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Abstract. In this work we describe several numerical time integratiothods for multibody
system dynamics: an energy preserving scheme and thregyethecaying ones, which intro-
duce high frequency numerical dissipation in order to aratk the non desired high frequency
oscillations. An exhaustive analysis of these four schesndsne, including their formulation,
energy preserving and decaying properties, taking intaaot the presence of nonlinear alge-
braic constraints and the incrementation of finite rotason
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1 INTRODUCTION

Integration of second order index 3 Differential-AlgelorBquations (DAE) may lead to numer-
ical instability when an integration method of the Newmaatfly integration is used, because
of the algebraic constraints. These constraints are theecaiunbounded linearly growing
oscillations in the acceleration response (weak instghilif a high frequency dissipation is in-
troduced this instability can be controlled in the lineajinge e.g. HHT: Hulberta-generalized
methods

In the non linear regime, the stability cannot be guaranbsaasual methods of analysis which
are based on the properties of the system transition ma&malternative to ensure the stability
of the solution is by means of schemes that verify the presienv of the total energy of the
system at each time step. But this unconditional stabiligsdwot guarantee a satisfactory per-
formance of the scheme because the spurious high frequentlatons that may appear, e.g.
with a sudden variation of stiffness or at a shock, are coeskall along the response, masking
the answer.

It becomes necessary to develop alternative schemes. Aodatyy that leads in a systematic
way to obtain energy dissipative integration schemes issThiscontinuous Galerkin (TDG),
initially developed for hyperbolic equations. In an earlgris* we revisited an energy preserv-
ing scheme proposed byé@din® Now we take that scheme to build a new one that guarantees
stability all along the numerical integration process amthiermore introduces numerical dis-
sipation for the high frequency oscillation. The paper igamized as follows: in section 2
we formulate the problem. In section 4 an energy presenntggration algorithm is derived
by using the Time Continuous Galerkin approximation. Inisecb three energy decaying
integration algorithms are derived by using the Time Disicrous Galerkin approximation.
Every proposed algorithm is analyzed individually, usimgraples that are described in detail
in section 3.

2 FORMULATION OF THE PROBLEM

Let us describe a conservative mechanical system in termi¢ géneralized coordinateg
submitted toR algebraic constraints

®(q) = 0. (1)

Its dynamic properties can be derived from an appropriagergeion of the potential energy of
the systenV = V(q) and of its kinetic energy, which can be put in quadratic forithaut loss

of generality
1
K= §'UTM v. (2)
The(M x M) inertia matrixM can be assumed constant, symmetric and positive definie sin
velocitiesv are expressed in @material frame The latter are treated as quasi-coordinates and

take thus the form of linear combinations of generalizeddimate time derivatives

v = L(q)q, )
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being L(q) a (M x N) matrix with A/ < N. This inequality covers the case in which the
description of angular velocities is made in terms of reduntdotation parameters such as
Euler parameters. In this case the redundancy between pgaanhas to be removed by adding
appropriate constraints to the global set (1).

The motion equations result from the application of Hamikgrinciple:

5/: {%UTM’U — uT (v—L(q)q) — V(q) — AT¢(q)} d—0 @

We perform successively variations on the variahled, v y q.
— the variation of the multiplierg restores the velocity equations (3)
— variation of the multipliers\ restores the constraints set (1)

— the variation of the velocities shows that the multipliers have the meaning of gener-

alized momenta
n=Mv (5)

— the variation of the generalized displacemenyselds

t2 oy odT B
5T(——n— A+ — [(Lg)" )+5Tﬂ“}ﬁ:o 6
/Q { q 9a " g aq[( q)" pl ¢"L"p (6)

from which the dynamic equilibrium equations will be extest

Integration by parts of (6) yields

MqTLTuﬁj+ll26dr{—Qz——Q?—A—ka[uknTu]———(LTu)}dt:() (7)

