno empotrado o simplemente apoyado y un apoyo central.

ABSTRACT

Ninety years ago J. Airey, published the first tabulation of natural frequency coefficients of circular isotropic plates ("The vibration of circular plates and their relation to Bessel functions" Proc. Phys. Soc. London, vol. 23, pp. 225-232).

Many investigators improved and completed Airey's values, considering additional complexities in fact of the technological interest of the problem.

This is not the case when dealing with circular plates of generalized anisotropy, which has not been treated in the open literature.

This paper presents a short survey of results, which have been recently obtained at the Universidad Nacional del Sur, dealing with the following cases

-solid anisotropic circular plates with simply supported or clamped boundary

-anisotropic annular plates which have a simply supported or clamped outer boundary and are free at the inner boundary

-solid anisotropic circular plates, with simply supported or clamped outer boundary and a central point support

INTRODUCCIÓN

La utilización de elementos estructurales construidos con materiales de anisotropía generalizada está creciendo rápidamente.

El desarrollo de nuevos materiales, así como la necesidad de contar con estructuras livianas de alta

144 A. 1997

rigidez permiten avizorar que ese incremento se hará cada día más pronunciado.

El clásico tratado de S. G. Lekhnitskii [1] constituye una referencia obligada para investigadores y analistas que deban resolver problemas de placas anisótropas.

Cabe mencionar el hecho de que aún el caso de las vibraciones de una placa rectangular simplemente apoyada de anisotropía generalizada constituye un laborioso problema para el cual no es asequible una solución mediante métodos exactos. Puede obtenerse una solución aproximada, aplicando el clásico método de Rayleigh-Ritz, aproximando la función desplazamiento mediante series dobles truncadas de senos.

$$W_a(x, y) = \sum_{n=1}^{N} \sum_{m=1}^{M} b_{nm} \operatorname{sen} \frac{n \pi x}{a} \operatorname{sen} \frac{m \pi y}{b}$$

donde cada función coordenada satisface solamente las condiciones de borde [2, 3].

Distintos investigadores han tratado combinaciones diferentes de condiciones de borde utilizando sumatorias de funciones viga ("beam functions"), que satisfacen, por lo menos, las condiciones esenciales de borde.

Curiosamente el caso de placas circulares de anisotropía generalizada no ha sido tratado en la literatura abierta. Ello probablemente es debido a que el problema presenta complejas dificultades de carácter constitutivo geométrico.

En este trabajo se presenta una reseña de resultados para las siguientes configuraciones estructurales:

-a) placas macizas con contorno simplemente apoyado o empotrado (ver figura 1.a).

-b) placas anulares con el contorno exterior simplemente apoyado o empotrado y el contorno interior libre(ver figura 1.b).

-c) placas macizas con un apoyo puntual central y simplemente apoyada o empotrada en el contorno(ver figura 2).

Se han determinado coeficientes de frecuencia fundamental de los casos mencionados utilizando el método de Rayleigh-Ritz optimizado.

SOLUCIÓN APROXIMADA

Cuando la placa se encuentra efectuando uno de sus modos normales de vibración, la funcional de energía gobernante del problema, siguiendo la notación de Lekhnitskii, es

$$J(W(x,y)) = \frac{1}{2} \iint [D_{11}W_{x}^{2} + 2D_{12}W_{x}W_{yy} + D_{22}W_{yy}^{2} + + 4D_{66}W_{xy}^{2} + 4(D_{16}W_{x} + D_{26}W_{yy})W_{xy}] dx dy - - \frac{1}{2}\omega^{2} \rho h \iint W^{2} dx dy$$
(1)

