ELEMENTO RECTANGULAR PARA PLACAS ORTOTROPAS

Raúl E. Rossi, Patricio A.A. Laura, Diana V. Bambill, Carlos A. Rossit

Departamento de Ingeniería, Universidad Nacional del Sur

Instituto de Mecánica Aplicada (CONICET)

8000 - Bahía Blanca

RESUMEN

Se presenta una generalización del clásico elemento rectangular para placas delgadas isótropas desarrollado por Bogner y colaboradores en la década del sesenta, con el fin de abordar problemas de vibraciones transversales de placas rectangulares ortótropas. Se obtienen las frecuencias de los primeros modos de vibración libre de la placa cuadrada, con tres tipos de vinculación. Los resultados se comparan con valores disponibles en la literatura especializada. Se concluye que el nuevo elemento propuesto, tipo Bogner, produce resultados de excelente precisión.

ABSTRACT

The present paper deals with an extension of the rectangular plate element developed by Bogner et al. in the 60's, in order to tackle transverse vibrations problems of thin rectangular orthotropic plates. Values of the frequencies are obtained for the square plate with three different types of boundary conditions. The results are compared with values available in the open literature. It is concluded that the newly developed Bogner-type element yields excellent accuracy.

~~

INTRODUCCION

El bien conocido elemento rectangular para placas delgadas isótropas desarrollado en 1966 por Bogner y colaboradores [1], y dos años más tarde propuesto en forma independiente por Mason [2], exhibe un excelente comportamiento en la convergencia y precisión de los resultados, tanto en problemas estáticos como dinámicos. La conveniencia de disponer de un elemento finito similar, para el análisis dinámico de placas rectangulares ortótropas, y la infructuosa búsqueda de un desarrollo análogo en la bibliografía disponible, indujeron a utilizar las mismas funciones de forma, propuestas por Bogner, para obtener las propiedades de rigidez del elemento ortótropo [3]. Con este nuevo algoritmo se hicieron comparaciones de resultados del coeficiente de frecuencia de placas cuadradas, con tres configuraciones de vínculo: apoyada en el contorno, empotrada en el contorno, y empotrada en un borde con los otros tres libres (placa cantilever). En estos tres casos también se transcriben los valores obtenidos con el código Algor Professional Mech/E, utilizando el elemento placa con formulación de Fraeijs de Veubeke [4].

DESARROLLO DEL ALGORITMO

En la Figura 1 se muestra el dominio de definición del elemento rectangular en el sistema local de coordenadas x-v.

En la misma figura se indica la numeración local de los cuatro nodos (vértices).

El desplazamiento transversal w, sus derivadas primeras $\partial w/\partial x$, $\partial w/\partial y$, y la derivada segunda $\partial^2 w/\partial x \partial y$, son los grados de libertad adoptados en cada nodo. El vector de de los desplazamientos nodales se escribe:

Figura 1: Dominio de definición con numeración local de los nodos del elemento.

$$\{ w_{e} \}^{t} = \left[w_{1} \left(\frac{\partial w}{\partial x} \right)_{1} \left(\frac{\partial w}{\partial y} \right)_{1} \left(\frac{\partial^{2} w}{\partial x \partial y} \right)_{1} \dots \left(\frac{\partial^{2} w}{\partial x \partial y} \right)_{4} \right]$$
(1)

Introduciendo variables adimensionales ($\xi = x/a; \eta = y/b$), con los polinomios interpolantes adoptados por Bogner se derivan las siguientes funciones de forma:

$$\begin{split} &N_{1}(\xi,\eta) = (2\xi^{3} - 3\xi^{2} + 1)(2\eta^{3} - 3\eta^{2} + 1) ; &N_{9}(\xi,\eta) = \xi^{2}\eta^{2}(3 - 2\xi)(3 - 2\eta) \\ &N_{2}(\xi,\eta) = a\xi(\xi^{2} - 2\xi + 1)(2\eta^{3} - 3\eta^{2} + 1) ; &N_{10}(\xi,\eta) = a\xi^{2}\eta^{2}(\xi - 1)(3 - 2\eta) \\ &N_{3}(\xi,\eta) = b\eta(2\xi^{3} - 3\xi^{2} + 1)(\eta^{2} - 2\eta + 1) ; &N_{11}(\xi,\eta) = b\xi^{2}\eta^{2}(3 - 2\xi)(\eta - 1) \end{split}$$

$$\begin{split} &N_{4}(\xi,\eta) = ab\xi\eta(\xi^{2}-2\xi+1)(\eta^{2}-2\eta+1) ; &N_{12}(\xi,\eta) = ab\xi^{2}\eta^{2}(\xi-1)(\eta-1) \\ &N_{5}(\xi,\eta) = \eta^{2}(2\xi^{3}-3\xi^{2}+1)(3-2\eta) ; &N_{13}(\xi,\eta) = \xi^{2}(3-2\xi)(2\eta^{3}-3\eta^{2}+1) \\ &N_{6}(\xi,\eta) = a\xi\eta^{2}(\xi^{2}-2\xi+1)(3-2\eta) ; &N_{14}(\xi,\eta) = a\xi^{2}(\xi-1)(2\eta^{3}-3\eta^{2}+1) \\ &N_{7}(\xi,\eta) = b\eta^{2}(2\xi^{3}-3\xi^{2}+1)(\eta-1) ; &N_{15}(\xi,\eta) = b\xi^{2}\eta(3-2\xi)(\eta^{2}-2\eta+1) \\ &N_{9}(\xi,\eta) = ab\xi\eta^{2}(\xi^{2}-2\xi+1)(\eta-1) ; &N_{16}(\xi,\eta) = ab\xi^{2}\eta(\xi-1)(\eta^{2}-2\eta+1) \end{split}$$

El desplazamiento de un punto del elemento se expresa entonces:

$$w(\xi,\eta) = [N] \{w_{\rho}\}$$
 (2)

La energía de deformación de la placa delgada, con direcciones principales de ortotropía coincidentes con los ejes coordenados, se escribe [5]:

$$U = \frac{1}{2} \iint \left\{ D_1 \left(\frac{\partial^2 w}{\partial x^2} \right)^2 + 2\nu_2 D_1 \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} + D_2 \left(\frac{\partial^2 w}{\partial y^2} \right)^2 + 4 D_k \left(\frac{\partial^2 w}{\partial x \partial y} \right) \right\} dxdy \quad (3)$$

con
$$D_1 = \frac{E_1 h^3}{12(1-\nu_1\nu_2)}$$
; $D_2 = \frac{E_2 h^3}{12(1-\nu_1\nu_2)}$; $D_k = \frac{G_1 h^3}{12}$ (4)

donde: h es el espesor de la placa; E_1, E_2 son los módulos de elasticidad y ν_1, ν_2 los coeficientes de Poisson $(E_1\nu_2=E_2\nu_1)$; G es el módulo de elasticidad transversal.

Reemplazando (2) en (3) e integrando sobre el dominio de definición del elemento rectangular, se obtiene:

$$\begin{aligned} U &= \frac{1}{2} \{ w_{e} \}^{t} \frac{D_{1}}{ab} \left\{ \alpha^{2} [k^{(1)}] + \delta \alpha^{-2} [k^{(2)}] + \varphi [k^{(3)}] + \nu_{2} [k^{(4)}] \right\} \{ w_{e} \} \end{aligned} \tag{5} \\ \text{donde:} \alpha &= b/a ; \delta = D_{2} / D_{1} ; \varphi = 2D_{k} / D_{1} \\ [k^{(1)}] &= \int_{0}^{1} \int_{0}^{1} [N_{\xi\xi}]^{t} [N_{\xi\xi}] d\xi d\eta \\ [k^{(2)}] &= \int_{0}^{1} \int_{0}^{1} [N_{\eta\eta}]^{t} [N_{\eta\eta}] d\xi d\eta \\ [k^{(3)}] &= 2 \int_{0}^{1} \int_{0}^{1} [N_{\xi\eta}]^{t} [N_{\xi\eta}] d\xi d\eta \\ [k^{(4)}] &= \int_{0}^{1} \int_{0}^{1} \left\{ [N_{\xi\xi}]^{t} [N_{\eta\eta}] + [N_{\eta\eta}]^{t} [N_{\xi\xi}] \right\} d\xi d\eta \end{aligned}$$

