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RESUMEN

Se introduce y analiza un método de elementos finitos para calcular los modos de
vibracién de un fluido compresible acoplado con una placa Reissner-Mindlin. Se
incluyen experimentos numéricos que muestran el buen comportamiento del método.

ABSTRACT

A finite element method to compute the vibration modes of a compressible fluid
coupled with a Reissner-Mindlin plate is introduced and analyzed. Numerical exper-
iments showing the good performance of the method are included.

INTRODUCTION

The approximation of the vibration modes of an elastic solid interacting with a fluid is an
important problem which occurs in many engineering applications. During the last years, a
large amount of work has been devoted to this subject. A general overview can be found in
the monographs by Morand and Ohayon [1] and Conca et al. {2], where numerical methods and
further references are also given.

This paper deals with a particular fluid-solid interaction problem: the approximation of the
small amplitude vibration modes of an elastic plate in contact with an ideal compressible fluid.

The vibration of a fluid alone is usually treated by choosing the pressure as the primary
variable. However, for coupled systems, such a choice leads to non-symmetric eigenvalue problems
(see, for instance, (3]). To avoid this drawback the fluid has been alternatively described by
different variables: velocity potential yielding a quadratic eigenvalue problem {[4]); both, presure
and displacement potential, whose discretization leads to symmetric but non-banded problem

([3]), etc.
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through Program A on Numerical Analysis.
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On the other hand, the use of displacement variables to describe the fluid, gives rise to
symmetric banded eigenvalue problems. However, standard discretizations of this formulation
suffer from the presence of non zero frequency spurious circulation modes with no physical entity
(16]).

Recently, an alternative approach of this formulation has been analyzed. It consists of using
Raviart-Thomas elements for the fluid and piecewise linear elements for the structure, adequately
coupled. Non-existence of spurious modes for this discretization and optimal error estimates have
been proved in [7] and (8] for two-dimensional problems. These results have been extended to 3D
in [9].

The aim of this paper is to carry out a similar analysis for the interaction between a fuid
and a thin structure: a plate which we model by means of Reissner-Mindlin equations in order
to allow for small as well as moderately large thickness.

Because of the so called Jocking phenomenon, the standard finite element discretization of
these equations leads to wrong results even for the plate alone. In order to avoid this drawback,
mixed methods or reduced integration are usually applied (see for instance [10}). Recently ([11]),
a locking free method (the lowest order MITC one) has been analyzed in the context of vibration
problems. Optimal order error estimates independent of the thickness have been established
therein.

We consider a discretization of the coupled problem involving these elements for the bending
of the plate and lowest order Raviart-Thomas elements for the fluid, coupled in a non conforming
way. To prove that the method is free of locking, a family of problems (one for each thickness
¢ > 0) attaining a finite limit as ¢ goes to zero, is considered and approximation results valid
uniformly on ¢ are sought.

The spectrum of the continuous problem is characterized for any t > 0. An asymptotic
analysis is performed by considering that the densities of the plate and the fluid depend adequately
on that thickness. It is shown that the spectrum of the coupled problem converge to that of a
Kirchhoff plate in contact with a fuid.

Optimal order error estimates, independent of the thickness of the plate, are valid for the
eigenfunctions, under mild assumptions. Typical double order estimates for the eigenvalues are
also established. Finally, numerical experiments are presented, confirming the theoretical results
and showing the good performance of the method.

STATEMENT OF THE PROBLEM

We consider as a model problem that of determining the natural vibration modes of a coupled
system consisting of a compressible fluid contained in a three-dimensional cavity whose walls are
all rigid except for one of them which is an elastic plate.

Let © be a polyhedral convex three-dimensional domain which we assume completely filled
with an inviscid compressible fluid. Its boundary 8% is the union of the convex surfaces g, 'y,

.y 'y, We assume that Ty is in contact with an elastic plate of thickness t. The remaining
surfaces are assumed to be perfectly rigid walls. We denote by n the outer unit normal vector to
0.

The bending of the plate in contact with the fluid is modelled by means of Reissner-Mindlin

equations. We denote by T its middle surface and consider coordinates such that the 3D reference
domain for the plate is I x (—%,% .

Throughout this paper we make use of the standard notation for Sobolev spaces H*((),
H3(T), H(div,Q), etc. (see for instance (12]) and their respective norms. We also denote H :=
L) x L) x L3HQ)®, X = H{(T) x HY(I)? x H(div, Q) and || - || the product norm of the
latter.

