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This work describes a code developed for the simulation of transient laminar flow
in three dimensional cartesian domains. The code is intended to be applied to
incompressible indoor environmental flows on domains of moderate complexity.
It is expected to serve as well as a platform to test LES turbulent modeling in
geometries of moderate complexity under general boundary conditions.
Explicit fractional time steps methods were implemented. Control volumes'and
staggered meshes were used for spatial discretization. Central difference schemes
were applied to all terms with the explict scheme.

The purpose of the work reported here is to develop a computer program capable of simulate turbulent
flow in the indoor building environment. It has been shown by Kuhen, [4], that many features of the
turbulent flow in offices can not be captured by RANS models, so the objetive of this work is to try Large
Eddy Simulation (LES).

Large Eddy Simulation attemps to solve the large scale features of the flow while modeling turbulence
effects only on the smaller scales. The space filter,ed equations for a LES are similar to the Navier Stokes
equation and to implement a LES solver we need a transient Navier Stokes solver first. Here we report
this basic solver.

The transient solution of this set of equations in three dimensions is a numerically expensive task, both in
memory and CPU time. Efficiency is then a main concern in selecting the solution algorithm and during
the code development. Considering this and the previous experience of the author, we have selected to
work with the control volume method over structured meshes and explicit time integration. Multigrid
aceleration was used for the solution of the Poisson equation, [lJ.

Nevertheless the explicit actual implementation of the code, the coeficient values for the momentum
equation are stored in such a way that it will be easy to develop an implicit version of the code in a latter
time.

We proceed here to describe the solution method. For simplicity we write Navier-Stokes equations in the
following form
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where 1£. stands for the convective, the diffusive, and the body force terms,
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2 ax. ax;
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where H, is the spatial discretization of 1£" calculated in terms of the flow field variables at time n and
previous time steps according to the time integration scheme. We will discuss later the time at which the
pressure is to be evaluated, selection that leads to different solution procedures.

The present approach is based on the fractional two-step method of Chorin. In the first step an approx-
imate (possible divergent) velocity field is calculated, to be corrected in the second step by subtraction
of the gradient of a pressure like field constructed in a way to ensure that the corrected velocity field
satisfies continuity.

The distinctive feature of the fractional step or projection approach is that the pressure gradient term is
not taken into account in the first evaluation of the momentum equations. The procedure has been used
by many others and, in particular, by Yoke and Potamitis [6J.

Third order explicit time integration of the approximated (without pressure term) momentum equation
leads to

(pu,)* - (pu,)" _ H.(" ,,-1 "-2)
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The approximate velocity field does not satisfy the continuity equation and will be corrected later.
Subtracting equations 6 from 5 the correction follows

although p is not known at this time. Taking the divergence of 7, and considering that we want to enforce
continuity for the U"+l field, we obtain the pressure-like equation

For each time step, approximates of the velocity componentB are advanced in time by solving in succession
the momentum equations in each direction. Earh time the discreti7.8.tionequations are calculated with
the most recently evaluated set of variables.

Equation 1under incompressible flow conditions can be solved with the following algorithm



• For each i, with i=I,2,3 do

- Calculate explicitly H;(un,un-l,un-2). Hut is available, use it instead of ufo
- Calculate ut according equation 6.

• Calculate the divergence of the provisional velocity field ui.
• Solve the equation 8 for the "pressure field " .

• Calculate the pressure gradient in each direction.

• Correct the provisional velocity ut to obtain the divergence-free velocity field ui+l, equation 7.

The boundary condition for the pressure is obtained by projecting the correction equation 7 over the
boundary r,

(
8P)n+l 1
- = _(un+1 - u*) nan r dt r r·

It can be shown that the solution of the Poisson pressure equation is independent of u* and then, by
choosing it, we can cancel the right hand side of equation 9, obtaining an homogeneous or Neumann
condition for the pressure.

A discussion and comparison of the boundary conditions for the pressure equation for vdXiousschemes
was recently published by Williams and Baker [7J.