Cada subíndice denota derivación de las funciones de forma con respecto a la variable adimensional indicada.

Para el caso particular de placa isótropa, se cumple:

$$\nu_1 = \nu_2 = \nu; \quad \delta = 1; \quad \varphi = 1 - \nu$$
 (6)

Por consiguiente, la matriz de rigidez del elemento isótropo se expresa:

$$[k] = \frac{D}{a b} \left\{ \alpha^{2} [k^{(1)}] + \alpha^{-2} [k^{(2)}] + [k^{(3)}] + \nu [k^{(4)}] - \nu [k^{(3)}] \right\}$$
(7)
donde: $D = \frac{E h^{3}}{12(1-\nu^{2})}$

En la referencia [1] se encuentra la siguiente expresión para la componente genérica de la misma matriz:

$$\tilde{q}_{ij} = \frac{D}{a b} \left\{ \alpha^2 \tilde{\gamma}_{ij}^{(1)} + \alpha^{-2} \tilde{\gamma}_{ij}^{(2)} + \tilde{\gamma}_{ij}^{(3)} + \nu \tilde{\gamma}_{ij}^{(4)} \right\} a^{\tilde{\lambda}_{ij}} b^{\tilde{\mu}_{ij}}$$
(8)

En la Tabla 6 de la misma referencia se dan los valores numéricos de $\tilde{\gamma}_{ij}^{(1)}$, $\tilde{\gamma}_{ij}^{(2)}$, $\tilde{\gamma}_{ij}^{(3)}$, $\tilde{\gamma}_{ij}^{(4)}$, $\tilde{\lambda}_{ij}$ y $\tilde{\mu}_{ij}$ para i = 1 .. 16, j = 1 .. i.

De la comparación de (7) y (8) se deduce:

En consecuencia, con los valores numéricos dados en [1] se expresa, en forma directa, la matriz de rigidez del elemento ortótropo.

En cuanto a la componente genérica de la matriz de inercia, en la misma referencia viene dada por:

$$m_{ij} = \rho \frac{a b h}{1225} \tilde{\gamma}_{ij}^{(5)} a^{\tilde{\lambda}_{ij}} b^{\tilde{\mu}_{ij}}$$
(10)

donde ρ es la densidad del material.

Los valores de $~\widetilde{\gamma}_{i\,j}^{(5)}$ se encuentran en la misma Tabla 6 de la publicación de Bogner et al.

ANALISIS DE LA EFICIENCIA NUMERICA DEL ELEMENTO

Para comprobar la calidad del elemento, se resolvieron diversos casos de placas delgadas cuadradas con solución conocida, exacta o muy aproximada, de las frecuencias naturales. Para el cálculo de los autovectores y autovalores se utilizó el método de iteración inversa [6].

En las tablas que siguen se dan los valores del coeficiente de frecuencia, el cual se define, para la placa cuadrada de lado a, con $\Omega = \omega a^2 \sqrt{\rho h/D}$ en el caso de isotropía, y con $\Omega = \omega a^2 \sqrt{\rho h/D_1}$ cuando la placa es ortótropa. Para este análisis numérico se utilizaron elementos cuadrados en todos los modelos, de modo que los lados de la placa tienen el mismo número (n) de divisiones de igual longitud. En la segunda columna de las tablas se consignan los grados de libertad una vez aplicadas las restricciones de vínculo, y las condiciones de simetría, o antimetría, en los casos resueltos con la mitad o la cuarta parte de la placa.

