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Abstract. The present work introduces the application of genetic algorithms (GA) to topology 
optimizations of 2D potential problems using the boundary element method (BEM). Initially, a 
brief description of GA basis is presented. Next, some elementary ideas on its application along 
with BEM procedures are summarized. The proposed approach is able to create cavities where 
they are less influent or simply move the existing ones, in order to, extremize a given cost 
function. Therefore it is possible to optimize the location of key features of the domain, like 
heating lines, as well as to generate the optimal topology of the problem. The performance of the 
proposed algorithm is assessed by some examples and discussed. 
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1 INTRODUCTION 
 This paper presents the combination of genetic algorithms with the BEM to solve 2D Poisson 
equation optimization problems. Two main subjects are investigated. Firstly, the proposed 
algorithm is applied to determine the optimal position of heating lines in a compression molding 
dies. In this case the design variables are the channel’s coordinates inside the domain, in order to 
keep the die cavity surface as close as possible to a prescribed temperature. Another objective is 
to verify the feasibility of generating coherent topological solutions by opening and/or closing 
cavities inside the domain in order to optimize a given cost function. It is important to point out 
that the number of cavities that will be opened or closed inside the domain is variable.  
 In general, when the number of cavities to be open becomes large, an optimization process 
tends to deliver a globally optimized solution, i.e. microstructured designs which, although 
strictly correct, are not practical from the engineering point of view7. Similarly, genetic 
algorithms converges to solutions with disperse cavities inside the domain. In order to circumvent 
this problem, the present work restricts number of cavities to be open and their position, avoiding 
the opening of disperse holes5. 
 Some cases subjected to different types of constraints are studied using the proposed GA and 
discussed.  

2 USING BEM FOR TOPOLOGY OPTIMIZATION  
 The BEM for two-dimensional potential problems is very well established. In what follows 
only a brief description of the method is given. Further details can be found in the literature2,11. 
Equation (1) relates the potential u and flux q over the boundary, in absence of body sources: 
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+ Γ =∫ ∫ Γ                                     (1) 

 
 The functions u* and q* are the potential and flux fundamental solutions at x due to a unit 
source applied at x’. 
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The next step consists in discretizating the boundary of the domain using N discontinuous linear 
boundary elements (see Fig. 1).  
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Figure 1: Boundary element discretization. 

The values of u and q at any point belonging to an element can be written in terms of the nodal 
values and the two interpolation functions φ1 and φ 2:  
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where ξ is a local intrinsic coordinate defined in the range [ –1,+1] and φ1 and φ2 are the 
standard discontinuous linear shape functions2. Considering the discretized version of Eq. (1), the 
integral on the left hand side over the element j can be written as 
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where for each element j there are two terms, 
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 Similarly, the integral on the right hand side results: 
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After substitution of Eq.(7) and Eq.(5) for all j-elements in the discretized counterpart of Eq.(1) 
results: 
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After the imposition of the boundary conditions the system (8) can be reordered in such a way 
that all the unknowns are taken to the left hand side, resulting the following system of equations: 
 

[A]{X}={F}                                                                (9) 

3 IMPLEMENTATION 

 Genetic algorithms are efficient optimization tools, especially when the objective function has 
many local minimums8. The method aims to imitate a biological process based on the evolution 
of species. The concepts of genetic evolution can be easily applied in topology optimization. GA 
begins with an initial, randomly chosen population of chromosomes. In the present context, each 
chromosome contains the information about the problem topology (discrete coordinates and size 
of the cavities), and it is numerically represented by a string of bits. The fitness of each member 
of the population (i.e. their aptitude to satisfy the prescribed boundary conditions) is evaluated in 
this work by means of BEM models.  

Initial Population Natural Selection Pairing Mating

New GenerationMutation

 
Figure 2: Generic GA Scheme. 
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 Next, a new population is produced by operators which imitate biological processes, and are 
applied to the chromosomes of the previous generation. The principal genetic operators (Fig. 2) 
are6: a) natural selection; b) pairing; c) mating; and d) mutation. Other operators have been 
proposed in the literature10. In the present work, the selection operator will discard those 
topologies with the highest cost function values (i.e. those topologies that are worst fitted to 
fulfill the objective function). The paring operator defines pairs using the best fitted individuals 
(ie those topologies best fitted to fulfill the objective function). Mating is the next operator, and it 
consists in creating one or more “offsprings” (new topologies) from the “parents” that were 
previously selected during the pairing process. This work adopted a single crossover mating 
operator13,3. This means that every pair of parents produces two offsprings, and both will be 
members of the next generation. The crossover point is determined by a percentage of parent 
chromosomes that the offprint inherits. Table 1 presents a good demonstration of a pairing. Note 
that the first offsprings will receive a part of father’s chromosome and another part of mother’s 
chromosome. The same procedure is applied for the second offspring, but with that portions that 
was not used to form the first offspring. 
 
