
Mecanica Computacional, Volumen XVIII - pp. 629-638
Compilado por: E. Oari, C. Padra y R. Saliba

San Carlos de Bariloche, noviembre de 1997

AN EFFICIENT IMPLEMENTATION OF
THE FIRST LEAST-CONNECTED NODE STRATEGY

Ignacio Ponzoni
Departamento de Ciencias de la Computaci6n - Universidad Nacional del Sur

Avda. Alem 1253 - 8000 Bahia Blanca - Argentina
Planta Piloto de Ingenieria Quimica (UNS - CONICET)
12 de Octubre 1842 - 8000 - Bahia Blanca - Argentina

Mabel C. Sanchez and Nelida B. Brignolet

Planta Piloto de Ingenieria Quimica (UNS - CONICET)
12 de Octubre 1842 - 8000 - Bahia Blanca - Argentina

RESUMEN
Se presenta en este trabajo la implementaci6n de un nuevo algoritmo para el
particionamiento de matrices a forma triangular inferior en bloques especialmente
disei'iado para problemas de instrumentaci6n de plantas quimicas. EI nuevo metodo
posee como caracteristica fundamental la capacidad de ser aplicado a matrices
estructuralmente singulares. El programa fue implement ado en lenguaje C
lognindose un c6digo eficiente y altamente portable, en tal sentido se presentan los
tiempos de ejecuci6n obtenidos para una bateria de ejemplos sobre distintas
plataformas de ejecuci6n.

ABSTRACT
The implementation of a new algorithm that partitions matrices to a specific block
lower-triangular form was carried out. The method was specially designed for
applications to process plant instrumentation. Its main feature is its capacity to deal
with structurally singular matrices. The software was implemented in C language,
the resulting code being highly portable and efficient. In this respect, the run-times
for a series of examples executed under different platforms are presented.

The rearrangement of sparse matrices to yield special forms, such as triangular, tridiagonal and
block triangular, is a subject of major concern in many computational applications. In the field
of process system instrumentation in particular, a block lower-triangular form (BITF) with the
pattern shown in figure 1 is necessary to classify the unmeasured variables. The diagonal



blocks of the BlTF must be square, excepting the last one, A comprehensive discussion on the
advantages and drawbacks of the existing partitioning algorithms that could be used to perform
this task can be found in Ponzoni et al [1]. This study reveals that no procedure is good
enough to deal with structurally singular matrices efficiently, Since they frequently arise in this
application, the development of better algorithms became a necessity,

d ~ ..

Fig I, Occurrence matrix M in
its block lower-traingular form,

Based on Romagnoli and Stephanopoulos' paper [2], which led to PLADAT's package [3], we
have proposed a new partitioning strategy, called Global Strategy with First Least-Connected
Node (GS-FLCN), that 'is specially adapted to cope with this problem [4]. The new method
makes a incremental decomposition of the occurrence matrix M, First, the classical Forward
Triangularization method detects removable lxl blocks, Then, GS-FLCN uses two procedures
for 2x2 and 3x3 removable subsets, We have developed those algorithms by modifying
Stadtherr's proposals [5]. Finally, a new algorithm, called First Least-Connected Node
(FLCN), has been designed to look for blocks of order 4 or greater. The latter procedure is
based on a depth-first search with heuristics through an undirected graph corresponding to
MTM, This approach overcomes the above-mentioned limitations and is more robust because
the strategy succeeds in finding the maximum number of blocks of minimum size,

In this paper, an efficient implementation of the new strategy (GS-FLCN) for the permutation
of an m x n sparse matrix to the lower-triangular block structure shown in figure 1 is described,
The technique can be applied to general matrices, The new algorithmic ideas, as well as a
comparison with PLADTA's assignment algorithm (DCB) can be found in Ponzoni et af. [6].