La expresión de la función aproximada en cada caso se construye combinando funciones coordenadas, cada una de las cuales, satisface idénticamente las condiciones de borde esenciales. En la construcción de dicha expresión, debe prestarse especial atención al hecho de que todos los términos de la funcional (1), contribuyan efectivamente al resultado final. [4]

a) Placas circulares

Caso a.1) Placas macizas simplemente apoyadas en el contorno

$$W_{a}(r,\theta) = A_{1}(1-r^{2}-r^{2}\sin\theta+r^{\gamma}\sin\theta) + A_{2}(1-r^{3}-r^{3}\cos\theta+r^{\gamma+1}\cos\theta) + A_{3}(1-r^{\gamma+2}) + A_{4}(1-r^{\gamma+3})$$
(2)

Caso a.2) Placas macizas empotradas en el contorno

$$W_{a}(r,\theta) = A_{1}(r^{\gamma}(3+\cos\theta)+r^{2}\cos\theta(\gamma-3)-r^{3}(\cos\theta(\gamma-2)+\gamma)+\gamma-3)+ (3.a) + A_{2}(3r^{\gamma+1}-r^{3}(\gamma+1)-2+\gamma)+ (3.a) + A_{3}(4r^{\gamma+2}-r^{4}(\gamma+2)-2+\gamma)+ (3.a) + A_{4}\sin\theta(r^{\gamma+2}-r^{3}\gamma+r^{2}(\gamma-1)) \\ W_{a}(r,\theta) = A_{1}(r^{\gamma}(3+\cos^{2}\theta)+r^{2}\cos^{2}\theta(\gamma-3)-r^{3}(\cos^{2}\theta(\gamma-2)+\gamma)+ (3.b) + (\gamma-3)+ (3.c) + A_{2}(3r^{\gamma+1}-r^{3}(\gamma+1)-2+\gamma)+ (3.c) + A_{3}(4r^{\gamma+2}-r^{4}(\gamma+2)-2+\gamma)+ (3.c) + A_{4}\sin\theta(r^{\gamma+2}-r^{4}(\gamma+2)-2+\gamma)+ (3.c) + A_{4}(3r^{\gamma+1}-r^{3}(\gamma+1)-2+\gamma)+ (3.c) + A_{2}(3r^{\gamma+1}-r^{3}(\gamma+1)-2+\gamma)+ (3.c) + A_{2}(3r^{\gamma+1}-r^{3}(\gamma+1)-2+\gamma)+ (3.c) + A_{2}(3r^{\gamma+1}-r^{3}(\gamma+1)-2+\gamma)+ (3.c) + A_{3}(4r^{\gamma+2}-r^{4}(\gamma+2)-2+\gamma)+ (3$$

Figura 1: Placas circulares maciza y anular con anisotropía generalizada

b) Placas anulares b1) simplemente apoyadas en el contorno exterior

b.2) empotrada en el contorno exterior

Siguiendo el criterio desarrollado en [2], se utilizaron las mismas aproximaciones dadas por las ecuaciones (2) y (3.a, b y c) respectivamente para el caso de la placa doblemente conexa. (ver figura 1.b).

c) Placas macizas con un apoyo puntal central

Caso c.1) Placas macizas simplemente apoyadas en el contorno con un apoyo central

La expresión que se utilizó en este caso fue

$$W_{a}(r,\theta) = A_{1} r^{2} (r^{\gamma} \cos\theta + r (1 - \cos\theta) - 1) + A_{2} r^{3} (r^{\gamma} \sin\theta + r (1 - \sin\theta) - 1) + A_{3} r^{4} (r^{\gamma} \cos\theta + r (1 - \cos\theta) - 1) + A_{4} r^{5} (r^{\gamma} \sin\theta + r (1 - \cos\theta) - 1) + A_{4} r^{5} (r^{\gamma} \cos\theta + r (1 - \cos\theta) - 1) + A_{5} r^{6} (r^{\gamma} \cos\theta + r (1 - \cos\theta) - 1) + A_{5} r^{7} (r^{\gamma} \sin\theta + r (1 - \sin\theta) - 1)$$

Figura 2: Placa circular maciza con anisotropía generalizada y apoyo puntual central