Let (u‘f, uf, ug) denote the displacement of a point (2,9, 2) of the plate. In the Reissner-
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Mindlin model the transversal displacement uf is assumed to be independent of the z-coordinate:
uf (z,y,2) = w(z,y), (1

and the “in plane” displacements uf’ and uf are given by
uf (2,9,2) = ~2fi(=,y), uf(2,1,2) = ~zha(z,y), )

with 8 := (8;,8;) being the rotations of the fibers normal to I'. For the sake of simplicity we
assume that the plate is clamped by its whole boundary: that is, B1=0s=w=0o0ndr.

Under the usual assumptions of this model the dynamic response of the plate to a pressure
load g exerted on one of its faces is given by displacements of the form (1)-(2) with (w,8) €
HYT) x H}()? being such that

Ba(8,n) + st /F (Vw=8)- (Vo —1)

3 .-
+t/rpmv+§—2/l,ppﬁ'n = [ Yomemmx D @

(see for instance [13]). In the previous equation, the double dot means second derivatives with
respect to time, p, is the density of the plate, & := z(f—:ujv where F is the Young modulus, v the

Poisson ratio of the plate and & a correction factor which is usually taken as 5/6; finally, a is the
bilinear form defined on Hj(I')? by

E 2
a(B,n) = m/ﬂ ;,jz=1(1 —v)ei;(B)es;(n) + vdiv 8divn] .

On the other hand, the governing equations for the free small amplitude motions of an inviscid
compressible fluid contained in Q are given by

p= _chz div u in Q, (4)
peii=-Vp in Q, (5)

where p is the pressure, u the displacement field, pr the density and c the acoustic speed of
the fluid. Since the fluid is considered inviscid, only the normal component of the displacement
vanishes on the rigid part of the cavity boundary Fp=T1u---uly:

u-n=0 onT,. (6)

On the other hand, the normal displacement coincides with the transverse displacement of the
plate on T'g. Since the latter do not depend on the z-coordinate, it can be considered that the
midsurface I' (instead of T'y) is one of the components of 0 and hence

u-n=w onl. (7)

Now, we multiply equation (5) by a test displacement field ¢ satisfying (6), we integrate by
parts and use (4) to obtain

- VTR _ .
/ﬂppu ¢+/9ch divudive = /szp n. (8)

In our coupled problem, the unique load g exerted on the plate is the pressure p of the fluid.
Therefore, by adding (8) to (3) and choosing test functions (v, 7, ¢) in the space

Vi={{vn¢)eX: ¢-n=00nT, and ¢ -n=vonl},
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we have that

t*a(8,n) + nt/r(Vw -B)-(Vv—rn) +/;2ch2 divudiv ¢ (9)

L8 p .
=—tAprv—EApPﬁ~n—/S]ppu ¢.

To obtain the free vibration modes of this coupled problem we seek harmonic in time solutions
of (9). By so doing we obtain the following spectral problem (see for instance 1]):

Find A€ R and 0 # (w, 8, u) € V such that

t3a(ﬁ,q)+nt/F(Vw-ﬂ) (Vo) +/ﬂpyc2 div udivé

3
=,\(t/rppwv+i—2/1!p,,ﬂ-n+/ﬂpyu‘¢) Y(v,n, )€V,  (10)

where A is the square of the angular vibration frequency.
As usual, when a displacement formulation is used for the fluid, A = 0 turns out to be an
eigenvalue of this problem; its associated eigenspace is in this case

K:={0,0,¢)€V: divg=0in Q and ¢-n =0 on JN}.

Because of the symmetry of (10), the eigenfunctions corfesponding to non zero eigenvalues
belong to the orthogonal complement of K in V with respect to the bilinear form in the right
hand side of that equation. This orthogonal complement can be readily seen to coincide with

G={(v,n,¢)€V: ¢ = Vg for some g € HY(D)).

Since we are interested in considering both, thin as well as moderately thick plates, the
method to be used should remain stable as the thickness becomes small. To this goal, in static
problems, the loads are typically assumed to depend adequately on the thickness in order to
obtain a family of problems with uniformly bounded solutions: volumetric forces are supposed
to be proportional to t* and surface loads to ¢ (see for instance [10]).

