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In this paper a generic model for a flexible space system consisting of an arbitrary
numbers of flexible bodies connected to form a branched geometry is developed using a
Lagrangian formulation. This approach is then applied to derive the equations of motion
of the US Space Station first assembly flight configuration, referred as MB-l, taking into
account the coupled rigid bodylflexible structural dynamic interaction. The frequency
characterization of the MB-I model is determined, solving the eigenvalue problem, and the
potential problem for control structure interactions (CS1) is evaluated. The dynamic
equations derived in physical coordinates are transformed into a set of decoupled equations
in modal state space form. It is shown that this procedure leads to computational
advantages and facilitates to address issues such as model order reduction, truncation, and
robustness with respect parameter variation and unmodelled dynamics in the context of the
robust control design methodology, such as LQGIL TR, PRLQG and Hoo.

The dynamics and control of flexible space structures over the past thirty years or so has lead to an
incredibly large volume of research, the reference [I] provides a extensive bibliography to survey the
developments of particular importance to dynamics and control of large space structures. Originally
dynamics and attitude control of satellites with flexible appendages was the major problem area which
becomes more important as the size of solar panels and antenna increased requiring many modes of
vibration for accurate representation of the dynamic behaviour. In more recent years the advent of the
large flexible structure has compounded the problem of stability and attitude control culminating in
the Space Station and the Hubble Telescope. The major problems faced by space engineers is that of
manoeuvring flimsy structures and damping out subsequent vibrations by various means of closed loop
active damping, ensuring stability, maintaining static shape as in the case of dish antenna and ensuring
in the case of Space Station that microgravity experiments are not affected by structural vibrations. A
study of the physical characteristics of many space structure components such as mentioned above
indicates that dynamic modelling is an approximation to the actual system and can only be verified
after the structure is in orbit and its response to disturbance behaviour can be measured. Thus the
designer is faced with not knowing exactly how to model the dynamics and control of the system
which has various uncertain physical parameters. Besides, due to the fact that the space structures are
in general distributed parameters and, in theory, has a infinity number of degrees of freedom, for
purposes of efficient computation and easy control implementation, model reduction [2] is an inevitable
procedure for dynamic analysis and control design which renders a high level of uncertainty in the
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mathematical model describing the dynamics of the system. On the other hand, due to the inability of
ground testing for model verification and the synthesis error of component modal characteristics of
such a large flexible structure, it is expected that structural parameters predicted analytically may
contain appreciable errors [3J. Thus, in order to compensate for both kinds of uncertainties, the control
system design should be robust to unmodelled dynamics and variations in the structural parameters
[4J,[5].

The generic system model selected for study consists of an arbitrary num bers of flexible bodies
connected to form a branched geometry: the central body Bo is connected to bodies B, (i=I, ..,N). It
should be noted that in deriving the equations of motion the number and locations of the bodies are
initially kept arbitrary so that the configuration can be extended and used to study other phases of the
Space Station assembly sequence, as well as to study a large and varied class of future spacecraft.
Consider the spacecraft model in Fig.l consisting of a central body Bo which can be rigid or flexible,
with an arbitrary number of beam andlor plate-type flexible appendages fixed to it with a fixed desired
orientation. Let X, y;z, be the inertial coordinate system with its origin located at the Earth's centre.
The central body coordinate system x.,Y o;z,o is attached to it with its origin 0 located at the mass
centre of the whole structure in its undeformed configuration. This choice is not mandatory since any
other convenient point can be used. Also fixed to the central body, with origin located at the
connecting point i , are the coordinates system X"Y,;z", which define relative motion between the
bodies Bo and B, . Hence, an arbitrary mass element dID, in body B, can be reached through a direct
path from 0 via i. As a result, the motion of dm, caused by rigid body and flexible motion of Bo and
B, can be expressed in terms of the inertial coordinate system. An orthogonal orbiting coordinate
system x" Yp~ with its origin also at 0 is so oriented that X, and Zy are along the local horizontal and
vertical, respectively, while Yp is aligned with the orbit normal. Any spatial orientation of the frame
Xo,Yo;z,o with respect to the frame X,.,Yp;z,y can be described by three modified Eulerian rotations [6],
where a roll motion is about the x,. axis, a pitch motion is about Yp axis and a yaw motion is about
Zy axis. It should be noted that one assumes that the origin 0 of the frame Xo,Yo;z,o and x" Yp;z,y
remains at mass centre of the entire structure in its deformed configuration, which implies that the
distance of the centre of mass in the undeformed and deformed configuration is negligible, which is
quite acceptable for the purpose of the model. As shown in Fig.l, for a beam-type appendage, the Z,
axis is along the nominal beam direction, while X. axis and Y, axis complete the orthogonal set. For
a plate-type appendage, Y, axis is taken normal to the nominal X,-Z, plane, and Z, axis normal to X.
axis in the plane of the plate.

