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Abstract

The usual dyadic tiling D of JR? induces a natural triangular tiling of IR?, just by dividing
each 2-cube @ € D into two rectangular triangles. The only difficulty in leading with these
geometrical objects is that, even for triangles in the same level, we can not generally obtain
any of them by integer translation of a fixed one. Our approach to this situation would be to
introduce a new basic transform aside from the usual dilation and integer translation, namely,
a “spin”. Our aim in this note is to show that the multiwavelet approach solves the problem
neatly using only the two traditional transforms. :

Resumen

La particién diddica usual D de IR? induce naturalmente una particién por tridngulos, simple-
mente dividiendo cada cubo @ € D en dos tridngulos rectagulos. La tinica dificultad que aparece
al trabajar con estos objetos geornétricos es que, en general, no podemos obtener cualquiera de
ellos por traslaciones enteras de un tridngulo fijo y esto ain para tridngulos en el mismo nivel.
Una solucién serfa introducir una nueva transformada, la transformada de “spin”. El objetivo
en estas notas es mostrar que las “multiwavelets” resuelven el problema usando solamente las
dos transformadas tradicionales.

1 INTRODUCTION

Let D be the usual dyadic tiling of IR%. Let us induce a triangular tiling of IR® by dividing,
for instance by the diagonal whose slope is —1, each 2-cube @ € D. Unfortunaly these known
since Pithagoras geometrical objects do not satisfy the all important similarity property: even for
triangles in the same level, we can not generally obtain some of them by integer translation of a
fixed one. Instead, two figures will do. Our aim in this note is to show through three special cases
that the multiwavelet approach solves the problem nicely using only the two traditional transforms:
integer translations and dyadic dilations. Moreover our results can be extended to non-rectangular
triangles by changing the dyadic dilations by an adequate dilation matrix A. And even more
generally to families of nested partitions satisfying some basic properties.

The existence problem of wavelet bases associated to a MRA of multiplicity r, with arbitrary
dilation matrix A and general lattice I" for cubic fundamental domains, is studied in {2] and [3] (see
also [4] and [5]). On the other hand, the existence of Haar like bases on spaces of homogeneous
type is considered in [1].
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2 FIRST CASE: TILING OF IR’ BY RECTANGULAR TRIAN-
GLES

2.1 Domains

Let us start with two rectangular triangles

Tl ={(1'1,Z2)€H32: I ZO, 1,‘220’ $1+$2< 1}
T?={(z1,22) €R?: 21 <1, 22< 1, 71 + 29 > 1}

as basic domains, such that 7' UT? = [0,1)? and T! N TZ_ @. Let us choose the lattice I' = Z2
and the dyadic dilation matrix A = 2. We will denote Tj , T Moreover, T ok =k +T5 ¢ with
k € I are the Z>2-translates of T - Let us write T‘O = A~I(T¢ o) for the A7~ dilation of (T’ ).
Also T}y = A™(Tg ) fori=1,2,j€ Z and ke T.

Remark 2.1.1: Observe that these domains do not satisfy two properties that are associated to
domains of the type @ = [0,1)2.

e Thereisno k € " such that 7" =TV - kfori £ j and i,j = 1,2.

o It does not exist a set K C I such that A(T") = U, T3,

However, if £ = (z,22) € IR? then z belongs to exactly one of our triangles. Indeed, if 0 < z; < 1
for i = 1,2 then
Tl, fzg <1~ Z1.
w€ {T2, ifze>1- 2.