Caso c.2) Placas macizas empotradas en el contorno con un apoyo central La expresión utilizada:

$$W_{a}(r,\theta) - A_{1} r^{2} (r^{7} - r^{r-1} - r + 1) (1 - \operatorname{sen} \theta) +$$

$$+ A_{2} r^{3} (r^{7} - r^{r-1} - r + 1) (1 - \operatorname{sen} \theta) +$$

$$+ A_{3} r^{4} (r^{9} - r^{9-1} - r + 1) (1 - \cos \theta) +$$

$$+ A_{4} r^{5} (r^{7} - r^{9-1} - r + 1) (1 - \cos \theta) +$$

$$+ A_{5} r^{6} (r^{7} - r^{9-1} - r + 1) (1 - \sin \theta) +$$

$$+ A_{6} r^{7} (r^{7} - r^{9-1} - r + 1) (1 - \operatorname{sen} \theta)$$

En todas las expresiones que aproximan la deflexión de las diferentes placas, γ es el parámetro de

(4)

optimización de Rayleigh.

Si se sustituye, en cada caso la expresión correspondiente y se aplica el procedimiento de Ritz, se llega a:

$$\frac{\partial J(W_a)}{\partial A_i} = 0, \text{ con } i = 1, 2, \dots$$
(6)

que conduce a un sistema de ecuaciones lineales homogéneas en las constantes A_i .

La condición de no trivialidad de tal sistema conduce a un determinante - ecuación cuya raíz menor es el coeficiente de frecuencia fundamental $\Omega_1 = \sqrt{\frac{\rho}{D_{11}}} \omega_1 a^2$ del problema en estudio. Debido a que $\Omega_1 = \Omega_1(\gamma)$, se minimiza Ω_1 con respecto al parámetro γ , y siendo posible optimizar el valor del autovalor fundamental Ω_1 .

RESULTADOS NUMÉRICOS

La tabla I muestra los valores de los coeficientes de frecuencia fundamental para placas macizas anisótropas de contorno simplemente apoyado -caso a.1)- y empotrado - caso a.2)-.

En el primer renglón de la tabla se evidencia la buena aproximación obtenida para la placa anisótropa.

Valores para placas anulares –casos b.1) y b.2)- se indican en la tabla II. Se ha verificado la buena concordancia para los casos isótropo y ortótropo disponibles en la literatura.

En las tablas III y IV se han volcado los resultados obtenidos para placas con apoyo central -casos c.1) y c.2)-. Se nota en ambas tablas un brusco descenso en la rigidez de la placa (disminución del coeficiente fundamental) al disminuir el coeficiente D_{12}/D_{11} octava fila de la tabla. Ello motivó un

estudio particularizado de la influencia de dicho coeficiente, volcado en la tabla V.

En la tabla VI, se efectúan comparaciones de la aproximación adoptada para el caso c.2, con valores obtenidos mediante el método de elementos finitos cuando el material es isótropo u ortótropo. Se observa una concordancia satisfactoria desde el punto de vista de las aplicaciones tecnológicas.

	/		D ₁₄ /D ₁₁	D ₁₀ /D ₁₁	$\Omega_{1} = \sqrt{\frac{\rho h}{D_{11}}} \omega_{1} a^{2}$				
D_{22}/D_{11}	D_{12}/D_{11}				Simplemente apoyada	Empo	Empotrada		
					4 term (2)	4 term (3.a)	4 term (3.b)		
1	3/10	7/20	0	0	4.93515	10.2161	10.2168	(1)	
1/2	3/10	1/2	1/3	1/3	4.4802	9.6242	9.6242		
1/2	1/3	2/3	1/3	1/3	4.5815	10.1091	10.1092		
2/3	1/3	1/2	1/3	1/3	4.7087	10.0009	10.0016		
2/3	1/2	2/3	1/2	1/3	5.0278	10.6332	10.6339		
1/4	1/6	1/3	1/2	1/2	3.8949	8.4062	8.4021		
1/4	1/3	1/2	1/5	1/3	4.2759	9.1494	9.1466		
4/5	1/4	2/3	3/5	2/5	4.7339	10.5717	10.5724		
0.203019	0.324557	0.338756	0.512055	0.169491	4.1582	8.5802	8.5756		