The structure of the programme is modular, Figure 2 shows its hierarchical tree, The root
(level zero) corresponds to the main procedure called FindSubSets, This routine guides the
subset search, Level one contains the roots of all the subtrees that search for subsets of a
definite size, which has been indicated between brackets in the figure, The flow control
explores each subtree by preordering from the far left, If no subsets are found, the control is
transferred to the nearest subtree on the right, whenever it exists, Otherwise, the programme
ends, Whenever a subtree locates a subset, the control is moved to the subtree situated to the
far left, which is the one that contains the Forward- Triangularization root, In the appendix, we
present the main algorithms of the new Global Strategy with FLCN in a Pascal-like style,



Forward -
Triangularization

(Ixl)

FindSetsNxN
(Modi tied)

(3x3)

This section deals with the main features of the implementation. Firstly, the methodology
employed for the development of the code is described, and secondly the auxiliary package
created to handle sparse matrices is presented. Finally, structural information regarding
dynamic memory assignment and portability of the code is provided.

At the first stage, the MATLAB software for numeric computation was used. Since it is an
interpreter, it is ideal to develop prototypes in the study of experimental algorithms.

Once the methods had been outlined, the code was translated to C language for various
reasons. First of all, the language is strong enough to support huge arrays of more than 64 Kb,
thus making it possible to handle the enormous data structures that often appear in many
application areas. Besides, the implementation is not only highly portable to machines with
different sets of instructions and/or operating systems but it is also compatible with existing
software. It is also efficient as regards execution times and memory savings.

It is interesting to note that the algorithm requires structural matrix rearrangements. As the
available packages for sparse matrices are concerned with mathematical operations, it was
necessary to develop auxiliary routines. Several data structures for sparse matrix representation
were compared so as to find the most economical ones for our specific purpose. In the cost
assessment for the most frequently used operations, time was prioritized over storage. After
finishing the supporting code, the whole strategy for subset search was implemented, applying
a Top-Down development policy.

Tests have been performed on examples that explore not only the subtrees growing from level
one (Figure 2) but also the flow control among them. Some instances were taken from the
classical bibliography on the subject and others were generated ad hoc so as to ensure that all
parts of the code worked satisfactorily.



A set of subroutines for the storage and handling of sparse matrices was tailor-made for the
algorithm. This auxiliary mini-package called SPMA TRIX optimizes the run-times for those
operations most often required by the main routines. These tasks are listed in Table I, together
with their purpose and the corresponding run-time orders of magnitude. The parameter SM
identifies a pointer to the sparse matrix structure. The constants Pr and pc are real because they
represent the average amount of non-zeros in a row or column respectively. In most cases, 2 ~
pr, pc ~ 4. The quantities nr and fie represent the number of rows and columns contained in the
parameters rows and cols respectively.

A significant advantage of this implementation is the achievement of several constant-order
operations (0(1». Moreover, the order of the operations DeleteRow and DeleteCol can also
be regarded as constant due to pr and pc's low values and small ranges.

Function Purpose Run-time
DeleteRow (SM,r) Deletes SM's r-th row. O(p,)

DeleteCol (SM,c) Deletes SM's c-th column. 0(0,)
CountRow (SM.r) Returns the number of non-zeros in SM's r-th row. 0(1)
CountCol (SM,c) Returns the number of non-zeros in SM's c-th column. 0(1)
QDeleteRow (SM,r) Returns True, if the row has been deleted 0(1)

False. otherwise
QDeleteCol (SM,c) Returns True, if the column has been deleted 0(1)

False, otherwise
NumRowSM (SM) Returns SM's number of rows. 0(1)
NumColSM (SM) Returns SM's number of columns. 0(1)
MakeSubMatrix Builds a submatrix containing the rows and columns 0C1>r.n,+p,.Or)
(SM,SubSM,rows.cols) from SM indicated by the vectors rows and cols.

In this way, the proposed implementation improves the run times of the assignment algorithms.
This representation is the most appropriate ·for these problems because the performance of the
operations that bear the burden of the computational cost has been optimized.

The efficient handling of memory resources becomes critical in recursive algorithms because
the programme's execution stack can grow considerably when deep recursivity levels are
reached, i.e. for several nested recursive calls. In this case, the dynamic memory assignment is
of the utmost importance since it ensures that only the strictly necessary amount of space is
being allocated and released at the right moment.