9q  Oq oq
The combination of (5) and (3) gives
p = ML(q)q (8)

then, the equations of motion become a first order DAE systéth variablesg, p and:
e : 9, :
ﬂﬁ+55+HU+Lﬂk7%KL@%4:0
: 9
p—ML(q)g=0 ®)
P(q) =0

whereB = 0®/0q is the Jacobian matrix of constraints. Note that the lasttemms in (9-a)
can be written as

L o [(20)"u] = G(w)d (10)
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where the matrixG' () has the following components:

OL;; 0L,
G = ; Yo ”’) 11
" zi:” <3qp 04 )
Skew-symmetry ol follows immediately. The final form of the equations of matis thus:
%

L'+ —+B"X+G(n)g=0
- (12)

p—ML(q)g=0

b(q)=0

3 TEST EXAMPLES

Four test examples were chosen in order to show the perfaenafthe different algorithms in

the nonlinear regime, also taking into account the presefwenlinear constraints and the stiff

character of the differential equation. These examples are

a) Nonlinear, unconstrained, non stiff problem: a simple pendulum with one degree of

freedomg = 6. The expressions of kinetic and potential energies ar¢emrds:
1 .
K= §m82€2 V = (1 — cos0)mgl

We adoptm = 1, £ = 1 with ¢y = /2 andv, = 0 as initial conditions.

Figure 1: The simple pendulum

b) Nonlinear, constrained, non stiff problem: a simple pendulum with two degrees of

freedomg” = [z y] and one nonlinear constraiit= z? + y* — (> = (0. The expressions
of the corresponding kinetic and potential energies are:

1
K= §m(i:2 +9°) Y = —mgy

We adoptm = 1 and/ = 1. Initial conditions arec] = [1 0] andv! = [0 0].
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¢) Nonlinear, constrained non stiff problem: a double pendulum modelled with four de-
grees of freedom and nonlinear constraints:

i
(zo —21)* 4+ (y2 — y1)* — bo
The corresponding kinetic and potential energies exprassre

q" = [z1y1 T2 Y0 ] b =

1 ) . 1 . .
K= §m1 (%12 + y12) + §m2(x22 + y22) VY = migy1 + Magys

We adoptn; = my = 1andl; = ¢, = 1withzl = [1 01 1] andv! = [0 0 0 0] as initial
conditions.

d) Nonlinear, constrained, stiff problem: the same double pendulum of the previous item
with a massn; 200 times smaller thamn,, forcing in this way an ill-conditioned mass
matrix. We adoptn; = 0.005 andmsy = 1.

my

Figure 2: The double pendulum

4 THETIME CONTINUOUS GALERKIN APPROXIMATION

4.1 Energy preserving scheme

4.1.1 Discretization of the equation of motion

In the Galerkin approximation the equations of motion afered in a weak (integral) manner.
The Galerkin approximation of the equations of motion (B2yritten as

g /_11 Wi(7) (¢ — L) dr+

1
g / Wha(T) (Mv + L TGq + L—Tg—z + L‘TBTA) dr=0 (13)
—1
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n t tnﬂ
n+1/2

Figure 3: The time continuous Galerkin approximation optlisements and velocities

whereW;(r) are the weight functiong is the time step size and a nondimensional time
variable ¢ = —1 att,, andr = 1 att,, ). By using piecewise linear interpolation functions for
the displacements and velocities (Figure 3) and piecevaastant test functiong); and W,
we obtain the set of discrete equations:

(1 1 %)%
ELZ—%%M(,U"JA — ’Un> + EGM%(an — qn) + a—q o + BZ—&-%)‘nﬁ-% =0
nTy3
1 1 (14)
—L, 1 1(Gni1 — Gn) = 5(Vni1 +vn)
h 2 2
L Slsn—&-1<q> =0

The matrianJr% will depend on the adopted rotation parametrization. Tharpatrization
used (Euler parameters) assures a constant nﬁ;gi)i( as it is shown in a previous wofk.

