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RESUMEN
Este trabajo trata sobre el problema de seleccionar elementos a refinar para la construccion
de una nueva triangulaci6n en un sistema de refinamiento adaptativo. EI probema con-
siderado es la resolucion numerica de la ecuacion de Poisson utilizando elementos finitos
lineales e indicadores de error de tipo Babuska-Miller. Analizamos dos metodos de selec-
cionar triangulos en refinamiento adaptivo: la primer estrategia (ampliamente utilizada) es
marcar aquellos elementos que tengan un indicador de error mayor que '" veces el mayor
de los indicadores, donde 0 :'0 '" :'0 1. Concluimos que este metodo es robusto en el sigu-
iente sentido: si elegimos '" 2: "'0 con "'0 pequeiio, se recupera el orden de convergencia del
problema regular con mallas cuasi-uniformes (medido con el numero de elementos). Con
este procedimiento tam bien introducimos un criteria de detenci6n para obtener el error fi-
nal menor que una tolerancia prescripta. La segunda estrategia es marcar elementos que
tengan un indicador mayor que un (indicador admisible. Este indicador admisible se define
basado en el anterior criterio de detencion. La relacion entre el indicador elemental y el error
admisible es utilizada para definir el nivel de refinamiento de cada elemento. Analizamos el
comportamiento de am bas estrategias y las comparamos. Finalmente, discutimos algunos
aspectos del proceso adaptivo como un todo.

ABSTRACT
This paper deals with the problem of selecting the elements to be refined for the construction
of a new triangulation in an adaptive refinement system. The problem considered is the
numerical solution of Poisson's equation using piecewise linear finite elements and local error
indicators of Babuska-Miller-type. We analyze two ways of selecting triangles in adaptive
refinement: the first strategy (widely used) is to mark elements that have an indicator greater
than'" times the largest of the indicators where 0 :'0 '" :'0 1. We conclude that this method
is robust in the following sense: if we choose '" ~ "'0 with "'0 small, the convergence order of
the regular problem with quasi uniform meshes (measured with the number of elements) is
recovered. In this procedure we also introduce a stopping criterion to obtain the final error
measure smaller than a prescribed tolerance. The second strategy is to mark elements that
have an indicator greater than an admissible indicator. This admissible indicator is defined
based on the previous stopping criterion. The ratio between the elemental indicator and the
admissible error is also used to define the level of refinement in each element. \Ve analyze
the behavior of both strategies and compare them. Finally, some remarks about the whole
adaptive process are discussed.

In Computational :\Iechanics it is usual to find the problem of increasing the accuracy of a solution
without adding unnecessary degrees of freedom. Usually the overall accuracy of the numerical
solution is degraded by a non-uniform distribution of the error, specially when the solution of
the continuous problem has local singularities. The need for accurate solutions has made the
use of adaptive proced ures very attractive and necessary for large scale problems. It is therefore
necessary to update the mesh to ensure that it becomes dense enough in the critical region while
remaining reasonably coarse in the rest of the domain.

This procedure involves three steps: a) the evaluation of local error indicators (i.e.: estimates
per element) and the error estimate, b) the selection of triangles that will be refined, and c)



the mesh refinement process based upon these indicators. Local a posteriori error estimators are
the adequate tool to identify automatically these critical regions. They should use only given
data and the numerical solution itself. Based on the information given by these estimators, it is
possible to decide when the adaptive process must be stopped or, if this is not the case, where
and how mesh refinement might be performed more efficiently. Several approaches have been
introduced to define error estimators for different problems using the residual equation (see for
example Noor and Babuska I, Babuska and Miller2, Babuska and Rheinboldt3, Bank and Weisser4

and Verflirth5).

The second step is the selection strategy, which consists of marking the triangles that will be
refined. In this paper we deal with this step and show how the selection strategy influences
the efficiency of the adaptive process. We analyze two ways of selecting triangles in adaptive
refinement: the first strategy (widely used) is to mark elements that have an indicator greater
than a times the largest of the indicators where 0 ::; a ::; 1. A stopping criterion is introduced
to obtain the final error measure smaller than a prescribed tolerance. Based on this stopping
criterion an admissible error can be defined. Moreover, the ratio between the elemental error
indicator and the admissible error can be used to compute different levels of refinement in each
element. This is the second selection strategy to be analyzed.