Thanks to the dynamic assignment of all its data structures, this implementation offers two
significant advantages. First, the programme uses the minimum amount of memory. If the
structures had been allocated statically, they should have been defined for the worst case,
usually resulting in costly overdimensioned arrays. In this case, the static handling of memory
would have been particularly inefficient due to the recursivity, because it is impossible to
foresee the depth that will be reached during the calculations. Another major advantage is the



fact that the memory is set free as soon as the data structures are no longer necessary. In this
way, there is always a maximum amount of space available.

The programme was developed in a Pentium PC with a 133 Mhz processor clock rate under an
MSDOS 6.2 operating system. It was compiled with MicroSoft C 7.0, using the huge option
for memory management. If the user is going to work with small or medium~size problems and
he needs faster runnings, he should recompile the software after performing the changes in
pointers and memory allocation indicated in the next paragraph

To ensure the portability of the code, it was recompiled and run both in a Pentium machine
under a LINUX operating system and in an ALPHA DEC 3000 MODEL 300/AXP with a 150
Mhz processor clock rate under an OSF/1 operating system. To enable successful execution in
a UNIX environment, i.e. for LINDX and OSF/l, the pointers type "huge" must be redefined
as "standard" and the functions for memory allocation must be modified as follows:

The code worked satisfactorily for a variety of test cases. The performance under all the
above-mentioned configurations is illustrated in this section. The first problem, which was used
by Pissanetzky [7] to test Tarjan's algorithm, corresponds to the matrix given in figure 3.

I I 0 0 0 0 0 0 0 0 0 0 0 0 0
0 I I 0 0 0 0 0 0 0 0 0 0 0 0
0 0 I I 0 0 0 I 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 I 0 0 0 0 0 0

I 0 0 0 I 0 0 0 0 0 0 0 0 0 0

0 0 0 0 I I 0 0 0 0 0 0 0 0 0
0 0 0 0 I 0 I 0 0 0 0 0 0 0 0
0 0 0 0 0 I I I I 0 0 0 0 0 0
0 0 0 0 0 0 0 0 I I 0 0 0 0 0
0 0 0 0 0 0 0 0 0 I I 0 0 I 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 I 0 0 0 I I 0 0
0 0 0 0 0 0 0 I 0 0 0 I 1 1 0
0 0 0 0 0 0 0 0 I 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 0 0 0 I I

Fig 3. Case Study 1.



Case study 2, in particular, is associated to an industrial plant. The sector consists of two
reactors Rl and R2 and two heat exchangers HXl and HX2. Figure 4 shows a schematic
representation of the process.

VARIABLES
1 a SI 9 T S6' 17 UR2
2 b SI 10 a 5S 18 T 52
3 c 51 II b 5S 19 T 53
-I T51 12 c 5S 20 Fr 52
S TS-I 13 URI 21 Fr S3
6 T 5S 1-1 a 56 22 T52'
7 T 5S' IS b 56 23 T 53'
8 T56 16 c 56

Table II lists the process variables. There are 3 compounds (a, b, c) and 10 streams (1,2,2',3,
3', 4, 5, 5', 6, 6'). The letter T stands for temperature, Fr means flowrates and U represents
the heat transfer coefficients.

In this case, CDB's strategy could only identitY two Ixl subsets linking equation 9 with
variable T 52 and equation 10 with variable T 53. In contrast, G5-FLCN succeeded in finding
all the assignment subsets reported by loris [8]. The results are shown in Table III.

M E A S U R E D U N M E A S U R E D
V A R I A B L E S V A R I A B L E S

Eq. Balances I 2 3 4 S 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 29 21 22 23
a x x x

Rl Mass b x x x
C x x x

Energy x x x x x x x x
a x x x

R2 Mass b x x x
c x x x

Energy x x x x x x x x
Energy 1-2 x x

SP Energy 1-3 x x
Mass x x

HTXl Energy x x x x x x x x x x x
HTX2 Energy x x x x x x x x x x x
MX Energy x x x x x x x x

Case studies 3 and 4 belong to a group of examples specially developed for these tests. The
structure of the corresponding matrices is shown in Figures 5 and 6.