The compatibility condition is also needed

l Vp.ndI' = L~t V.u*dO

Yoke and Potamitis, [6], remark the need of a zero surface integral of u* over the boundaries to ensure
uniqueness.

The domain is discretized with control volumes. Pressure nodes are located midway between the faces
(Patankar's practice B, Patankar (1981), [5]). A staggered mesh is used for the velocities in the way of
Harlow and Welsh [3]. The equivalent of second order finite differences is used on viscous and convective
terms. The last choice imposes severe restrictions to tile cell Peclet number, but the purpose of the
calculation is to investigate fine scales features of the solution. Thus we are not expecting to use a coarse
mesh here.

The diffusive component of the coefficients are calculated as

aptPp = L anvtPnv + b
nv

ap == LUnp
np



o pavap=M
A linear velocity profile between nodes for evaluating the convective fluxes is used, practice which leads
to central-finite- diference like coeficients, only shown for the x direction

Let us write the discretization equations for a control volume P for a general variable </J (velocity com-
ponent or pressure). For the three momentum equations we use the explicit treatment. The pressure
equation is not a parabolic equation and thus we do not need to advance it in time and we solve implicit.

The discretization equations are

4</J'J,+l = a1></1';'+L anp</J~p- (Lanl')</Jj,
np np

If * = n, the scheme is explicit and if * = n + 1, the scheme is implicit.

The same equation can be rewritten to show in more detail what it looks like near a boundary control
volume B where the value of the neighbour node, denoted </JB,mayor may not be known

4</J'j,+l = a'}></J';'+ L anl'</J~l' + anB</J'B - (L anI' + aB)</Jj,
np/B nl'/B

where the notations Enp/B means summation over nodes nb not including node B.

On an implicit scheme (pressure)

4</J'J,+l = af],</J'J,+ L anl'</J~:l + anB</J7J+l - ( L anI' + aB)</Jpn + 1
np/B np/B

4</J'j,+l = af],</J'P+ L anl'</J~p + anB</J'B - ( L anI' + aB)</J'J,
np/B np/B

In the explicit case, knowing </JBmakes no difference with the other neighboring nodes, that are also
considered as known, so nothing special is required to implement Dirichlet B.C ..

On the implicit case, the term anBtP'B+1 is known and is incorporated to the forcing term b together with
afJ,</J'P.Thus what we have now is

4</Jp+l - ~ anl'</J~;l + (~ anI' + aB )cf!p+l = a~</Jp + anBcf!'B+1

np/B np/B
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In a computer program the coefficients and other quantities like the forcing term b are computed without
considering the boundary conditions. That means that the subroutine that generates the coefficient
matrix does not distinguish between 'EmplB Unpt/J~t1 and Enp anp</1~tl.

Thus in applying the boundary conditions one needs to correct previously calculated values. The forcing
term correction is

Neumann boundary conditions are applied following Patankar, [5). No flux on the boundaries implies no
influence on the near boundary node P of the boundary node value at node B. Patankar's derivation
leads to a zero value for the coefficient anB. Equations 20 reads then

a'f,</1'j,+l= a'f,</1'P+ L anp</1~p- ( L anp)</1p
nplB nplB

afJ,</1'j,+l= a'f,t/J'P + L anp</1~p- ( L anp)</1'P
nplB nplB

Again the Euler solver programed doesn't take into account in any special way the boundaries. Thus,
a EnpUnp</1~t1 cycle is done instead of what is needed: a EnplB anp</1B+l cycle. The way to solve this
problem is to make anB = 0 before starting the solution.