On the other hand, if for ¢ = 1 or i = 2 we have that z; < O or z; > 1, then z = [.7,] + {z;}
where [x;] is the integer part and {z;} is the decimal part of z. Again, z € Tgporze To K« With
= ([z1], [z2]), according to {22} <1 — {1} or {z1} > 1 — {x2}, respectively.
Moreover, our triangles satisfy two fundamental properties.
Tiling Property The I'-traslations of T, T2 define a tiling of IR?, i.e.,

® Uier[Tgy UTS, ] = IR?,
o T3, NTj, =0 forallk#landi,j=1,2
Quasi-similarity Property For
K = {ky =(0,0); ko = (1,0); k3 = (0,1); ks = (1,1)}
we have UL, (k; + A(T")) = Z2 ( X is a digit set for A and I). Then
o A(T') = [UL Tgy, | U T, s
o AT = UL,T U Ty,
2.2 Multiresolution Analysis
Let ¢!(z) = x,, (z) and ¢?(z) = x,, (z). Denote
ik(@) = YAz —k) = 2’x,, (=), supp(¢hy) = Ty
8(z) = (9", ¢%)(z) and $;x(z) = 2’ (6! (Az - k), ¢*(ATz - k),
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fori=1,2, keTand j € Z.

For each j € Z we define the following functional spaces:
V; = L%-closure of the subspace generated by {#p:i=12 kel}

Because of the Quasi-similarity Property Vo C V). So each ¢* = Xp« Can be expressed as a
linear combination of characteristic functions associated to Tiy, for k € K. In fact,

¢1(w)=(xT1 tXp tXp tXe @)

=5 ml(zzf ki) + 202 - ku).
¢*(z) = (XT2 FXag, X Xy @)

Tiea ¢2(2$ - k) + ¢‘(2$ - k4)

Then we have the following vectorial scale equation:

4
8(z) = aid(2r ~ k;)

i=1

where ¢; = ((1) (1)),02203:Idand cq = ((1) 2)

It is not hard to prove that ¢!, ¢? are the scaling functions of a MRAs (Multiwavelet Multires-
olution Analysis, see [3]) associated to A and T, i.e., the family {V; } <7z of closed subspaces of
L?(IR?) enjoys the following properties

e Scaling: V; C V;y forall j € Z.

e Separation: NiezVi= 0.

e Density: Usez Vi = IR?,

¢ Similarity: g € V; if and only if g(2-) € V4.

e Basis: It exists ¢* € L2(JR?) with ¢ = 1,2 such that
{#!(- — k), ¢*(- — k), k € T'} is a bon(Vy).

2.3 Wavelet Space

As usual, we define the wavelet spaces W; associated to the multiresolution spaces to be the
orthogonal complement of V; in V4, for j € Z.

Let us first find a basis for Wy. By definition V; = Vo ® Wy. Since we already have a basis
for Vg, then the task is to complete this basis to a basis in V;. On one hand, .supp(qSO o) =Tt =
T}, UT} e UTT g, UTYy, and supp(¢f o) = T? = Ty, UT12k3 UTE, UT}y,. On the other hand,
we need to have the function identically v/2, on each T%, as an element of the basis. So we must
construct three more functions for each triangle T%, i = 1, 2.

This can be done in many ways. A “niive” one is to start with characteristic functions and
to orthogonalize with the Gram-Schmidt’s method. Let us start with the characteristic functions
associated to our triangles T*. Set

ol = \/§le
u=2v2x, wu=22x, vi=22x, o= 2v2x,,
Lky 1,kg 7

1.kg kg
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vl = \/ixTz

vl =2v2x , v = 2\/§xT2 v = 2\/§XT2 vl = 2fx
Tl,k,_ 1,4y Lkg 7

kg

We obtain three orthono;ma.l funptions supported on T?, which are orthogonal to each other
and orthogonal to V. Let T7y = T;. Then

d 1/’% = % (3X’I'11 _XTzl - XTax "'X.I.lz) = Kl/f;(’?’v% —’U% - 'U% —"U%).

o ph=3 (Bxry — 4y — 4Xp) = J§(2vz - vf).
* %3 =2y ~Xp) = Z(vh o).