Constructional phase of the proposed Space Station will involve a constantly evolving structure
comprised of lightweight, flexible members in form of beam, plates and rigid bodies. The MB-I Space
Station configuration will consist of a main central truss, a radiator and pair solar panels, these flexible
bodies are denoted by Bo, B" B2, and B3, respectively. The bodies Bo and B, are treated as a free-free
beam and as a clamped-free beam. The two solar panels are modelled as two clamped-free plates. The
discretization of the continuum MB-I model is carried out expressing elastic deformations in terms
of a set of admissible shape functions which are somewhat arbitrary provided that they satisfy at least
the geometric boundary conditions. The modes of a fixed-free and free-free beam are used to describe
the plate elastic deformation.For a beam, the transverse oscillations UX' u,. in orthogonal directions X,Y
and the torsion deformation Uz about the Z axis,as well as the lateral deformation Uxz for a plate are
assumed to be, respectively, of the form



• D 1 ••
U.•• =#+j(I)~(t). U~=#+j(I)qrl(t). Uj.=#+j(I)q.j(t). u.••••=#k+j(Z) ••~j •• (t)

where: i = the number of the body B, (i=O,1.2, ...,N): s = the type of admissible function, i.e., for a
free-free beam, fixed-free beam and free-free beam in torsion, s assumes the values 1,2.3, respectively:
n,m = the number of modes considered in the analysis; ~"(z), ~/(z), ~,3(Z) = the characteristic shape
function of a free-free beam, fixed-free beam and free-free beam in torsion, respectively: ~,'(Z»k'(X)
= approximate shape function for a clamped-free plate; <!x(t), qy(t). q,(t), <!xit) = the generalized
coordinates associated with the beam vibration in the X and Y direction, beam torsion about Z-axis
and plate vibration in the plane XZ, respectively. The matrix of admissible function for the central
body Bo (free-free beam), for body B, (beam-type appendage) and bodies B,., (plate-type appendage)
and the elastic rotation matrix Y, due to deformation of the central body Bo for a point i are given,
respectively, by

1
+i(z.) 0 -l",+~(z')1 1~(z,.)

•• 0 ~(z.) z".j<z.) '.1 0
o 0 0 0

: : ]••••• {: ~<z..")~"<z. ••) :l'T)~~ :ICZl
o ~ <z,.) 0 0 0 10 0 Tj

The details of the derivation of Eqs.(2) can be found in [7]. The matrices of admissible functions <Ilo
and <Il",are associated with the body Bo and with a point i (i= I ,2,3) in body Bo, while <Il,.2.3and the
elastic rotation matrix Y'.2.3 are associated with bodies B" B2 and B" respectively.

In the Lagrangian formulation, the major dynamic characteristics of the system are contained in its
kinetic energy expression. Therefore, expressing the kinetic energy of an arbitrary multibody system
in a quadratic form of the system generalized velocities, the associated mass matrix can be written in
a clear and concise form suitable fOTdifferentiation as required in the Lagrangian procedure.

Kinetic Energy: The kinetic energy expression is derived for a configuration which consist of a flexible
body B, attached to a central flexible body Bo, so that the same procedure can be extended to more
complex configurations. To describe the motion of Bo, one denotes the position vector from the of
the inertial frame XYZ to the origen of the frame x", Yo,zo by the vector R, the position vector of a
generic point with a differential mass element dmo in the body Bo relative to Xo,Yo,zo by the vectoT
ro and the elastic displacement vector of that point relative to x", Yo,zo by the VectOTUo which in turn
is given by uo=<Iloqo'The position vector of a point in the body Bo relative to the inertial frame is
given by R" = R + ro + uo, and considering that the angular velocity vector of the frame x", Yo,zo is
e , its velocity vector is