The main advantage of the second strategy is to account for the error distribution. Furthermore,
the threshold to mark elements is based on global quantities, while in the first strategy it is
defined through the indicator in one element.

An algorithm based on the subdivision of simplices, briefly described in the third section, is
used in the mesh refinement process. This idea was successfully used by several authors (see for
example Rivara6) and it is specially attractive for adaptive processes because it is possible to
2;uarantee that elements will not degenerate.

The rest of the paper is organized as follows: in the following section we introduce the model
problem and recall the finite element approximation. The error estimators and their equiva-
lence with the error are introduced there. After that, we introduce the stopping criterion. The
following two sections deal with the selection strategies including numerical results and compar-
ative analysis. We also introduce an improvement of the second strategy to reduce the global
computational cost. Finally, in the last section some concluding remarks are summarized.

MODEL PROBLEM

Let n c R2 be a polygonal domain. The model problem is

{

-~u = f,
u=gl,

** = g2,

where rl and r2 are disjoint sets such that rl f. 0 and rl U r2 = an. Standard notation for
Sobolev spaces, norms and semi norms are used. For r c an we set Hf = {IJ E HI(n) : v =
o on r}. Then, the solution of problem (1) satisfies

r V'uV'v= r fv+ r g2v, 'VvEHf,in in if2

·Assume that we have a family {7j} of triangulations of n such that any two triangles in '0
share at most a vertex or an edge and any '0 is consistent with the boundary data, i.e., a
boundary side is contained in either rl or r2. For any '0 we introduce the finite element space
VJ = {v E COIn) : vlT E PI, 'VT E '0} (PI denotes the space of linear polynomials) and for
r c an let Vj,f = Vj nHf.



For the sake of simplicity we assume that, 91 is piecewise linear and 92 is piecewise constant.
These assumptions are not very restrictive. In fact, in the general case we may replace the data by
appropriate interpolations and it is not difficult to see that the theorems below can be generalized
assuming local regularity of the data (we refer to Babuska et al!, Verfiirth5 for details).

Then the finite element approximation to the solution of problem (1) is defined by Uj E V) and,

{In V'Uj V'v = In fv + If, 92V

Uj = 91
"I v E "j,f,
"I£erl

Now, we introduce some notation that will be necessary in the definition of error estimators. Let
E[ be the set of all interior edges and ET the set of edges of T. For each interior edge £ we
choose an arbitrary normal direction n and denote the two triangles sharing this edge Tin and
Tout with n pointing out of Tin' For a boundary side £ we take n as the outward normal.

We set

[[~~]L= V'(UjITout)n - V'(UjITin)n ,

Note that this value is independent of the choice of n.

For a side e define Je by

if £ E E[

if £ e r2

if e e r1

TIT = [lTlllfllh + ~ L: 1111IJe1l6,I]t
eeET

where ITI and 1£1 are the area of T and the length of an edge £ , respectively. We define the
global error estimator by

'\' 2 1TI= (L.TlT»
T

Now, Theorem 1 can be stated. This is a standard result and a proof can be found in Babuska
et a1.7.

Theorem 1 There are two constants CO,cl , which depend only on r.! and on the smallest angle
in the triangulation 7), such that the estimates:

We present the results of some numerical computations. Meshes {7)} are generated in an adaptive
way using TIT as an error indicator at the element T. Starting with a uniform triangulation To,
71+1 is obtained from 7) refining the elements T E 7) marked in the selection strategy.

The densification algorithm used is based on the idea proposed in Rivara6. Basically it has three
steps: node addition for subdivision of the selected elements. node addition for the conforming
process, and element subdivision. The algorithm may be summarized as follows:



• A node is added to the mid point of the longest edge of each triangle marked (see
figure lb).

• For every triangle in the mesh with nodes added to the mid point of an edge which is
not the longest, add a node to the mid point of its longest edge. This step is repeated
until every triangle with nodes added to its edges, has a node added to its longest
edge. (see figure lc)

• Finally, these triangles are bisected, first by their longest edges, and then by the other
edges to which nodes were added (see figure ld).

To use this algorithm in an adaptive environment, it is first necessary to guarantee that the new
elements generated will not degenerate. In 2D the interior angle of any triangle generated by this
procedure is not less than one half the smallest angle of the initial triangulation6. Then, if the
initial mesh has good elements, the new meshes generated will also have good elements.

