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In recent years composite mesh methods aiming to construct numerical models
where two or more finite element meshes of different granularities are superimposed
over the whole domain of the problem were studied by the authors. The focus
is stressed 011 elliptic problems where the domains present border singularities in
order to assess the different kinds of error estimations -- mixed mesh, Zienkiewicz-
Zhu, Zadunaisky's- and their relationships. Estimation of residues and errors for
some examples in planar domains is perfomed. Three main illustrating examples
are treated here: (1) test problems based 011 variants of the Poisson equation with
boundary conditions of Dirichlet, Neuman and Robin type, (2) elliptic (stationary)
advection-diffusion equation with boundary conditions of Dirichlet, Neuman and
Robin type; and (3) elliptic problems arising from linear elasticity in plane stress.

Recientemente los autores han estudiado 108 metodos de mallas compuestas donde
dos 0 mas mallas de elementos finitos de distintas granularidades se superponen en
el dominio del problema. Se enfoca en problemas con singularidades de borde con
el fin de calibrar los estimadores de error de mallas mezda, de Zienkiewicz-Zhu, y
de Zadunaisky y sus relaciones. Se consideran tres clases principales de ejemplos:
(1) problemas test basados en variantes de la ecuacion de Poisson con condiciones
de borde de Dirichlet, Neumann y Robin (2) version de estado estacionario de la
ecuacion de adveccion-difusionno lineal y (3) problemas elfpticos asociados a elasti-
cidad lineal en tensiones planas.

In recent articles we have developed composite finite element models of several problems that
are drawn from Mechanical and Chemical Engineering with the aim of providing reasonable a
posteriori error estimates, and to obtain improved numerical solutions [1] [2] [3] [4]. The main
idea of this composite mesh method is to construct a numerical model where two or more finite



element meshes of different granularities (size of the elements) are superimposed over the whole
domain of the problem. The motivation of these developments came from the mixture theory
of multi phase materials [6] [7]. In this class of materials each component occupies a fraction of
the total volume. The physical properties of the composite material is obtained from those of
component phases weighted by a participation factor, which is taken as their volumetric fraction
or another suitable quantity. In a similar way our numerical model is composed by different
finite element meshes and the properties of the whole model is obtained by adding those of the
component meshes multiplied by a participation factor. In this case, the different behavior of
each phase come from their intrinsic accuracy instead of their physical properties. In this work
we study several properties associated to the application of the method to elliptic problems with
boundary conditions of Dirichlet, Neumann, and mixed types and showing boundary singulari-
ties. The finite element erfOr estimates may be computed a priori or a posteriori. A posteriori
error estimates, computed from the numerical solution, are of practical importance and may
be categorized under two main subclasses. The first of these is stress recovery, which is· also
referred to as a postprocessing or flux-projection technique. It was proposed in the context of
linear elliptic problems [8]. The second subclass are those of residual based e,.<;timators,explicit
or implicit. The literature covering these topics is vast [9][10]. The error estimates performed
by means of the composite mesh fall within the residual based estimators. We also develop in
this work multidimensional Zadunaisky's method based error estimators. The composite mesh,
proposed in previous papers from the authors, is formed by two finite element meshes sharing
the problem domain. The meshes have different element size h, and the connection between
components is enforced, for instance, by connecting common nodes. The participation factors
a and (1 - a) for the fine and coarse meshes, respectively, are defined.
Several illustrating examples are treated in this paper:

with initial values, and boundary conditions of Dirichlet, Neumann and Robin type.

2. The elliptic stationary equation associated to the parabolic advection-diffusion equation

with initial values, and boundary conditions of Dirichlet, Neumann and Robin type. In
this equation p is a polynomial function.