Tabla I - Coeficientes de frecuencia fundamental $\frac{n_{d_1}}{d_{d_1}}$ de placas circulares macizas con anisotropía generalizada

T): Placa circular isótropa. Valores exactos. de frecuencia fundamental:	Ω	$_1 = 4.935$ (simplemente apoyada) y $\Omega_1 = 10.215$.(empotrada)
--	---	---

 $\Omega_1 = \sqrt{\frac{\rho h}{D_{11}}} \omega_1 a^2$ Place anular de relación $b_a = \frac{1}{2}$ $\frac{D_{12}}{D_{11}}$ $\frac{D_{16}}{D_{11}}$ ^D22/D₁₁ ^D66/D₁₁ ^D₂₆/_{D11} Simplemente Empotrada apoyada 4 term (3.a) 4 term (2) Ref. [5 4 term (3.c) Ref. [5 ⅔⁄10 1∕20 0 0 1 5.087 5.061 17.7350 17.7317 17.638 1/3 ⅓ 1/2 0 0 4.556 4.571 15.8820 15.8785 15.855 1/2 1/2 ⅔10 ⅓ ⅓ 4.853 17.0658 17.0632 1/2 1/3 ⅔ 1/3 ⅓ 5.099 18.1528 18.1509 1/3 2/3 ⅓ 1/2 1/3 5.032 17.6285 17.6262 1/3 2/3 1/2 ⅔ 1/2 5.344 18.6983 18.6957 1/4 1/3 1/6 $\frac{1}{2}$ 1/2 4.241 14.9220 14.9396 1/4 1/3 1/2 1/5 1/3 4.611 16.1913 16.1893 4/5 2/3 ¥4 3/5 2/5 5.324 19.0887 19.0787 0.203019 0.324557 0.338756 0.512055 0.169491 4.257 14.8374 14.8346

Tabla II - Coeficientes de frecuencia fundamental Ω_i , de placas anulares con anisotropía generalizada

D ₂₂ /D.		D66/D	D ₁₆ / D ₁₁	D ₂₅ /D ₁₁	$\Omega_{1} = \sqrt{\frac{\rho h}{D_{11}}} \omega_{1} a^{2}$				
7-11		/~11			2 térm.	3 térm	4 térm	5 térm	6 térm
1	3/10	7/20	0	0	15.4084	14.9645	14.8484	14.8581	14.8387
1/2	3/10	1/2	1/3	1/3	14.3577	13.9455	13.8833	13.8455	13.8275
1/2	1/3	2/3	1/3	1/3	14.9684	14.5396	14.4742	14.4347	14.4158
2/3	1/3	1/2	1/3	1/3	14.9685	14.5384	14.4737	14.4344	14.4156
2/3	1/2	2/3	1/2	1/3	15.9345	15.4768	15.4080	15.3662	15.2034
1/4	1/6	1/3	1/2	1/2	12.5239	10.9390	8.3050	6.6697	6.5486
1/4	1/3	1/2	1/5	1/3	13.6646	13.2722	13.2130	13.1771	13.1599
4/5	1/4	2/3	3/5	2/5	15.6026	15.1562	14.6791	14.6751	13.8114
0.20302	0.32456	0.33875	0.51206	0.16949	12.9391	12.5573	12.5020	12.4619	11.7140

Tabla III - Coeficientes de frecuencia fundamental Ω_t , de placas circulares con anisotropía generalizada, simplemente apoyada en el contorno y con apoyo puntual central