On an implicit scheme
a!J,</1';,+l= 4</1'P + L Unpt/J~;1 - ( L Unp),p'j,+1

np/B nplB

ap = (a'J, + Lanp)
np

We have used first, second and third order Adams-Bashforth time explicit integration for the Hi term,
so

H(n n -1) = (~H~ - ~H~-l), , 2' 2'



H,'(n,n-1,n - 2) = (23 H!'.- 16H!'-l + ~H!,-2)
12' 12' 12'

The most important procedure calculates the discretization coefficient, It is done in two stages (subrou-
tines). In one, the coefficients are calculated over the whole domain including near boundaries control
volumes. In the second, the coefficients are modified according to boundary conditions. The other
important procedure is the solver itself.

Without the pressure term, the momentum equations in each direction are convection-diffusion type
equations, and do not differ in more but in the variables names for the equation corresponding to the
convection diffusion of a scalar. But, because of staggering, for each direction a different set of coeffi-
cients is required, as they are calculated on a different (staggered) mesh. For any additional scalar, the
coefficients are calculated over the basic mesh.

Momentum equation coefficients are calculated by the three subroutines for staggered meshes. Pressure
equation coefficients are caculated appart, over the basic mesh.

The boundary coefficients' modifications are done respectively in a set of subroutines. The explicit solver
works on each staggered grid for the transient explicit calculation. The Adams-Bashford method have
been implemented in a way that it is easy to use it of any order. CGSTAB and SIPSOL methods were
used to solve the pressure equation. Other methods can be used as well. A subroutine that implements
a variety of multigrid methods, including the full multigrid method, was written (Cardon, 2000), and
incorporated to the program. The use of the multigrid method in conjunction with the present program
was not yet fully tested.

The program How is like follows

- open imput an output files, read data files, read mesh
- compute nodes positions and other geometrical cuantities
- selected algorithm

* explicit
, first order
· second order
· third order

* implicit (no functional yet)
two steps

· four steps

• explicit main algorithm

- compute pressure matrix coefficients
- do over time steps

* do over each direction
· compute momentum equation coefficients
· introduce boundary conditions
· solve

correct boundary values over Neumann boundaries (for graphics)
· correct boundary values to satisfy global mass balance
· end for

- compute the pressure source term
- solve the Poisson equation
- correct the velocities



The two dimensional entrance length problem in a channel was solved as the first test case. Two dimen-
sionality is imposed through the boundary conditions while the calculation is done On a three dimenlljenal
domain.

Let's define the -z as the streamwise direction, y as the transversal direction, and x as the'spanwise
direction. Two dimensional flow over the z - y plane will be imposed, therefore no change in the spanwise
directions is allowed. In particular over the lateral planes at x = 0 and x = L"" the x derivatives are
zero. With the same effect it is possible to set u = O.

The inflow and outflow sections of the channel are the cross sections normal to the streariiwise directioIl
at z = Lz and z = 0 respectively. On the inflow plane we set w = -1 and on the outflow plane we
require that ~';; = O. The same requirement should be enough for the other two velocitie~; but a stronger
condition setting v = 0 and w = 0, was preferred.

Non slip and inpenetrability is applyed over the planes at y = 0 and y = Lv.

Results shown for the test problem were done over an 40 x 40 x 40 grid, with dt = 0.0001, 1000 time steps
(not steady state reached), and solve with CGSTAB method for 8mall Reynolds number. Calculations
were done on a AMD-K6-2 processor PC with 256MB of RAM, with aproxiIhately 3.3sec per time step.

The plat~ shows the 3D profiles of the three components of the velocity near the o;qtJiow plane. The
projection of isolines of the streamwise componet of the velocity over the transversal plane is also shown
as well as the projection over the same plane of the velocity vector. .

From them it is clear that the streamwise component of the solution is perfectly symmetric and that
the tranversal component of the velocity is antisymmetric, as they are meant to be. The order of the u
velocity is ~ 10-8, and can be considered zero.

Other features of the flow are shown in the plate; the development of the boundary layer is clearly shown
in the figure as well as the inner invicid core.

To asses the correctness of the numerical solution, the steady state outflow velocity profile a over a central
plane (not shown) is compared with the analytic solution for the fully developed channel flow, e.i. the
Poiseuille solution with a good fit.
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