A finite element model of the variational equation is then set, in order to discretize the space
coordinates. The task is done in a mixed mesh framework designed to make a posteriori error
estimation of approximations and refine the mesh by means of an adaptive algorithm. The
next step is then to set a composite mesh finite element. The primary goal of the adaptive
composite mesh triangular -or, in some special cases, piecewise bilinear rectangular- finite
element method for the stationary problem is to control the space discretization error of the
approximate solution as measured from integrals of double mesh residues. The adaptive process
is of the h and of the h-r type.
The rest of the paper is devoted to the statement of some conclusions about the implementation
details of the proposed method.



The test problems we deal with are based on variants of the elliptic stationary form of the heat
equation

with boundary conditions of Dirichlet (hu = r on an), Neumann (1] . (cVu) = 9 on an) and
Robin (1]' (cVu) + qu = 9 on (0) type, where 1] is the outward unit normal, and g, q, h, and r
are functions defined on an. Both, the linear and nonlinear cases are treated.
By standard calculations we derive the weak form of the differential equation: Find u such that

k «cVu) . Vv + auv - jv) dx = /an (-qu + g)v ds, 'v'v

The stationary elliptic counterpart of the diffusive-advective nonlinear equation case is also
treated. The main equation is

where p(u) is a polynomial function in u, with Dirichlet and Robin (1]' (cVu) +q(u) = 0 on an)
boundary conditions, where q(u) is a polynomial function defined on an.
The standard numerical integration of the PDE is performed by the Matlab toolboxes, which
are efficient for the classes of problems we deal with (see the Matlab reference books for details
on these routines, e.g. [11]). The simultaneous and post processing of these results lead to the
error estimations we obtain. We resort to the Matlab Partial Differential Equations Toolbox for
the ancillary developments.
A description of the composite mesh concept is given in the next section where we define the
double mesh method for error estimation.

The finite element composite mesh
The composite mesh is formed by two (or more) finite element meshes of different accuracy
(different element size h), which share the problem domain. Connection between components
is enforced (for instance connecting common nodes). A participation factor for each mesh is
defined, for details see [4J. This procedure may be applied in several ways, but always with
several components, each of different accuracy. The h-version of this procedure uses meshes of
different element sizes. The simplest case is that of structured meshf>-Sof triangular or rectangular
elements, where in the latter case one such element shares the spatial subdomain with four (2D)
or eight (3D) elements of the finer mesh. For triangular elements in 2D there are four new ones
on the refined mesh. Connection of both meshes is enforced at nodes of the coarser mesh.
The double mesh, therefore, is composed by two finite element meshes of different element size,
hI > h2, which share the problem domain. In general the second has the additional property of
being a refinement of the first. The common nodes connect the two meshes so the complete set
of elements are connected. The participation factor of each of the meshes is set as equal, but
other arrangements -not addressed in this work-'-- are equally possible.
The operator problem Lu = f can be approximated by the previously explained implementation
of the finite element method as

Liuh;=/i, i=1,2 (6)

where, in general, hI > h2, and in practical applications hI = 2h2, hi being the element size
of finite element mesh Mhp i = 1,2. The meaning of symbols hi are the following: globally
they represent the norm of the partition of the domain in elements, but locally they refer to the
diameter of the element and say that the elements of size h2 refine those of size hI' In the usual
case the meshes are connectro at common nodes (they are the nodes of the coarser mesh) and
one is a refinement of the other.



where the symbol L1-+2 stands for the immersion of matrix L1 into the correct places of L2
padded with zeros. The same for f.
In the case of a = 1/2, equation (7) reads:

(L1->2 + L2)Uhlh20.5 = (11->2+h) (8)

We can define the symbol uhlh2n for the function, bilinear in the elements, that coincides with
Uhlh2 in the coarser nodes (mesh Mhl) and is bilinearly interpolated in the remaining nodes
(those of mesh Mh2 that are not on mesh Mhl)'

Error estimation
We calculate the followingresidues

the solution Uhlh2 being adapted to the dimension of the matrices involved.
The double mesh solution Uhlh2 lies, in general terms, between the solutions Uh" i = 1,2. So the
sum of the absolute values of the residues is related and in a direct proportion to the difference
between the two approximate solutions and to their absolute errors. The main idea is that the
estimation can be done with only one double mesh calculation. In the next section we define
the residues.