 Individuals      Genetic code  

 
Dad – topological structure 1 
Mom – topological structure 2 
Child 1 – new topological structure 3 
Child 2 – new topological structure 4 
 

 
 
 
 
 
 
 

Table 1: Crossover Point. 

 The last operator, the stochastic mutations, randomly alters a small portion of the 
chromosomes. This operator avoids the algorithm of getting trapped in a local minimum. The 
above described process is repeated until the maximum number of (prescribed) iterations is 
attained or the convergence is achieved. Figure 3 presents a scheme of the complete algorithm 
including the BEM and GA subroutines4. In many applications, the optimization process is 
subjected to constraints. Two types of constrains are applied: the cavities can intersect neither 
each other nor the external boundary. Those chromosomes (topologies) that do not satisfy the 
constraints are excluded from the analysis. This is done by penalization, i.e. by assigning to the 
excluded chromosomes a high cost value. In this way, the chromosome will be automatically 
eliminated by the selection operator. 
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Figure 3: Routine Scheme, AG plus BEM. 

4 NUMERICAL EXAMPLES 
 This section presents simple examples illustrating some applications of the proposed 
formulation. All cases refer to steady state linear heat transfer. The objective is to verify if and 
how the algorithm converges to an optimal and coherent topology. Two cases will be studied. 
The first example consists in a die for flat panel molding9. If a thermoset polymer is used as the 
material, the cavity surface of the die that contacts the polymer should be maintained at a higher 
temperature, which cures the polymer. This justifies a study of optimization of the heating line’s 
position in order to maintain a linear temperature distribution on the cavity surface. Three heating 
lines layouts are considered.  
The second example consists in heat conductor. The objective is to remove material where the 
internal energy density is minimum. In order to obtain a feasible result in terms of engineering 
manufacturing, a specially devised filter for the resultant geometries is used. The filter allows the 
creation of new holes in the neighborhood of the existing ones only, therefore avoiding the 
creation of dispersed holes inside the solution domain. 
 
4.1  Example 1: The objective of this example is to determine the optimal position of heating 
lines in a compression-molding die (Fig.4) in order to obtain a maximization of the temperature 
on the cavity surface AB. Three situations are analyzed, namely, considering two, three and four 
heating lines inside the mold. The boundary conditions are shown in Fig.5. The thermal 
conductivity of the die material is set as 50 W/m°C. The diameter of the heating lines is 0.02 m 
and its temperature is prescribed to 150°C. Forty-eight discontinuous linear elements are used to 
model the die, taking into account its symmetry. The range of possible coordinates to locate the 
heating lines within the domain in x and y directions are (0.05..9.95) and (0.05..3.95), 
respectively, with a 0.05 m step in both directions. The initial position of the heating lines is 
randomly generated. 
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  Fig. 4 : Compression mold.  
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Fig.5 : Boundary conditions. 

Center line  
 
 
 

q = 0.1 W/m2 
 
 
 
 
 
 
 
 
The objective function is defined by the following boundary integral: 
 

Td
AB

dSu
AB −=
∫

φ                                                                  (10) 

 
which can be expressed in terms of the boundary unknowns: 

 Td
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u
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i
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where n is the number of physical nodes along the line AB. Therefore, eq.(11) is used to 
minimize the difference between the mold cavity temperature and the prescribed target 
temperature Td, along the line AB.  
 
Case 1: Two heating lines:  In this case the mold has two heating lines, initially placed as 
depicted in fig.6(a). Table 2 presents the genetic parameters used to set the GA.  
 

Genetic parameters 
Initial population 128 
Population size 64 
Crossover probability 0.4 
Mutation probability 3% 

Table 2: Genetic parameters. 

 Figures 6a and 6b compares the initial and optimal designs respectively. Figure 7 presents the 
temperature distribution along cavity surface AB for both designs.  
 

A 
x 

P2 P1 P2 P1

P1 = ( 0.90 , 0.15)    P2 = (0.45 ,  0.20) 
                                (a) 

B A B

P1 = (0.85 , 0.05)     P2 = (0.45 , 0.05) 
                                    (b)

y y  
 
 
 
 x 
 
 
 
 

Fig.6 : Initial design (a). Optimized design (b) – two heating lines. 
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Fig.7 : Temperature distribution along the cavity surface (AB) for two heatlines. 

 
 
Figure 8 presents the evolution of the normalized cost function 
 
 

Td
Cost φ

=                                                                       (12) 
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Fig. 8 : Cost Function convergence for two heating lines. 

 
 
Case 2: Three heating lines: In order to achieve a more uniform temperature distribution along 
the cavity surface, three heating lines are considered in this examples. Table 3 presents the 
genetic parameters used to set the GA. 
 

 Genetic parameters 
Initial population 128 
Population size 64 
Crossover probability 0.4 
Mutation probability 3% 

Table 3: Genetic parameters. 

  
Figures 9a and 9b compares the initial and optimal designs. As is expected, the algorithm 
successfully brought the heating lines closer to the mold surface, as shown in fig.9b.  
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Fig.9 : Initial design (a). Optimized design (b) – three heating lines. 