STOPPING CRITERION
In the rest of the paper the stopping criterion and the effectivity index will be used. The stopping
criterion is defined by

_"1_<8
IUjl1 -

where 8 is another positive parameter introduced in the input and related to the final relative
error. A standard measure of the quality of an estimator is the effectivity index defined by

"1

eff= ~

where e = U - Uj is the error.

The relative error satisfies
Iu - ujll < 8 (IUjll)

lull - eff lulr
and using IUjl1 ~ Iu - Ujll + lulr we get

IU- Ujll < 8
-Iu-I-I- - eff- 8

provided that 8 < eff. Then, to obtain a relative error bounded by a given tolerance we need
to estimate the effectivity index.



We take a sequence of positive numbers (8n) such that 0 < 8n+1 < 8n < eff and 8n --t 0 when
n --t 00. Starting from the initial mesh To, we define Ul as the solution that satisfies the stopping
criterion for 81. To define un with n > 1, we start from the final mesh used to obtain un-I and
apply the adaptive method until the stopping criterion is satisfied for 8n. We have a sequence
that verifies

and then un --t u in HI, when n --t 00.

Now, it is only necessary to show that the adaptive algorithm stops in a finite number of steps.
Although there is no formal proof of this fact, the numerical examples (see following section)
show strong evidence of this finite termination property.

The first selection strategy is defined by
if 0' TJmax :::: TJT then mark T

where TJmax = max{TJT: T E 7j} and 0:::: Q:::: 1.

If Q = 0 we will refine globally. In this case, in problems with singular solutions (i.e. solutions
in HI, \ H2 (rJ)) the order of convergence with respect to the number of elements is less than the
order of regular problems with quasi uniform meshes. The first step in our research is to analyze
which 0' produces the same order than regular problems with quasi uniform meshes.

We consider the Laplace equation, with mixed boundary conditions, as test problems. We solve,
for k = 4,6,8

1
tou - 0 in n
u =~ on fl
u=sin(¥) onf2

~ = 0 on f3

where n = {(r. If) : 0 < r < 1, 0 < If < ¥}, fl = {(r, If) : 0 < r < 1, If = O}, f2 = Hr,O) : r ;;: 1,
o < 9 < ~} and, r 3 = Hr, 9) : 0 < r < 1, If = ¥} (see figure 2).

The solution of this problem is u(r, If) = r2/k sin (¥). The minimal angle in the initial meshes
in all cases is equal to 38.8 degrees and (as a consequence of the algorithm of densification) the
minimal angle in every mesh is greater than or equal to 19.4 degrees.
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Figure 3: Convergence of the adaptive process using the first selection strategy with different
values of 0', k = 4.

Figures 3, 4 and 5 show the number of elements versus the global error estimator for k = 4,6 and
8 respectively, and with several values of the parameter 0'. In these figures it can be seen that for
0' not too small we obtain O(N-'). In fact, the adaptive algorithm based on the first selection
strategy gives the same order of convergence as regular problems with quasiuniform meshes for
all practical 0', i.e., if we take 0' greater than, let's say 0.1, we get the order O(N-~). The precise
value of 0' for which the order becomes the optimal one can not be computed easily since that
order is an asymptotic value and the size of the meshes grows dramatically for these values of 0'.

In Babuska et al.7 it is shown that

where up is a finite element solution of the problem using order p interpolants with p 2: 2 and (3
is the minimum angle in the mesh. The terms 01 and 02 with standard assumptions on f and 9
are of higher order.

Table I shows that 3 :::;eff:::; 4 in all cases where eff is computed in the final mesh and gives
numerical evidence that co((3) 2: 3.

0' 0.1 0.3 0.5 0.7 0.9
k=4 3.36 3.46 3.47 3.47 3.47
k=6 3.35 3.23 3.24 3.26 3.26
k=8 3.43 3.47 3.47 3.48 3.48

/u-Ujll e---<---Iult - co((3)- e
provided that e :::;cot)). Hence, if we want to have a relative error less than a tolerance T we
must take e :::;T(l + T)-ICO(/3).
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Figure 4: Convergence of the adaptive process using the first selection strategy with different
values of 01, k = 6.

Following similar ideas as those presented in Zienkiewicz and Zhu8, the second selection strategy
is defined by:

if 'Iadm ~ 'IT then mark T
Assuming that the error is equally distributed between elements, 'Iadm' the admissible error, is
defined based on the stopping criterion:

'Iadm = Nel-~ e IUjil
where N el is the total number of elements.