Similarly, other three functions are obtained supported on T. The functions in this second set
are orthogonal to the above one, because the supports are disjoint, and they are orthogonal to Vg
by construction. So the set {1;(4- k), Y3(A--k): k€T, s=1,23} is a bon(Wy). Then
{v', v?, YL(A-—k), Y2(A-—k): k€T, s=1,2,3} is a bon(V}).

Yet a “traditional” way to construct an orthonormal basis of Wy is by using the self-similarity
condition provided by the MRA. Since ¢ € V3 C V; then _the wavelets must be a linear combina-
tions of shifts and dilations of the vector scaling function ¢:

- Yz -1
k

for some 2 x 2 matrices c. For a particular choice of the entries of ci, we obtain the following set
of functions which have 0-moments:

YHA- —k;) = ¢? X + o1 ki ¢%,k2 - ¢{,k3
DA ko) = ¢}y + By, — Bli, — Bl
PI(A-~ks) = @2, + bl o, — bl h, — Bl
Y34 ~ke) = ¢y, + Bk, — Fhas — By
V3(A- ~ks)) = @y, + D g, — Hi, — Dhi,
Y3(A- ko) = By, + H2,, — B ke = P as

Again the set {¢*(4- —k), ¥:(A-~k): i=1,2keands=1,2, 3} is a bon(Vy).
The construction of bases for W, j # 0, is now easily done, as a consequence of the following
straightforward properties.
o W, is similar to Wo: f € W; if and only if f(4™7.) € Wy, for j € Z.
o {Yi{(z—k): 1 =1,2,3, i=1,2and k € T'} is bon(Wy) if and only if {29¢}(Alz —k): I =
1,2,3, k € T'} is bon(W,) for each j € Z.

The set {279}(Az —k): i=1,2, s=1,2,3, j € Z, k € I'} is an orthonormal basis of L2(IR?)
because of the MRAS structure.

Let us ﬁna.lly observe tha.t if we keep the domains 7%, T2 and I' = Z2, but take A = 3Id,
then T% = [U6 =1 ‘] U{ ] with ¢ 79 Jj- Now we need to construct eight funcmons ;. The set

{pi(4- k), ¢2( -—k): ker, s=1,---,8} is a bon(Wy).
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3 SECOND CASE: ANOTHER TRIANGULAR TILING OF [R?

If we use the lattice I' = 1z2 and the same dila.tion matrix A we end up with four triangles:
T'=To: (0,0),(1,0),(3,3), T* o £ (1,0),(1,1), (3, 3),
T3 = TO,O ‘ (1 1) (O 1) (27 2) T = 0,0 . (0’ 1),(0,0),(5, f)'
The Tiling Property is straighforward. To verify the Quasi-similarity Property we choose the
following set K associated to I' and A

K = {ki = (0,0),kz = (1,0), ks = (0,1), ke = (1,1),ks = (}, 3)}

U{Sl = (%,—%),52 = (gv %),83 = (%7 %)’54 = (_%7% }'
Then each T* = T§ ¢ can be written as union of four triangles of the next level:
- 1 1 3 2 _ oo 2 2 4
Too = Tik, UT)y, U, UTE,, Too =T{1, YT{ 'k, YT YT,

73 — 4 - 2
TUO - Tl Jka [l k4 UTI ks UTl T(?,O - rl,kl UT‘ﬁks UTl,k5 UT1,84

1830
Let ¢ = V2 Xp: be the normalized characteristic function associated to the triangles T* for
i=1,---,4. Thenforje Z
Vj = L?-closure of the subspace generated by {¢}y : i =1,---,4, keT}.
The sequence {V},. 77 of L%closed subspaces defines a MRA of multiplicity » = 4 associated

to the dilation matrix A = 2T and lattice I' = 122, the vector function ¢ = (¢',¢2, 4%, ¢*) being
the scaling vector for the MRAs.

Again the wavelet spaces W will be the orthogonal complement of V; in V;,,. And because
W, is similar to W, we only need to built a base for Wy. To each T* we associated three functions
with 0-moments and orthogonal to each other. The set {¢fy, ¥ior:t=1,--",4 v =123 ke
T} is a bon(W)).