4.1.2 Energy preservation in the discrete scheme

The total energy of the system&sq, ¢) = K(q) + V(q) where the kinetic energy has as a final
expressionC = %vTMv and the potential energy(q) is function of the generalized coordi-
natesq. The total energy change in a time step can be evaluated ¢omgphe work done by
the elastic, constraint and inertia forces.

To prove the total energy preservation of the discrete seheve multiply (14-a) by the dis-
placements jumpq, .1 — g,)” over atime step

1 1
E(qn-i-l - qn)TLn—&—%M('vn-‘rl - vn) + E(qn—i-l - qn>TGn+%(qn+1 - qn>+
T 8V T pT
(qn+1 - qn) a0 + (qn-‘rl - qn) Bn+%An+% =0 (15)

8q n+%
By looking at the first term we can identify the kinetic energgnp over a time step as:

1 1
E(qn+1 - Qn>TLn+%M('Un+1 — ) = §(vn+1 + 'Un)TM('UnH —v,) = Kp1 — K, (16)
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Due to the skew-symmetry of the matiix the second term becomes identically null.

1
_(qn+1 - qn)TGn+%(Qn+1 - qn) =0 (17)

h
In the term of elastic forces derived from the potenWalwe substitute the derivative at the
midpoint(a]//aq)M% by the approximatior(@V/é)q);% (discrete directional derivativ® that
satisfies the next condition:
r OV

(qn-i-l - qn) 8_(] n+% = Vn+1 — Vn (18)

In the constraint forces term we use again the concegisofete directional derivativevhere
now the Jacobian matrix of constrailﬁw% is replaced by the approximaticﬁ;;+1 in order

to satisfy

2

(dsn-i-l - gpn) = B:+%(Qn+1 - qn) (19)
With this condition,

= (¢n+l - @n) Ayl (20)

<Qn+1 - q’n)TB,:z%AnJr n+i

3
The configuration at time, is assumed to be compatibt&, = 0. Then, forcing
$,.1=0 (21)

we guarantee that the work of the constraints forces is zero.
By replacing equations (16), (17), (18) and (19) into equmfitb) we may see that the total
energy change of the system over a time step results

St — En =Koy — Kon + Vipr — Yy = 0 (22)

Therefore, the scheme formed by the equation set (14) mess#re total energy of the system
if (18), (19) and (21) are satisfied.

4.2 Numerical examples

The energy preserving scheme is applied to the four tessc&@¥e observe in Figures 4 and 5
that the displacements and velocities responses computie lenergy preserving scheme are
correct in the two first test casesandb, with an exact conservation of the total energy of the
system (Figure 6). The non-stiff double pendulum (test eagealso correctly solved (Figure
7). Finally, for the stiff double pendulum (test cage although energy is exactly preserved,
the ill-conditioned mass matrix generates large spuricaglations in the numercial response,
which mask the response (Figure 8).
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Simple Pendulum - displacements ~ h=0.02 Simple Pendulum with Constraints - Displacements ~ h=0.02
T T - 7 T T -

0.8

06

0.4

0.2

Time Time

Figure 4: Simple pendulum

. displacement responses focéessn (unconstrained) and test caséconstrained)
in cartesian coordinates.

Simple Pendulum - velocities - h=0.02 Simple Pendulum with Constraints - Velocities - h=0.02
5 T T T T T T T T T 5 T T T T T T

Time Time

Figure 5: Simple pendulum: velocity responses for test ea@mconstrained) and test calséconstrained) in
cartesian coordinates.

4.3 Conclusions

In this section a time integration scheme based on Time Qamtis Galerkin Approximation
with independent interpolation of displacements and veéscwas introduced. A discretiza-
tion process was developed for elastic and inertial forcasgreserves at the discrete solution
level the total mechanical energy of the system. The dige@iconstrained forces guarantees
the exact satisfaction of nonlinear constraints and théstarg of the work performed by the
constraint forces. The Energy Preserving Scheme providegndlitional stability for nonlin-

ear multibody systems. However, it lacks the high-freqyenamerical dissipation required to
tackle realistic engineering problems.
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Simple Pendulum - energies — h=0.02 Simple Pendulum with Constraints ~ Energies ~ h=0.02
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Figure 6: Simple pendulum: kinetic (blue line), potentigigen line) and total energy (red line) for test case
(unconstrained) and test cdsé&onstrained).