Note that if 'Iadm > 'IT "IT the stopping criterion is satisfied.

We define the number NT of subdivisions in the element T by

NT= 1
NT= 2
NT= 3

if 'Iadm ~ 'IT < 2'1adm
if 2'1adm ~ 'IT < 4'1adm
if 4'1adm ~ 'IT < 8'1adm

NT = [IOg('lTI'Iadm) + 1]
log 2

where [x] is the greatest integer less than or equal to x.

Remark: In the general case of higher order elements, let us say p, in the previous definition we
must replace 2 by 2E:}!-.

An upper bound NM to limit the number of subdivisions can be established for marked elements
NT ~ 1.

The algorithm (P) is applied to every marked element, i.e. those for which NT > O. Because
of the conforming algorithm, a triangle T may be subdivided in 2, 3 or 4 subtriangles T* with
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Figure 5: Convergence of the adaptive process using the first selection strategy with different
values of 0<, k = 8.

areas one half or one quarter of the original triangle (see figure 1) . A new NT' is assigned to
each subtriangle, based on the new area: NT' = NT - log2 (tP-r). This process is repeated until
NT' < 1 "IT".

Now, we consider the second selection strategy, using the test problem with k = 8. Figure 6
shows the global error versus the number of elements when the above strategy for different NM
is used. A curve obtained using the first strategy with 0< = 0.6 is also included.

Starting from the same initial mesh it can be seen that, except for the last steps, the first
selection strategy gives much better meshes (with minimum number of elements for the same
error). Additionally, the second selection strategy greatly reduces the number of adaptive steps
required as it is shown in table II.

The second strategy can be improved to reduce the number of elements in the final mesh. With
this aim, two positive parameters 62 < 61 are introduced. The idea is to apply the algorithm
with NM = 00 twice: first use the algorithm with 61 instead of 6 and then apply the algorithm
with 62 instead of 6 starting from the final mesh obtained with 61• This algorithm will be
referred to as 2-step algorithm. The previous idea can be generalized for n ~ 2. In this case, it
will be called n-step algorithm and it is defined introducing a new parameter M as follows:

NT = [IOg(1)T/77adm)+ 1] - M
log2

Note that when 77/6I1ujll< 22 this algorithm reduces to the previous one. When 23 > 77/6I1Ujll~
22, NT is computed as if the stopping criterion were 77/IIUjll< 26 and so on. This procedure
avoids the unnecessary degrees of freedom introduced in the first steps of the adaptive process
when the second selection strategy is used. Figure 7 shows the behaviour of the 2-step and the
n-step algorithms, compared to the first selection strategy, with 0< = 0.6.



-a=0.6
NM=!

• NM= 00

'+

+.

+•.~~

Figure 6: Convergence of the adaptive process for the test problem with k ==8. Second selection
strategy with NM = 1, inf. Also is shown the result for the first selection strategy with a ==0.6.

Cases Number of steps Number of nodes in the final mesh
01=0.1 66 44714
01=0.6 87 48142
01==0.9 258 43825
NM-l 46 67262
NM=3 16 67854
NM=6 9 66057
NM = 00 8 66680

2-step 7+3=10 52013

The method using the first selection strategy is robust in the following sense: if we choose a ::::010
with 010small, the convergence order is the same as that of the regular problem with quasi uniform
meshes (measured with the number of elements).

An algorithm to get a relative error less than a prescribed tolerance is presented. This fact is
desired in technological problems and it is not generally found in automatic systems.

To the authors' knowledge, there is no mathematical proof of the convergence of any adaptive
procedure based on a posteriori error estimates for 2-D or 3-0. A convergence proof can be found
in Babuska and Vogelius9 for 1-0 problems. It would be interesting to prove that the adaptive
algorithm stops in a finite number of steps, as the numerical evidence shows. This would prove
that the adaptive procedure is convergent in 2-D.

The results obtained in this paper are applicable to problems other than Poisson's. The method
can be used in a large class of linear problems, as for example, linear elasticity or Stokes problem.
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Figure 7: Convergence of the adaptive process for the test problem with k = 8. 2-step algorithm
and n-step algorithm. Also is shown the result for the first selection strategy with Q = 0.6.
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