where the velocity vector Rand e are the rigid body translation and rotation, respectively.
Similarly, for a generic point with differential mass element dm, in body B,. its position vector
relative to the frame X"Y,,z, is r, and its elastic displacement vector is U,. The position vector of that
point relative to the frame x"Y,,z, is R, = Ro. + r, + u, and its velocity vector is given by
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where ro, and UOiare the position vector and the elastic displacement vector of point i, respectively,
relative to the frame Xo,Yo'zo, the later is given by uo,=<1>o,qo.a, is the angular velocity vector of the
frame X,.Y,'z" given by

where ~, is the elastic angular velocity vector due to the elastic deformation of the body Bo at the
connecting point i, given by ~,=y,uo,' Substituting Eq.(6) and Eq.(5) into Eq.(4), one has

which is a general expression for the velocity vector of a generic point i in body B,.
The state of the system. described so far, is defined by relative coordinates emanating from

the frame X,.Yi,Z" located at point i, together with the relative position of frame Xo.Yo'zo with respect
to the inertial frame X.Y,Z. However, for a more complex structure, with several bodies forming a
branched tree. the same procedure can be applied. i.e., one evaluates the vectors R,+I' R,'+l and a'+1 and
substitute them back into the R" R, and a,. respectively. For the case with rotation between the
bodies. the angular velocity associated with the rotation needs to be added to the vector a, while each
body is included in the formulation. All these vectors are not expressed in the same frame. the
vectors R and R are given in terms of components along the frame X,Y,Z; the vectors a, r", uo, uo,
rOi,uOi•uOiand ~ are given in terms of components along the frame Xo.Yo'zo; and the vectors, r" u,.
ui and are given in terms of components along the frame X"Y,'zi' Therefore, rotation matrices which
allows to represent these vectors in a common frame are necessary. Hence. we defme the following
matrices: I) a rotation matrix C" whose the elements are non-linear functions of the Euler's angles.
which permits us to write the velocity vectors Ii in terms of components along Xo,Yo'zo in the form
Yo = C,Ro ; 2) a transformation matrix C, whose the elements are trigonometric function of Euler's
angles, which permits us to write the angular velocity vector of axes Xo.Yo'zo in terms of compo-
nents along Xo,Yo.zo in the form n = a};3) a rotation matrix G.whose the elements are functions of
the direction cosines between the frames Xo.Yo'zo and X,.Y,'zi' Considering the case of interest. where
the variation of the angular displacement is small, i.e. the Euler's angles are small. one has Yo = Ro
and n = a. which means that C, and C are equal to unit matrix. In order to transform the equations
from vector to matrix form. one represents the components of the vectors a in terms of vectrix [6]. the
details of these transformations can be found in [7].

The kinetic energy of a multibody system is the sum of the kinetic energies of the constituent
bodies. hence, summing over the entire system consisting ofN bodies (i=O.I,2,3, ...•N). the total kinetic
energy T expression is written as the scalar product

where the integration is performed for the entire spacecraft. The kinetic energy of the central body Bo
is obtained introducing Eq.(3) into the frrst term in the r.h.s of Eq.(8) which neglecting the quadratic
terms is given by



Considering that uo=C1>oqoand where Mo is the mass of body Bo, one obtains the following quadratic
terms, in matrix form, for the kinetic energy of body Bo.

(11)

f<lIxzo)+u.em. • IITfHoem.¢" f<lIxzo)+<lIxro)em. = IITf~;~oem.lI,fu.+u.em. = ¢;f.;.oem.¢,

Let the time-im·ariant terms in Eqs.(ll) that involve integration of the position vector ro and
the matrix of admissible function C1>0be denoted by

<e = f~;em.
1(. = f ~OT~Oem.

, .w:. = f·oem. ,<to = fHoem.,

, <to = f.;.oem. ,J4. = Jr"

Similarly, considering that uo=C1>oqo,Uo;=C1>Oiqo,~'=YiUo;,the time-invariant terms that involve
integration of the position vector r" ro" as well as the matrix of admissible function C1>"C1>0.and the
matrix of elastic rotation y" for the kinetic energy of body Bi are given by

•~ k <C1f~I~JdaJCJ - .J~:J - ~oJC1f~JdaJCJ- C1f~JdaJCJ~01)

•k {(~o.t81 + C1f~JdaJCJ).01 + <C1f~I~JdaJc. - ~OJC1f~ldaJCJ) fJ})