Double Pendulum r=1 - velocities — h=0.01 Double Pendulum r=1 - energies — h=0.01
8 T T T T T T T T T T

Time

Time

Figure 7: Double pendulum: time responses for velocitiasitesian coordinates and kinetic (blue line), potential
(green line) and total energy (red line) far, = mo = 1 (test case).

5 TIME DISCONTINUOUS GALERKIN APPROXIMATION

In order to annihilate the spurious high frequency osdila that arise in flexible problems or
in rigid problems with ill- conditioned mass, we will constt in this section a new scheme that
provide bounds on the algorithmic total energy over a tyitinee step|t,,, t,.1] and at the same
time introduces dissipation in the high frequency regin.tRkis purpose we will use the Time
Discontinuous Galerkin approximation, a natural way tovarto a set of discrete equations of
an algorithmic total energy dissipative scheime.

Discontinuities on displacements and velocity fieddandv at the initial timet,, are allowed.

A contribution taking into account the value of these disanties will appear in the weighted
residual expressions. An additional state at time lim._.¢(t,, +¢) is added and the following
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Double Pendulum - velocities — h=0.001 Double Pendulum - energies — h=0.001
T T T T T

o

w‘

Figure 8: Double pendulum: time responses for velocitiegsitesian coordinates and kinetic (blue line), potential
(green line) and total energy (red line) fiar, = 0.005 andmy = 1 (test casel)
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g

Figure 9: Discontinuous Galerkin approximation of disgl@ents and velocities

averaged quantities at the middle points are defined:

(=5 (Ouia + ) (=5 (0 + O) (23)

The scheme moves forward from the initial to the final timeotigh two coupled steps, one
fromt, tot; and other from; to ¢, .
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5.1 Energy decaying scheme without control of the amount of the dissipated energy

5.1.1 Discretization of the equation of motion
The discontinuous Galerkin approximation of the equatmfmaotion (12) writes:

1
g/ Wi (1) [q — L_l'u] dr+
-1
ho[t ) i _pOV T T
-1
Wl(_1>(qj - qn) + WQ(_l) [M('Uj - vn) + L_TGh(qj - qn)} =0 (24)

where the test function are

W1 (7‘) = Al + B17’ WQ(T) = AQ + BQT (25)
Displacements and velocities are linearly interpolatest the time stefy,, t,,11]:
= q;(1—7)+ gp1(1+7) i = (gnt1 — q))
o= tvnd+n) o (Vnp — )
v = 5 v = T

midpointg:
_ v
n+1 aq

Internal and constraint forces are similarly interpolateg grouping the contributions at the
oy av| (av
= +

0q dq g 2 0q j> (27)
B'A = B{A, + 2 [Bl A1 — BIA]

By taking independent variations on the parametgrsA,, B; and B, we obtain the following
discrete equation system, which is solved in an iterativenfto obtaing,,+1, q;, v,4+1, vj, A,
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and;
(1 % 1
ELTM (vn-i-l - ’Un) + a—q + Bg)\g + EGm(qn+1 - qn) =0
g
1 110V 2% 1|10V oy
LM (v, — _ == == il B B
h (v = on) 3|0q|, 9q|,| 6]|0q|, Oq|,
1 1
§ (BgAg — B}:LF)\]) + EGh<Qj - qn) =0 (28)

1 1
—L(Qn+1 - qn> - 5(’Un+1 - Uj) =0

h
1 1
EL(qj —qn) + g( nil — Vj) = 0
&, =0
( D111 =0

We have used the fact thatis constant for the adopted rotation parametrization anerevive
made the approximation :