We make similar assumptions in our case. A simple way to do it is to consider densities for
both, fluid and solid, depending on the thickness of the plate in the following way:

Pr =ﬁpt3» Pe =/spt2~

Under these assumptions, the eigenvalues in (10) and their associated eigenfunctions are the
solutions of the following rescaled problem:

Find A € R and 0 # (w, B,u) € V such that

a(ﬂ,n)+-t’;/r(vw—g).(vu—n)+/ﬂ,3Fc2divudiv¢

X 2o . ,
=/\(t/l;ppwv+ﬁ/r‘0pﬂ7)+/nppu¢) v(vvnv¢)evv (11)

We end this section by performing an asymptotic analysis as the thickness becomes small. For
. . . K .
any t > 0, by introducing the the shear strain ¥ = t—z(Vw — ), the source problem associated
to (11) can be stated in the following way: to find (w, g, u) € G such that

a(ﬂ,n)+/r~/-(Vv—n)+/ﬁpc2divudiv¢

Q
= JP * [ b e g - 12
% ‘/r”*'f”*ﬁ/rf’v" "+/pr-9¢ Y,ne)eg,  (12)
7=t—2(vw-/3).
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In absence of the fluid, these are the standard Reissner-Mindlin equations whose solutions are
known to converge to that of the mixed formulation of Kirchhoff model (see {10]). In our case
the limit is (wy, Bo, o) € G such that there exists vo € L%(T') satisfving

alfo,m) + [0+ (To =)+ [ pectdivuodive
= [sefos [pg6 Voneeq, (13)
va bt ﬁo =0.

Notice that, since 8y = Vwyp, by taking 7 = Vv for v € HZ(T), we obtain the classical variational
formulation of Kirchhoff equations coupled with those of the fluid, namely:

E A 2 s . _ . "
/l;m—)-Angv-%/Qppc dlvuodlvqﬁ._/l:ppfv-k-/np,,g o,

for all (v,¢) € H(T') x H(div,Q) such that ¢-n =von T and ¢-n =0on [,.

The arguments used for the plate alone (see {10]) can be easily extended to show that problem
(13) satisfies both classical Brezzi’s conditions. This ensures the existence of a unique solution
of this problem and its continuous dependence on the data (f,g) € L¥(T") x L?(Q2)3. Moreover
we have the following convergence result which have been proved in [14].

Theorem 1 There exists a constant C, independent of t, such that, for all (f,0,9) € H, if
(w, B,u) is the solution of (12) and (wq, Bo, uo) is the solution of (13), then

18 = Jollur + 1w - wollur + 1w = vollgraiwey < Ct (Iflo.r + 26llo.r + lgllo) -

In {14] it has also been proved that the eigenpairs of Kirchhoff equations coupled with the
fluid are limit of those of problem (11).

DISCRETIZATION

Let {7n} be a regular family of partitions of Q in tetrahedra (h stands for the maximum
diameter of the elements). Each T, induces a triangulation on I':

TE:={T CT: T is aface of a tetrahedron K € Th}-

To approximate the fluid displacements we use lowest order Raviart-Thomas elements (see
[15]):
Ry = {¢n € H(div,Q) : énlx € P3D (z,y,2)Po VK € Th}.

For the plate we consider a method analyzed in [16]. It is based on different finite element
spaces for the rotations, the transverse displacement and the shear strain. For the former we
take piecewise linear functions augmented in such a way that they have quadratic tangential
components on the boundary of each element. Namely, for each T € 775, let n be a unit normal

on 3T and define
QT) :i={nePy(T)*: n-n|s € Pi(f) for each edge ¢ of T};
then, the finite element space for the rotations is defined by
Hy = {m € HY(T)?: mlr € QT) ¥T € T}
For the transverse displacements we take standard piecewise linear elements, namely,

Wi = {vs € H3(T) : vl € P(T) ¥T € TF}.
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Finally, to discretize the shear strain we use the lowest order rotated Raviart-Thomas space
Th := {4n € Ho(rot, Q) : walr € PE @ (~y,2)Py ¥T € T}

and the reduction operator
IT: HYT)? N Ho(rot, Q) — Ty,

locally defined for each ¢4 € H'(I')? by (see [10, 15])

/Hwh'T=/¢7h'T‘
¢ ¢

for every edge 7 of the triangulation ( being a unit tangent vector along ¢).
We impose weakly the interface condition (7); in fact, we take as dicrete space for the coupled
problem

Vi = {(vh, 74, 0) € Wi x Hy X Bn: én-m=0on T, and /quh-n:/th YT ¢ ).