Zadunaisky's method associated to composite meshes
The method of solving a known solution pseudoproblem associated to the original problem and
of similar error production behavior is immersed in the double mesh framework. See [15Jfor
details on the original Zadunaisky's method.

In this section we treat several elliptic test examples in order to assess the quality of element
residues as a posteriori error estimators.
The first and second examples are the double mesh solution of Laplace equation with Dirichlet
boundary conditions and a retract angle singularity.

Example 1
The Laplace equation -Au = 0, in n -the unit circle minus the octant defined by lines y = -x
and y = x, x < 0- is a first example of domain with a retract corner so the order of approximate
solutions is degraded. The boundary conditions of Dirichlet type are u(x, y) = 0, y = -x, x < 0;
u(x, y) = 0, y = x, x < OJ u(x, y) = cos«2/3) arctan(y/x)), x2 + y2 = 1. The retract angle lead
to a numerical singularity near the origin of coordinates. The exact solution of this test problem
reads u(x, y) = (x2 + y2)1/3 cos«2/3) arctan(y/x)).
In Fig. 1 the exact double mesh errors IU12 - ul are shown. The errors are greater in the
neighborhood of the point (0,0). In Fig. 2 the corresponding residues r are plotted. These
residues detect the numerical singularity so they allowto refine the mesh in an adaptive manner.
Their patterns being similar to those of exact errors. In both cases the errors are located in the
neighborhood of point (0,0) where the order of the approximation is degraded by a singularity.
The residues allow the adaptive mesh refinement we perform in this example. The mesh is made
finer in the neighborhood of point (0,0) (retract angle). In Fig. 3 the exact double mesh errors
IU12 - 141 are shown, but now with a mesh refined in the neighborhood of the singular point.
It is possible to observe the improvement in the quality of the solution due to the adaptive
refinement of the mesh.



Figure 1: Double mesh errors,
ex. 1.

Figure 3: Double mesh errors,
ex. 1, adapted mesh.

Example 2
A family of Laplace problems with singularities are studied ?ver the unit square. Here the
solutions are

1 2 1 2.1L. 1f'
u(x, y) = ((x - -) + (y - -2) ) 2w coo -(1,

2 w
1 1

(J = arctan((y - - )/(x - -»2 2
w = 21f' - 2/3, and (1) /3 = arctan(l), (2) /3 = arctanW, and (3) /3 = arctan( ~gg6) (quasi-crack).
The case (1) is treated also in the first example, the results for case (2) are omitted for reasons
of space. The parameter /3 is associated to the order of the singularity and is related to the ex
parameter (for solution improvement).

Figure 4: Residues, mixed
mesh with weights ex = 0.5,
ex. 2.

Figure 5: Zienkiewicz-Zhu er-
ror estimation, ex. 2.
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Figure 6: Zadunaisky's
method error estimation, ex.
2.

In figures 4, 5, and 6 are respectively plotted the residues, the Zienkiewicz-Zhu error estimators
and the Zadunaisky's method error estimator. The double mesh exact errors are omitted. The
pattern of these estimators are similar and all detect the corner singularity.
In Table I we show the norms of errors for different mixed mesh solutions for this example. In
Fig. 7 the norms of the errors for cases (1): circles for energy norm and pluses for £00 norm,
and (3): asterisks for energy norm and crosses for £00 norm, are plotted against the number of
nodes.
In the next section we treat elliptic stationary examples associated with advective and nonlinear
terms.
The methodology proposed in this paper is able to perform error estimation in a set of more
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Table I: Norms of errors of different mixed mesh
solutions for ex, 2 problem, case (3) (2000 nodes

aprox.)
0 lIu-udllE lIu - udllL2 lIu - udllLoo

0.5 3.6e-3 3.1e-2
1.33 2.6e-3 2.1e-2
1.7 3.0e-3 1.7e-3 1.6e-2
1.9 3.6e-3 1.5e-3 1.2e-2
2 4.0e-3 1.7e-3 1.6e-2

complex problems than those of this section. The main characteristics are: (1) systems of
equations, (2) advective terms, and (3) nonlinear coefficients.