Gg(qn—H - QJ> + Gh(qj - qn) ~ Gm(Qn-H - qn) (29)

with:
1 1

5.1.2 Energy decay in the discrete scheme
If we multiply (28-a) by the displacements juni@,., — g,,) and (28-b) by(g; — g.,), we have:

1 oV
E(qn-i-l N qn)TLTM (vn-i-l - Un) + (qn-‘rl - qn)T 8_q +

g

1
(Qn+1 - Qn)TBg)‘g + E(qn-i-l - qn)TGm(Qn-‘rl - qn) =0

- 1 fov) oy
—\q4; — gqn LMU'_'vn_ q qn - - a_
(@ - 0 EM o, w) - Sla - | ) - 5
1 )% oV 1
6(% ) g " oq| |~ g(qj —q.)" (ByA, — By Aj) +
j n

a0 Galg; — a.) =0 (31)
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1 1
§(vn+1 + vj)TM('Un—f—l - 'Un) - §<vn+1 - Uj)TM(vj - vn)"‘

POV 1

By using the displacements-velocities relationships (&8ad (28-d) and by linearly combining
% %
(@n+1 — @j) 9 g+ (g; — an) 9ql, +5(a5— an) 54|, oq

equations (31-a) and (31-b) we arrive at:
] +
(qn+1 - qn)TBgAg - (qj - qn)T(B;Ag - Bij;)‘J)_F

1 1
(anrl - qn)TﬁGm(anrl - qn) + (qj - qn)TﬁGh(qj - qn) =0 (32)
After some algebra, it can be shown that the two first term&qual to the sum of the kinetic
energy jump over the time stef,, ¢,,.1] plus a positive terniC,,; which we callkinetic energy
of the jump

r OV

1 1
§(vn+1 + vn)TM(vn+1 - vj) - E(Un—i-l - 'Uj>TM(vj o 'Un) = Knp1 = Ko + /an (33)

where thekinetic energy of the jumis defined as

1
Kni = 5(”3‘ —v,) M (v; —v,) 2 0 (34)

Once again, we replace the midpoint elastic for@@g/0q), and (9V/dq),, by theirdiscrete
directional derivativecounterparts, giving the jump of potential energy over e tstep:

av * *
(@ni1 — ;)" ==| +(g; —qn)
0q g

r OV

2q|. = Viir =Vi+V; =V =Vas1 — W (35)

h

The third term involving derivatives of potential energylivie calledpotential energy of the
jumpand is positive for convex potential energy functions:

%

o _81)
oq

1
Vii = 5(a — 4)" L (36)

7 n

For the constraint forces we approximate the matri8gaind B;, with B; and B;, using again
the concept ofliscrete directional derivativen such a way that

B;(qnﬂ -q) =P, —P;; Bjlgi—q,) =P — P, (37)
Then we have:

(@ni1—=a0) By A= (4, —0)" (B;" Xy = B;'\)) = (51— B;)" A+ (B, —8,)" \; (38)
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The configuration at time, is assumed to be compatibte, = 0. Then if we enforce
@j =0 and ¢n+1 =0 (39)

this implies that the work of the constraints forces varsshe
Finally for the last two terms we have that

1
(@ni1 — qn)TEGm(qnﬂ —q,) =0
1
(q; — qn)Tth(qj —q,) =0 (40)

because of the skew-symmetry@f,, andG},.
By replacing (33), (34), (35), (36), (37) and (40) in (32) weyrsae that the change of the total
energy of the system becomes

Eni1 —En=Kny1 —Kn +Vop1 — Vo + ¢ (41)
where the quadratic term is thetal energy of the jump
=&y =Knj+Vp; 20 (42)
Finally, we have that
Enp1=En— — E1 S &, (43)

that is the scheme proposed by the set of equations (28)amfiie inequality (43), which
guarantees the decay of the total energy of the system if (36), (37) and (39) are satisfied.

5.1.3 Numerical examples

We will solve now the test examples using the proposed endeggying scheme. We can
observe that the numerical oscillations disappear in teplatements and velocities time re-
sponses for the double pendulum with ill conditioned massir@igure 10). However, Figure
11 shows that the scheme dissipates too much energy. Fanipkegendulum the responses
are plotted in Figures 12 and 13. We observe that for the clgeeaonstrained model, the
energy dissipation is again excessive.