Tabla IV - Coeficientes de frecuencia fundamental Ω_1 , de placas circulares con anisotropía generalizada, empotrada en el contorno y con apoyo puntual central

	D_{12}/D_{11}	D ₅₅ /D.		D ₂₆ /	$\Omega_1 = \sqrt{\frac{\rho h}{D_{11}}} \omega_1 a^2$				
		,			2 térm)	3 térm	4 térm	5 térm	6 térm
1	3/10	7/20	0	0	22.895	22.887	22.850	22.825	22. 799
1/2	3/10	1/2	1/3	1/3	21.045	20.574	19.988	19.571	19.530
1/2	1/3	2/3	1/3	1/3	22.157	21.781	21.416	20.967	20.946
2/3	1/3	1/2	1/3	1/3	22.076	21.716	21.314	20.868	20.840
2/3	1/2	2/3	1/2	1/3	23.513	23.019	22.292	21.836	21.771
1/4	1/6	1/3	$\frac{1}{2}$	$\frac{1}{2}$	17.932	14.994	12.593	12.307	11.889
1/4	1/3	1/2	1/5	1/3	19.675	19.277	18. 94 5	18.540	18.529
4/5	1/4	2/3	3/5	2/5	23.500	23.631	21.230	20.826	20.642
0.203019	0.324557	0.338756	0.512055	0.169491	18.231	17.154	16.039	15.782	15.668

Tabla V - Comparaciones de coeficientes de frecuencia de placas circulares anisótropas $(D_{12}/D_{11} = 1/4; D_{14})$ $D_{14}/D_{11} = 1/3; D_{14}/D_{11} = 1/2; D_{14}/D_{11} = 1/2)$, con un apoyo central puntual y simplemente apoyadas o empotradas en el contorno exterior, cuando varía el coeficiente D_{12}/D_{12}

D./	$\Omega_1 = \sqrt{\frac{\rho}{h}}$	$\frac{1}{D_{11}}\omega_1 a^2$
$\int D_{11}$	Simplemente apoyada	Empotrada
1/3	8.7461	13.0476
1/4	7.7836	12.4833
1/5	7.0887	12.1313
1/6	6.5486	11.8890

Tabla VI - Comparación de coeficientes de frecuencia Ω_1 de placas ortótropas e isótropa con valores obtenidos mediante E.F. -caso c.2)-.

D_{1}/D_{1}	μ			$\Omega_{1} = \sqrt{\frac{\rho h}{D_{1}}} \omega_{1} a^{2}$							
				2 térm)	3 térm	4 térm	5 térm	6 térm	E.F.		
1	3/10	1/20	isótropa	22.895	22.887	22.850	22.825	22.799	22.740		
1/2	1/3	1/3	ortótropa	20.089	20.074	20.070	20.029	20.020	19.882		
2	1/3	2/3	ortótropa	28.425	28.419	28.257	28.248	28.216	27.325		

REFERENCIAS

[1] Lekhnitskii, S. G., Anisotropic Plates,: Gordon and Breach Science, New York, 1968

[2] Larrondo, H. A., Ávalos, D. R. y Laura, P. A. A., Transverse vibrations of simply supported anisotropic rectangular plates carrying an elastically mounted concentrated mass, Journal of Sound and Vibration Vol. 215, 1998, págs. 1195 – 1202.

[3] Laura, P. A. A. y Bambill, D. V., Numerical experiments on transverse vibrations of a rectangular plate of generalized anisotropy with a free edge, Journal of Sound and Vibration Vol. 216, 1998, págs. 342 – 346.

[4] Bambill, D. V., Rossit C. A. y Laura, P. A. A., Transverse vibration of circular solid and annular plates of generalized anisotropy. Sometido a publicación

[5] Laura, P. A. A., Rossi, R. E. y Bambill, D. V., Analytical and numerical experiments on vibrating circular annular plates of rectangular orthotropy. Journal of Sound and Vibration Vol. 220, 1999, págs. 941 – 947.