 Figure 10 shows the distribution of the temperature along the cavity surface AB for both 
designs. Clearly, the resulting temperature distribution is more uniform than the one obtained 
with two heating lines. At the same time the average temperature results higher than the one with 
two heating lines.  
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Fig.10 : Temperature distribution along the cavity surface (AB) for three heatlines. 
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 The evolution of the normalized cost function after eq.(12) is presented in Fig. 11. It is 
interesting to note the increment in the number of generations, due to the increment in population 
size. 
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Fig. 11 : Cost Function convergence for three heating lines. 

Case 3: Four heating lines: Yet another design was test for comparison purposes, this time 
using four heating lines inside the mold. Table 4 presents the genetic parameters used to set the 
GA.  
 

Genetic parameters 
Initial population 600 
Population size 500 
Crossover probability 0.4 
Mutation probability 5% 

Table 4: Genetic parameters. 

Figures 12a and fig.12b shows the initial and the final designs obtained. Figure12b shows one of 
the heating lines placed near to point A, in order to eliminate the temperature gradient around that 
point, as depicted in fig.7b and fig.10b. 
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Fig. 12: Initial design (a). Optimized design (b) – four heating lines. 

 The distribution of the temperature on the cavity surface is presented in Figure 13 for the 
initial and optimized temperature distributions. Figure 14 presents the evolution of the 
normalized cost function. 
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Fig. 13 : Temperature distribution along the cavity surface (AB) for four heatlines. 
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Fig. 14: Cost Function convergence for three heating lines. 

4.2 Example 2: This example refers to a square heat conductor of dimensions 9m × 9m, 
submitted to the boundary conditions depicted in Fig.15a. The thermal conductivity is set to k = 1 
W/m2. Thirty-two linear discontinuous elements are used in the discretization of the external 
boundary. The positions indicated in Fig. 15b are the possible locations for the cavities. The 
cavities are square shaped, and they are discretized using eight boundary elements. The 
boundaries of the cavities are considered insulated. The number of cavities is set equal to 8 and 
kept constant during the optimization process in order to remove a constant volume fraction 
(32%). The cost function is chosen as the difference between the external work of the original 
domain and the external work of the current solution. This allows the removal of material where 
the internal energy density is less significant. 
 

u = 100 °C 

u = 0 °C 

u = 100 °C 

 
 
 
 
 
 
 
 
 
                                                      (a)                                                                                 (b) 

Figure 15: Example 2. (a) Boundary conditions. (b) Admissible hole locations. 
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 A specially devised filter is used to eliminate disperse cavities, which could generate 
microstructured designs. This filter allows the creation of a new cavity in the neighborhood of an 
existing one, only. Figure 16 depicts an example of undesirable topology and its new placement 
after filter action. 
 

   
 

Figure 16: Filtering the creation of isolated cavities.  

 
 
 Genetic parameters 

Initial population 128 
Population size 64 
Crossover probability 0.4 
Mutation probability 3% 

 
 
 
 

Table 5: Genetic parameters. 

  
 
 Figure 17 shows the evolution of the topology along the iterative process and Fig.18 presents 
the corresponding cost evolution history. 
 
 

Generation = 200 Generation = 150 Generation = 121Generation = 25 Generation = 2 

 
 
 
 
 
 
 
 

Figure 17: Intermediary solutions of example 2. 

Carla T.M. Anflor, Rogério J. Marczak, Adrián P. Cisilino

2883



0 50 100 150 200 250 300
0.15

0.2

0.25

Generations

C
os

t

 

Figure 18: Cost function evolution for example 2. 

 Figure 19 presents a comparison of the results for example 2 with other available solution 
obtained by a BEM topological-shape-sensitivity approach1,12. It is clear that the proposed 
algorithm is able to remove material where it is less necessary. In a fully automated structure 
optimization procedure, the final topology (Fig. 19a) should be interpreted to generate 
engineering designs.  

 

   
(b) (a) (a) (a) 

 

Figure 19: Comparison of the results. (a) Present work. (b) Topological-shape-sensitivity result12. 
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5 CONCLUSIONS 
 This work presented a topological optimization strategy for 2D potential problems using 
boundary elements and genetic algorithms. The BEM formulation is based on discontinuous 
linear boundary elements and it was applied to solve two heat transfer examples. 
 The solutions for the first example show satisfactory results for all cases presented. The final 
results demonstrate that GA+BEM can be used as an efficient tool for determining the number 
and positions of the heating lines. 
 The proposed approach was applied to solve a more complex case in the second example, and 
proved that the correct topology can be achieved after a few iterations. The good numerical 
performance was due to the application of the aforementioned filter, which reduced drastically 
the number of necessary iterations and also avoided the use of penalization, two common 
drawbacks in GA algorithms.  
 From the results obtained, it is clear that the proposed methodology has potential to be 
extended to other classes of problem. 
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