5.1.4 Conclusions

We developed a time integration scheme based on Time Discanis Galerkin approximation
with independent interpolation of displacements and \ie&sc The scheme is closely related to
the Energy Preserving scheme and it implies a discrete gdexpy statement. The discretiza-
tion process for the constraint forces is left unchangedat, iththe work they perform vanishes
exactly and constraints are exactly satisfied. This pragegdtovides nonlinear unconditional
stability and high frequency numerical dissipation. Weentttat there is no control on the
amount of dissipated energy. We note also that, althougbnstained problems are solved
correctly with a small amount of dissipation, the computelditsons for nonlinear constrained
problems present an excessive amount of energy dissipation
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Double Pendulum - displacements — h=0.01 Double Pendulum - velocities - h=0.01
T T T T T T T T T T

Time Time

Figure 10: Double pendulum: time responses for displacésreerd velocities in cartesian coordinates#for =
0.005, mo = 1 (test casel)

Double Pendulum - energies - h=0.01
T T

Time

Figure 11: Double pendulum: time responses for kineticgbine), potential (green line) and total energy (red
line) form; = 0.005 andmy = 1(test casel).

5.2 Energy decaying scheme with control of dissipated energy

The algorithm proposed in the previous section is now exdrid a numerically dissipative
scheme with control of dissipation. The procedure is exdhb# same as before but the expres-
sions of the interpolated displacements, velocities atedrial forces are now:

q= (qJ + Qn—i-l) + T(qn-i-l —aq; — (1 — a)qn) q _ (qn—I—l _ qj)
2 2 T n
(44)
_ ('Uj + ’Un+1) (Un+1 —av; — (1 — Oé)’vn) . (Un+1 _ vj)
U= 9 + 7 5 D= 2
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Simple Pendulum - displacements ~ h=0.02 Simple Pendulum - displacements ~ h=0.02
T T - T T T T T

\/

5 10
Time

Time

Figure 12: Simple pendulum: displacements for test ea@mconstrained) and test cadséonstrained) in carte-
sian coordinates.

Simple Pendulum - energies — h=0.02
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Simple Pendulum - energies — h=0.02
T T T T

®

o

IS

N

\

\

0

21| [\ |\ [\ [ [ [ |\ ‘\\"’\‘\
Y Y Y (R AR O U B A A N A

\ \ Y Y A Y A U N AN B B
S S L Y Y
A Y Y Y I S A N A Y A
| | (. | \ | (. | \
LVt L A (Y A A A (N
[ Y O |
I T O A T O A T O |
b | | | | | || | | | 0ol |

Time

Time

Figure 13: Simple pendulum: kinetic (blue line), potent{gieen line) and total energy (red line) for test case
(unconstrained) and test caséconstrained).

oy av| rlov

dq  Oq|, 2 |0q

dq

oV
j 0q
where the algorithmic parameter € [0, 1] controls the amount of dissipation. On the other
hand, the forces of constraint are interpolated as in thaqurs scheme:

—(1-a) (45)

n+1 n

T

T T
B'X= Bj\, +

(BY A1 — BIA) (46)

The weight functions are the same used for the previous sehem
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5.2.1 Discretization of the equation of motion

A weighted residual expression of the equations of motid@) {4 formed, as in the previous
scheme, and after integration, the TDG discrete form of th@mBons of motion writes:

(1, 1 oV T
EL M('Un—H - vn) + EGm(qn+1 - qn) + a_q , + (B )\)g =0
1 1 1|0V oV
“L"M(v; — v, —Gulg; —q,) — = | —| — —
h (v] v )+ h h<q] q ) 3 8q . aq \
1 |0V % 1
—al=—| - =| | ==(B'X\,—B'A))=0
¥5%|3q),” 9al,| ~3Bs R~ B @47)
1 1
Lﬁ(qn—f—l —qn) = 5(%’ + Vns1)
1 1
LE(QJ‘—%):—g[vnﬂ—oévﬂr(@—l)”n]
\45”_,_1:0

with0 < a <1.