4 THIRD CASE: TILING OF IR} BY TETRAHEDRA

Let T'= Z% and A = 2Id. We use as basic domains six tetrahedra:
7!:0,(1,0,1), (0,0,1) {1,1,1) T?:0, (1,0,1), (1,0,0), (1,1,1)
T3:0, (1,0,0), (1,1,0), (1,1,1) T*: 0, (1,1,0), (0,1,0), (1,1,1)
T%:0, (0,1,0), (0,1,1), (1,1, 1) T6:0, (0,1,1), (0,0,1), (1,1,1)
As before we will denote T* = o a.nd the I'—translation as T(} Tgyo +kwithkel.
Since US_, T = [0, 1)° then it is clear that these tetrahedra satisfy the Tiling Property, i.e,

o UkerlUS, Tyl = IR,
. Té’kﬁT&l ~fPforallk #land 4,5 =1,---,8.

Here ~ means that the possible intersection has measure zero. But of course a strict disjoint
partition of IR® can be done, like in IRZ.

To see the Quasi-similarity Property, we choose the following set of digits associated to I' and
A.

K= {kl = 07 k2 = (17010)1 k3 = (07]-)0)7 k4 = (0’07 1)7k5 = (171,0)3



Aimar Hugo A.., Hernandez Iida C. 7 535

k6 = (1$01 1)7 k7 = (0) 171)i k8 = (1, 1,1)}
Then we can write

T' = [Ty, UT g UT, UTH JUTY UTE JU (TR, UTE,,]
T? = [Tf), UT ke YU T i, U T k] U T, T, 1 U TR, U T\,
T? = [T{y, UT s, UT i, UT i) U T, UTE U [Th,, U TP,
T* = [Ty, UT s, U T UTH JU T2, UTE, U TPy, YTy,
T® = [Ty, U Tox, U T, U Ty | U ITEy, UTE,, 1 U (TP, UTLy,)
T® = [Ty, UTTx, U TPk, UT i J U [TE, UTH U ITE,, U Ty,

Both, the definition of the MRAs and the construction of the wavelet space follow the pattern
already described for IR?.

The basic domains were obtained by using the three diagonal issuing from the vertex (0,0,0),
which divide each one of the three faces into two triangles. In each face we join the triangles vertices
to the vertex (1,1,1) obtaining two tetrahedra. For example, by using the diagonal between the
vertices (0,0,0) and (1,0,1) we obtain 7! and T2. A similar construction can be obtained by using
the diagonals that issue from any one of the other seven vertices of Q.

5 FINAL REMARKS

5.1 About the First Case

We first observe that if we keep I' = Z? and use a non-dyadic dilation matrix A then we end
up with triangular domains which are non-rectangular, but that still satisfy the two fundamental
properties.

Secondly, by keeping as dilation matrix A = 2Id we can extend the above construction to
any number of subset as basic domains as long as they satisfy the Tiling and the Quasi-similarity
properties. Each time we bave to find out the appropriated nested tilings of the space. In (11
is proved the existence of such families of nested partitions on metric spaces with a very mild
homogeneity property.

Thirdly, the domains 7, T2 were obtained by partitioning @@ by the diagonal between the
vertices (1,0) and (0,1). Everything works similarly for domains T, 72 which are obtained by
using the diagonal between the vertices (0,0) and (1, 1).

5.2 About the Third Case

The scheme developed in the Third Case can be generalized to JR™, where we will have n! tetrahedra
as basic domains, which can be obtained by using, for instance, the n diagonals issuing from
(0,---,0). The Tiling Property is straighforward. As for the Quasi-similarity Property we can use
the following set of digits associated to A and I':

K={keR": k=Y &}
i€S
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where § C {1,2,---,n} and & is a vector of the canonical basis of IR" .

Again the construction of the functional and wavelet spaces follow the pattern described for
IR?,
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