•
~ = k <·J·;J·OJ - ·;JC1f~JdaJc.fJ + fjC1f~JdaJCJ.OJ + fjC1f~I~JdaJCJfJ)

Adding the respective common terms of Eq.(l2), (13), (14) and (15), and defining q = [ RT 8T 4.T
as the total vector of generalized velocities, the kinetic energy T can be written, in terms of the total
mass matrix M of the multi-body system, as



It should be noted that the mass matrix M is divided into submatrices, which are associated with
system velocities and their interactions. The submatrix MRR is associated with rigid body translation
motion of the frame X",Yo;Zo, which is diagonal with its elements equal to the total mass of the
structure. These elements are invariant with respect the system coordinates. The submatrix MR.
is the sum of first mass moment of the body Bo and B, about the frames Xo,Yo;Zo and X"Y,;Z"
respectively. It is associated with the coupling between the translation and rotational motions.
Considering the rigid body dynamics and that the frame, Xo,Yo;Zo is located at the mass centre of
body Bo, the term in the submatrix MR. associated with body Bo is zero, which means that the
translation and rotation are dynamically decoupled, the coupling that remain is due to the elastic
deformation. The submatrix Mea is the sum of second mass moment of the body Bo and B, about
the frames Xo,Yo;Zo and X"Yi;Z" respectively. It represents the conventional mass moment of inertia,
and it is associated with the rigid body rotational motion. The submatrix Mq q is associated with
the deformation of body Bo due to it own deformation and the body Bi deformation. The submatrix
Mq q is only associated with elastic deformation of the body Bi and also system coordinate
independent. The off-diagonal submatrices MILj ,MILj , Me q , Me q correspond to coupling
between rigid body translation, rotation and elastic deformation of body Bo and Bi, respectively. The
submatrix Mq q is the coupling between the elastic deformations of body Bo and Bi. All of the off-
diagonal submatrices are system coordinate and matrix admissible function dependent and they can be
designated as mixed-mass matrices.

Potential EnellO': The potential energy of the spacecraft has contribution from two sources:
gravitational potential energy and strain energy due to elastic deformation. In this study the first one
is neglected. The total strain energy expression can be given by

v = i'qTXq (17)

where K is the total symmetric positive definite stiffness matrix.
For the MB-l model the bodies Bo and B, are treated as beam and the strain energy

expressions associated with its torsion and bending are given by

The bodies B, and B3 are modelled by plate and the strain energy expression associated with then is
given by

where GJ, El and D are the flexural rigidities for a beam (torsion and bending) and a plate,
respectively, and \' is the Poisson's ratio. The strain energy used here implies small elastic deformation
and rotation with shear deformation ignored.

Equations of Motion: Using the general expression of kinetic energy, potential energy and the
Lagrange's equation, the linearized equations of motion can be written as

where F q represents the generalized forces associated with the generalized coordinates q. The details
of the derivation of the mass matrix M and stiffness K matrices can be found in [7].



In the MB-l structure the main body Bo is modeled as a free-free beam, with transverse
bending in Xo-Zo and Yo,Zo planes, and torsion about Zo axis. The body B, (radiator) is modeled as
a clamped·free beam with transverse bending in X1·Z, and Y1-Z, planes and the bodies B, and B, are
the two solar panels, modeled as clamped- free plates with its mode shape given by the product of
modes of the free·free beam in Z2.3 direction and clamped-free beam in X2., direction. All bodies are
rigidly attached to the core structure and the radiator and the solar panels are assumed torsionally stiff.

The frequency characterization of the MB-I's model can be determined by setting Fq = 0 in
Eq.(20) and solving the eigenvalues problem for the undamped open-loop case, to yield the
eigenvalues(natural frequency) Wi and the modes shapes «jl,. Considering a model with 15 degree of
freedom (DO F), consisting of 6 rigid body motions (translation and rotation); the first bending mode
in Xo,Zo and Yo,Zo planes plus torsion about Zo axis for the central truss; the first two bending mode
in Y1,Zl plane for the radiator: and the first two bending mode in X2.,·Y,., plane for the two solar
panels. The frequency spectrum and the associated mode shapes of the MH-l structure are shown in
Table I. The dimensions, masses and material properties of the MB-I used here can be found in [8].