ALGORITHMS
Size CS COB GS-FLCN

Case Source row col n"sets sIZe n"sets sIZe
I Pissanetzky 15 15 0 --- I 5

I I
I 7
I 2

2 Joris I~ I~ 2 I 2 I
3 ~

3 This paper 12 12 0 --- I 6
I 2
3 I
I 3

~ This paper 15 14 0 --- I 3
I I
I ~
6 I

The dependence of the run-times upon several execution platforms is given in table V for the
examples presented in the previous section In all cases, the ALPHA machine exhibited the best
performance as regards execution times. It is evident that MATLAB's prototype is computa-
tionally expensive. The reponed values reveal the improvements that can be achieved by using
different platforms. Configuration 3 is more powerful than configuration 2 mainly because
UNIX is a 32-bit operating system whereas MSDOS works with 16 bits It is interesting to
note that configurations working under UNIX do not have the constraints on the maximum
size of the arrays that limit the performance under MSDOS. Nevenheless, it should be noted
that the results are also influenced by the quality of the code generated by the compilers.



Conftg. I Conti!? 1 Conti!? 3 Conftg. oj

Machine Pentium Pentium Pentium ALPHA
ODeratin!?Svstem MSDOS MSDOS LINUX - UNIX OSF/I - UNIX
Implementation MATLAB Microsoft C GNU project C DEC C Compiler.. version 4.0 version 70 version 2.7

CaseStudv I 49930 380 60 50
Case Study 1 2250 50 10 less than 1 ~ec
CaseStudvJ 152470 1150 180 133
Case Study oj 5280 50 10 less than 1 ~ec

An efficient implementation of a new strategy for the rearrangement of sparses matrices to a
specific BlTF is presented in this paper. In contrast with previous works, the novel procedure,
called GS-FLCN, is able to deal with structurally singular matrices satisfactorily. It is also
more robust because it succeeds in finding the maximum number of blocks of minimum size.
The implementation is highly portable and can handle huge matrices. Besides, memory
resources were optimized by using dynamic alkation of data structures.

[I] Ponzoni, I., Sanchez, M. C. and Brignole, N. B., Algoritmos Eficientes en Problemas de
Asignacion, Mecanica Computacional Vol. XV, 1995, pages. 415-424.

[2] Romagnoli, J. A. and Stephanopoulos, G., On the Rectification of Measurement Errors
for Complex Chemical Plants, Chern. Eng. Sci., Vol. 35,1980, pages. 1067-1081.

[3] Sanchez, M. c., Bandoni, A. J. and Romagnoli, J. A., PLADAT' A Package for Process
Variable Classification and Plant Data Reconciliation, Comp. Chern. Eng., 1992, pages
S499-S506.

[4] Ponzoni, I., Sanchez, M. C. and Brignole, N. B., A New Partitioning Algorithm for
Classification of Variables in Process Plant Monitoring, accepted for its presentation in the
AIChE 1997Annual Meeting, Los Angeles, Estados Unidos. November 16-21,1997.

[5] Stadtherr, M. A., Gifford, W. A. and Scriven, L. E., Efficient Solution of Sparse Sets of
Design Equations, Chern. Eng. Sci., Vol. 29,4,1974, pages 1025-1034.

[6] Ponzoni, I., Sanchez, M. C. and Brignole, N. B., Estudio del Desempeiio de Algoritmos
de Clas!ficacion de Variables No Medidas en Problemas de Instrumentaci6n, accepted for its
presentation in the ENPROMER'97, Bahia Blanca, Argentina. September 1-4, 1997

[8] Joris, P., and Kalitventzeff, B., Process Measurement Analysis and Validation, Proc. of
XVIII Congress on The Use of Computers in Chern Eng., Italy, 1987, pages 41-46.