Note that, for elements in Vi, the equality ¢4 - n = v, must hold only at the baricenter of the
triangles in ;L. So Vi ¢ V, giving rise to a variational crime for our method. Let us remark
that if the interface condition were imposed strongly (i.e., ®s - n = v; on ') then v, = 0.

The discrete eigenvalue problem reads:

Find Ay € R and 0 # (wh, Bn, ur) € Vi such that
a(ﬂh,nh)+/7;,~(Vuh—Hm,)+/Q/3Fc2div un div by

\ 2o R ) ,
= Ap /Fppwhvh+E_/Fppﬂh-nh-F/Qppuh-wh) Y(Vh, Mh, 1) € Vi, (14)
Y
Th = (Vwn = TIB4).

Note that the use of the reduction operator II leads to a second variational crime. On the
other hand, A4 = 0 turns out to be an eigenvalue of this problem with corresponding eigenspace

Kn:={(0,0,85) € Vs : dive, =0in O and &k n=0on dQ}.

Under mild assumptions it can be proved that the strictly positive eigenvalues and the cor-
responding eigenfunctions of the discrete problem above converge to those of the continuous
problem with optimal order. Furthermore, the obtained estimates are shown to be independent
of the thickness of the plate (for the proof and further discussions see (14)]).

Theorem 2 Let A, be the m-th strictly positive eigenvalue of problem (11) and assume that
it is uniformly separated of the rest of the spectrum (as t goes to zero). Let Ayp be the m-th
strictly positive eigenvalue of problem (14). Let (w,(,u) and {wh, Br, us) be the corresponding
eigenfunctions normalized in the same manner. Then, for t and h small enough, it holds

I8 = Bullue + lw = wallio + flu - Uil f(diva) < Ch

and
[Am = Ama] < CR2.
with a constant C independent of t and h.
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NUMERICAL EXPERIMENTS

In this section we present some numerical experiments showing the good performance of the
method described above. The FORTRAN code has been previously validated by applying it to
test problems and comparing the results with those of a method introduced in [9] for the vibration
modes of 3D structures coupled with a fluid.

We have computed the lowest frequency vibration modes of a coupled system consisting of a
clamped rectangular steel plate (4 m x 6 m) moderately thick (0.5 m}), in contact with a 3D cavity
{(4mx 6mx 1m) filled with water, with its remaining walls being perfectly rigid.

We have used different meshes obtained by succesive uniform refinements of that in Figure
1 for the fluid (Figure 2 shows the corresponding induced mesh on the plate}. The refinement
parameter V refers to the number of vertical layers on the fuid.

N
\ S S
iV

Figure 1: Mesh in the fluid for N = 1. Figure 2: Mesh in the plate for vV = 1.

\\_.:\\\ y // / E///

The following table shows the lowest vibration frequencies of the coupled problem computed
with a coarse mesh (N = 1) and a refined one (N = 5). We also include a more accurate
approximation of each frequency obtained by extrapolating the resuits obtained for N = 3,4, 5.
Finally we include the corresponding extrapolated values for the uncoupled problem (i.e., the
plate in vacuo and the fluid in a rigid cavity). X

Table I
Mode N=1 N =5 | Extrapolated || Uncoupled
wy 693.931 | 697.293 697.558 748.748
we 1045.643 | 1016.307 1014.627 990.784

w3 1077.227 | 1081.678 1081.908 1123.117
Wy 1576.777 | 1461.715 1456.015 1473.072
ws 1480.657 | 1506.247 1507.294 1497.489

By comparing the last two columns of Table [ it can be observed that the effect of the coupling
is rather significative. It can also be seen that the results obtained with our method are highly
precise even for the coarser mesh.

A similar experimentation has been performed with thin plates and the results are of the
same quality, showing that the method is free of locking.

Figures 3-12 show the pressure in the fluid and the deflections of the plate for each coupled
mode.
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Figure 3: Pressure in the fluid, mode w.

o~

Figure 5: Pressure in the fluid, mode w,.

Figure 7: Pressure in the fluid, mode ws.

Figure 4: Deflections of the plate, mode
wi.

Figure 6: Deflections of the plate, mode
Wwa.

Figure 8: Deflections of the plate, mode

L1l - —
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Figure 9: Pressure in the fluid, mode ws. i‘xgure 10: Deflections of the plate, mode
4.

Figure 12: Deflections of the plate, mode
Ws.