Tabla I: placa isótropa apoyada en el contorno

n	gl	Ω1	Ω2=Ω3	Ω4	Ω5=Ω6
5	100	19.7403	49.4914	79.0265	99.3402
10	400	19.7393	49.3514	78.9611	98.7390
20	1600	19.739213	49.3482	78.9571	98.6988
15 *	900	19.739210	49.34806	78.9569	98.6966
20 *	1600	19.739209	49.34804	78.95685	98.6962
25 *	2500	19.7392089	49.348027	78.956842	98.69611
Sol.e	xacta	19.7392088	49.348022	78.956835	98.69604
50 **	7500	19.7400	49.3513	78.9698	98.7034

* Modelo de un cuarto de placa; ** ídem, resuelto con ALGOR; *,** grados de libertad para modos con doble simetría.

Tabla II: placa isótropa empotrada en el contorno

n	gl	Ω1	Ωz=Ω3	Ω4	Ω5	Ω6
5	64	36.0170	73.6682	108.7593	133.3147	133.8944
10	324	35.9876	73.4128	108.2561	131.7030	132.3251
20	1444	35.9853	73.3951	108.2193	131.5886	132.2127
15 *	841	35.98523	73.3941	108.2171	131.5823	132,2064
20 *	1521	35.98520	73.3939	108.2167	131.5813	132,2053
25 *	2401	35.985196	73.39388	108.21658	131.58098	132.20500
Refe	r. [7]	35.985192	73.393849	108.21651	131.58078	132.20480
50**	7400	35.9880	73.4016	108.2436	131.5956	132.2184

* Modelo de un cuarto de placa; ** ídem, resuelto con ALGOR; *,** grados de libertad para modos con doble simetría.

					~,	
n	gl	Ω1	Ωz	Ω3	Ω4	Ω5
5	120	3.4736	8.5137	21.3075	27.2242	31,0010
10	440	3.4716	8.5085	21.2895	27.2011	30 9644
20	1680	3.4711	8.5069	21.2855	27.1990	30.9571
30x15 *	1860	3.47105	8.5065	21.2846	27,1988	30,9556
40x20 *	3280	3.47103	8.5064	21.2843	27.1988	30.9550
Refer.	[8]	3.4917	8.5246	21.429	27.331	31.111
100x50**	15200	3.4709	8.5056	21.2799	27.1918	30.9494

Tabla III: placa isótropa cantilever (v=0.3)

* Modelo de la mitad de la placa; ** ídem, resuelto con ALGOR; *,** grados de libertad para modos simétricos.

Cabe destacar que los resultados obtenidos con Algor, en el caso de la placa cantilever, no son cotas superiores, debido al método adoptado en la distribución de la masa, el cual implica mayor efecto de inercia cuando hay bordes sin restricciones. En todos los casos de ortotropía se adoptó: $D_2/D_1=0.5$; $D_k/D_1=0.1$; $\nu_2=0.3$

Tabla IV: placa ortótropa apoyada en el contorno

n	gl	Ω1	Ω2	Ω3	Ω4
5	100	15.6062	35.6226	44.7449	62.4856
10	400	15.6053	35.5877	44.6903	62.4249
20	1600	15.60522	35.5855	44.6868	62.4211
15 *	900	15.6052155	35.58539	44.68658	62.42091
20 *	1600	15.6052150	35.585374	44.68655	62.42088
25 *	2500	15.6052148	35.585369	44.686541	62.420865
Sol.	exacta	15.6052147	35.5853647	44.686534	62.420859
50 **	7500	15.6059	35.5882	44.6888	62.4311

* Modelo de un cuarto de placa; ** ídem, resuelto con ALGOR; *,** grados de libertad para modos con doble simetría.