In this section several problems associated to the modeling of catalytic chemical reactors are
considered.

Example 3
In this example we treat a non advective non linear elliptic equation associated to a parabolic
equation with known exact solution that reads

with the boundary conditions ~(O,y) = 0,0:::; y :::;1, x = OJ ~(x,O) = 0,0:::; x :::; 1, y = 0;
u(l, y) = (1 + y2), 0 :::;y :::;1, x = 1; u(x, 1) = (1 + x2), 0 :::;X :::;1, Y = 1; so the exact solution
of this test problem is u(x, y) = (x2 + y2).
This equation is of the same type of models of temperature diffusion in a 2D chemical reactor
with Neumann and Dirichlet boundary condition. In Fig. 8 the double mesh error for 0 = 0.5
is shown. In Fig. 9 the corresponding residues are plotted. They detect the change (gradients)
in the errors of the methods.

Figure 8: Double mesh errors,
ex. 3.

Figure 10: Fine mesh-double
mesh difference, ex. 4,
adapted mesh.



Example 4
In this example the nonlinearities appear in the main body of the equation, an advective term
represents the flux of matter inside the 2D reactor and nonlinear (polynomial) boundary con-
ditions represent the catalythic chemical reaction on the top wall of the reactor. The equation
is

2aU 2-~u + (1 + u)u + 2(1 - y) ax = 0, in n = [0,1] (12)

with the boundary conditions u(O,y) = 1, 0 S; y S; 1, x = 0; ~(x,O) = 0,0::; x S; 1, Y = OJ
~(1, y) = 0,0 S; y S; 1, x = 1; ~(x, 1) = _u2, 0 S; X S; 1, y = 1;
Based on the residues corresponding to double mesh (a = 0.5) solutions we adapt the meshes.
Here the exact solution is not known so the reference must be done versus a finer mesh finite
element solution so in Fig. 10 the fine-double mesh difference is also shown
The last figures show how the residues detect the zones with greater errors.

Example 5
As another example a plane stress distribution on a cracked domain has been also studied.
This problem presents a strong singularity. The problem is defined on a square domain, which
by symmetry represents a half cracked membrane. The mesh for 32 x 32 elements, as well as
the boundary conditions, is shown in figure 11. The membrane is tractioned by uniform loads
applied on the upper bound. The deformed mesh is shown in figure 12. Re::>iduals have been
computed for the double mesh with a = 0.5. They are drawn in figure 13. It may be observed
that errors are concentrated in the region around the crack ti

Figure 11: Crack prob-
lem: Finite element
mesh (32x32 elements).

Figure 12: Crack prob-
lem: deformed mesh.

Figure 13: Crack prob-
lem: residuals.

The use of a composite, or mixed, finite element mesh for elliptic problems with border singu-
larities is studied. Two or more finite element meshes are allowed to share the problem domain.
These component meshes have different intrinsic accuracies and are affected each by a weight or
participation factor. The composite mesh has been used to estimate a posteriori discretization
errors.



A semiquantitative error estimator based in a double mesh algorithm has been proposed and we
have shown that the pattern of this a posteriori error is similar to the exact error.
More research is still needed, but the composite mesh method appears to be a powerful and
simple tool for obtaining accurate finite element error estimation and allow for adaptivity of
meshes.
One of the main improvements we are developing is the complementary analysis of our double
mesh and Zadunaisky's estimators.
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