In order to characterize the frequencies of the MB-I, let us consider a nominal orbital altitude
of 400 Km for which the orbital period is 92.61 minutes or 1.8xlO" Hz. A low bandwidth attitude
control system, for example, a Control Moment Gyro (CMG), which one assumes that for the Space
Station will have a bandwidth in the range of 0.01 Hz to 0.05 Hz. A typical attitude control system
using thrusters, for example, a Reaction Control System (RCS), with bandwidth centred at 0.5 Hz, and
the range of frequencies found for the MB-l model with 15 DOF between 00, and 0012, These range
of frequencies are shown in Fig.2 which indicates that the spectral separations of the orbital rate, the
CMG, and the low frequency modes of the MS-I structure are reasonable. However, the same cannot
be said about the structural modes and the RCS, since the ReS bandwidth falls between the
frequencies w, and 0010 of the solar panels, which suggests that there is a potential control structure
interaction (CSI) [9] problem between the structural flexibility and the on-board controller. A approach
to control system design for purposes of avoiding control structure interaction has been to keep the
loop bandwidth an order of magnitude smaller than the first structural mode.

The dynamic equations in physical coordinates derived previously can be transformed into
modal coordinates considering that the mode shape vector can be combined as column vectors into the
so called modal matrix <tl which contains the eigenvectors (modal modes shapes) and the square of the
natural frequencies can be given by a diagonal matrix n2 = diag{w,", 002

2, ••• , con2
}. As a result, a

coordinate transformation between the physical coordinate (q) and the modal coordinate (11) can be
performed using q = <1lll and F = B'U, where B' is the input distribution matrix (nxn, dimensional)
which describes the placement of the n, actuators and their effect on the structure and U is the control
signal. Substituting these expressiop into Eq.(20) and premultiply both sides by <tlT, result in the
following dynamic equation relating structure's modal coordinates to the actuator's control input

The damping can be introduced into the model expressed in physical coordinates by the modal
damping matrix
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Therefore, the system equations of motion in modal coordinates can be written as

l\+d1agI2C.",,-, •.. ,2C••.•) q+d1ag{~, ... , •.•, 'I •• TS·U

where t; represents the assumed structural modal damping ratio.
A state space representation of the n second order Eq.(23) can be written by selecting the

(2nxl) modal state vector as X = COI{Il,1i}, where the first n elements of the state vector X are the
modal displacement '1 and the last n elements of X are the modal rate Ii. This results in the standard
state space form in modal coordinates given by

It should be noted that the modal state-space form obtained appears quite appropriated to deal with a
mixed uncertainty model (4],(5]. First, because of the neglected dynamics can be relatively easily
separated from the design model by a model reduction approach (2]. Second, because of the structural
characteristics like modal frequencies, damping ratio and mode shape appear explicit in the model as
physically meaningful parameters, which is suitable to deal with parameter variation. As a result, the
overall model allows the incorporation of both sources of uncertainty into the robust controller design.

A general coupled rigid body/flexible structural dynamic model is developed using a
Lagrangian formulation. This approach can be extended and used to study other phases of the Space
Station assemble sequence, as well as to study a large and varied class of future rigid /flexible
spacecraft. The frequency characterization of the MB-I model is evaluated which has shown that there
is a potential problem of control structure interactions (CSI). The dynamic set of decoupled equations
obtained in modal state space form has the attractive feature of providing a controller design procedure
which can deal with state-space representation form appropriate for representing errors due to
parameter variation and unmodelled dynamics. As a result, this procedure leads to computational
advantages and facilitates to address issues such as model order reduction, truncation, and robustness
with respect parameter variation and unmodelled dynamics in the context of the robust control design
methodology, such as LQGIL TR; PRLQG and Hoo.
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F~uency(Hz) Associated Mode Shape

(0,•••.••=0 rotational rigid body modes

(0,=0.101 fint sym. bending of solar panels.

(0.=0.184 fint bending of mdiator

(0.=0.337 fint asym. bending of solar panels

(0••=0.594 second sym. bending of solar pands

(0••=0.767 second bending of mdiator

(0.,=1.415 second asym. bending solar panels

(01J=5.216 fint bending x.z. plane main tnus

(0••=7.589 fint tonion about Z. main tnus

(0••=8.365 fint bending y.z. plane main tlUss

liB-I FrequeDCJ' Range ITllIIIDJ]
R.CS-bandwidth [I[]

lITTIJCMG-BaDdwiclth

OJ IIB-I Orbia.1 Rate

108-4 108-3 108-2 10B·l

SyUeJIl Frequency (Hz)