Los valores exactos, dados en la Tabla IV, fueron calculados con la conocida expresión:

$$\Omega_{nm} = a^2 \sqrt{\rho h/D_1} \omega_{nm} = \pi^2 \left[n^4 + 2 n^2 m^2 (a/b)^2 D_3 / D_1 + m^4 (a/b)^4 D_2 / D_1 \right]^{1/2}$$
(11)

donde $D_3 = \nu_2 D_1 + 2 D_k$ (12)

la cual se deduce a partir de la solución exacta, expresada con la siguiente serie doble:

$$w(x,y) = \sum_{1}^{\infty} \sum_{1}^{\infty} b_{nm} \operatorname{sen} \frac{n\pi x}{a} \operatorname{sen} \frac{m\pi y}{b}$$
(13)

n	gl	Ω1	Ω2	Ω3	Ω4
5	64	30.0006	54.5135	68.0546	88.5513
10	324	29.9807	54.3484	67.8148	88.1860
20	1444	29.9793	54.3374	67.7988	88.1609
15 *	841	29.97919	54.3368	67.7979	88.1595
20 *	1521	29.97917	54.3367	67.7977	88.1592
25 *	2401	29.979169	54.33668	67.79768	88.15914
Refer	. [7]	29.979167	54.336663	67.797655	88.159097
50 **	7400	29.9813	54.3434	67.8030	88.1801

Tabla V: placa ortótropa empotrada en el contorno

* Modelo de un cuarto de placa; ** ídem, resuelto con ALGOR; * , ** grados de libertad para modos con doble simetría.

Tabla VI: placa ortótropa cantilever

n	g]	Ω1	Ω2	Ωз	Ω4	Ω5
5	120	3.4251	5.6026	16.8830	22.1095	24.2203
10	440	3.4226	5.5937	16.8611	22.0816	24.1654
20	1680	3.42223	5.5915	16.8561	22.0769	24.1511
25	26 00	3.42220	5.5912	16.8556	22.0765	24.1494
30x15	* 1860	3.422191	5.59114	16.8553	22.0763	24.1486
40x20	* 3280	3.422182	5.59104	16.8550	22.0761	24.1478
100x50)** 15200	3.4221	5.5907	16.8500	22.0726	24.1425

* Modelo de la mitad de la placa; ** idem, resuelto con ALGOR;

* , ** grados de libertad para modos simétricos.

AGRADEC IMIENTOS

Este trabajo contó con los auspicios de la Secretaría General de Ciencia y Tecnología de la Universidad Nacional del Sur y de la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC).

REFERENCIAS

- Bogner, F.K., Fox R.L. and Schmit, L.A. The generation of inter-element compatible stiffness and mass matrices by the use of interpolation formulas. Matrix methods in structural mechanics, AFFDL-TR-66-80, 1966, páginas 397-443.
- Mason, V., Rectangular finite elements for analysis of plate vibrations Journal of Sound and Vibration 7(3), 1968, págs. 437-448.
- [3] Rossi, R.E., A note on a finite element for vibrating thin, orthotropic rectangular plates, Journal of Sound & Vibration (Letter to the Editor), 1997. A ser publicado.
- [4] Fraeijs de Veubeke, B., A conforming finite element for plate bending, Int. Journal of Solids and Structures, 1968, Vol. 4, págs. 95-108.
- [5] Lekhnitskii, S.G., Anisotropic Plates. Gordon and Breach Science Publishers, New York, N.Y., 1968.
- [6] Chandrupatla, T.R. and Belegundu, A.D., Introduction to Finite Elements in Engineering. Prentice-Hill, Inc. New Jersey, 1991..
- [7] Sakata, T. and Hosokawa, K., Vibrations of clamped orthotropic rectangular plates. Journal of Sound and Vibration, 125(3), 1988, págs.429-439.
- [8] Leissa, A.W. The free vibrations of rectangular plates, Journal of Sound and Vibration 31(3), 1973, págs. 257-293.

-

.