1. Constntction oFthe Occurrence Matrix.
2. Forward-Triangulanzarzon.
3. Set n~2
3.1 Call Constntction of the Occurrence n-

Sub matrix.
3.2 Call Subroutine ::

(location of 2x2 removable subsets)
If any subsets are found

then go back to step 2
else go to step 4

end if
4. Set n = 3
4.1 Call Constntction of the Occurrence n-

Sub matrix.
4.2 Call Modified Algorithm (parameter n)

(location of 3x3 removable subsets)
If any allowed subsets were detected

then go back to step 2
else go step 5.

end if
5. Set n = 4

5.1 Call Consmlction of the Occurrence n-
Submatrix.

5.2 Apply step 1of Subroutine 2.
5.3 Call FLCN Algorithm - (n. submatrix)

(location ofnxn removable subsets)
If any allowed subsets were detected

then go back to step 2.
else
If (n > maximum size of subset)
then Stop and return the classification.
else set n = n+ I and go to step 5.1.

end if
end if

1- Make up an occurrence matrix for the system
of equations to be solved by filling pOSition (ij)
with a I if the J-th variable appears in the i-th
equation, OthelWlse place a 0

2 - Define a rearranged occurrence matrix that will
contam the removable subsets found on
completion of the work

1- Find a row in the occurrence matrix with only
one entry. This entry represents a removable
Ixl subset.

2 - If this subset is allowed then remove it by
deleting the row and column in which it occurs,
and place it in the first free row and column in
the reordered matrix

3 - Repeat the steps 1 y 2 until no more entries
can be added to the new matrix.

1- Choose all rows in the occurrence matrix that
contain n nonzeros at the most, together with
the columns in which those elements appear.

2 - The columns with only one nonzero are deleted.
The removal might lead to rows with only one
nonzero. Those rows are also eliminated. The
procedure is repeated until all rows and
columns contain at least two elements.

1- Find a column with only one entry. Delete it
together with the row in which it appears.
Delete all columns without entries. Repeat this
step until no columns with less than two entries
remain in the submatrix,

2 - Find the column of the submatrix with the
greatest number of entries, Delete it and all the
rows in which it has entries Look for a column
whose number of entries has been reduced by
two. This column along with the deleted
column and the two rows containing common
entries, forms a removable 2x2 subset.

3 - If this subset is allowed
then

Delete the second column that had been
found. Place these rows and colunU1s in
the first two free rows and columns of the
reordered matrix.

else
go to step 2.

end if.



ENIEF - X Congreso sobre Metodos Numericos y sus Aplicaciones

4 - Repeat steps 2, 3 and 4 until the submatrix is
empty, which indicates that all the 2x2
removable subsets have been located.

1- Apply step 1 of Subroutine 2.
2 - Find the column with the greatest number of

entries and delete it. Delete the rows in which
that column has entries. If there are n- J
columns whose number of entnes has been
reduced by one or more, and if n rows are
empty after those columns have been removed
delete those n-J columns temporarily. The ~
deleted columns and the n empty rows form a
removable nxn subset.

3 - If this subset is allowed
then

Place these rows and columns in the first
n free rows and columns of the reordered
matrix.

Eliminate the columns that had been
temporarily deleted in step 2 .

else
Recover the columns that had been
temporarily deleted in step 2.
Go back to step 2.

end if
4 - Repeat steps 2, 3 and 4 until the submatrix is

empty. This means that all the nxn removable
subsets have been located.

Input Data:
submatrix matrix found in the previous step;

n size of the desired subset·
node current node; ,
stamps logical array that indicates whether

a node has been visited.

Output Data:
;uccess logical variable valued:

true: if an nxn removable set
has been located

false: otherwIse;
rows array contaming the row numbers

of the detected subset;
'olumns array containing the column numbers

of the detected subset.

If n ~ 0
then

If there are n empty rows after having deleted
the n columns associated with the n nodes in
the path.

then an nxn removable subset made up of
the n empty rows and the n columns
associated with the n nodes in the way
has been found.

If IsAilowable(SubSet)
then

Assign the n empty rows to the nxn set.
success = true

else
success = false

end if
else

success = false
end if

else
finish = false
While (not finish) and (not sllccess) do
'·JChoose an unstamped node adjacent to node.

If there are several adjacent nodes, pick out
the least-eonnected one. If there are
severalleast-eonnected nodes, select the
one with the lowest labeL

If there is no such node
then

finish = true
success = false

else
node = the node chosen in '.J
stamps(node) = true

FLCN(submatrix. n-J. node.
stamps, success)

If success
then

Define the column associated with
node of the nxn set as the n-th column

end if
end if

end while
end if