5.2.2 Energy decay in the discrete scheme

Now we will prove the decay of the energy for this scheme. R purpose we multiply Eq.
(47-a) by(g,.+1 — g.)" and Eq. (47-b) byq; — ¢,)" and get

1 1

E(qn-l-l - qn)TLTM(Un—l-l - vn) + E(qn+1 - qn)TGm(qn+1 - qn)+

r OV

(qn—i-l - qn) aq + (qn—H - qn>T(BT>‘>g =0 (48)

J

1
—(q; — qn)Tg(BgT)\ — B X;) =0 (49)

2% oV

8qg_0_q

1

1 1
(a5 - 4,)"L"M(v; — v,) + G a.)" Gr(q; — gn) — (q; — qn)Tg

oV
oq

%

1
6

n
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Combining linearly these two last expressions we arrive at

1 1
§(vj + vnH)TM('UnH —v,) — 5 [Vpi1 — ov; + (a — 1)vn]T M (v; —v,)+
oy 1|0V oy
— T R— — ¢ — T— R— pE— R—
(qn+1 qn) aq , (q] qn) 92 [ 8(] , aq .
1 oy oy
- (q] - qn)T§a a_q ‘ - a_q + (qn+1 - qn)TBgAg - (qj - qn)T(B;Ag - B}Z;Aj) =0
j n

(50)

where, after some algebra, we identify the terms correspgnid the kinetic energy jump
K.+1 — K., and thekinetic energy of the jumfg,,;, multiplied by the factor.:

1 1
5(”]‘ + Un-i-l)TM('Un-i-l - vn) - 5 ['Un—f—l —av; + (a - 1)vn]TM('Uj - vn) =

]Cn—l—l - ICTL + alcnj = ICn+1 - ’Cn + Oé]an
The expression of thiinetic energy of the jumig as before:
1
Knj = 5(v; = v,)" M (v; =) 2 0 (51)

Once again, we will use the concept of ttisscrete directional derivativéor the potential
energy terms, to replace the expressitig/dq), and(9V/dq), by their discrete directional
counterparts in order to verify (35).

oV |* oV |* 1 oy A%
(Gns1 — qj) 9q g+(q] qn) 9 h+ (g — qn) 2% | 5q " Bq),
1 oy oV
Vo1 = V) + (V; = Vo) + (g — Qn)T§Oé 8_q ) — 8_q )

In the RHS we identify the potential energy jump over the titep§,,, ¢, 1] plus thepotential
energy of the jumpthat in order to be positive must also satisfy the local esity expressed
in (36). The constraint and gyroscopic forces are treatdlensame way as in the previous
section, i.e. the work done by them is null.

Finally the total energy has the expression:

€n+1 - gn = ICn+1 - ICn - Oé’an + Vn+1 - Vn - aan =0 (52)

from which
Eni1 = (Kn+ Vo) —a(Kpj + Vaj) =& —ac® >0 (53)

For o = 0 we have an energy preserving scheme (note it is differem ftwat of section 4)
while for o = 1 we have the maximum energy dissipation. Note also that wevez¢he energy
decaying scheme presented in the previous sectiom ferl.
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5.2.3 Numerical examples

We will show the results obtained for the simple and the degieindulum described in section
4.2. Figure 14 plots the simple pendulum displacementsoress for the case = 0 for

Simple Pendulum - displacements — h=0.02 Simple Pendulum - displacements — h=0.02
T T T T T T T T T

. . . . . . . . .
1 2 3 4 5 6 7 8 9 10
Time Time

Figure 14: Simple pendulum: displacements for test eagmconstrained) and test caséonstrained) in carte-
sian coordinates.

Simple Pendulum - velocities — h=0.02 Simple Pendulum - velocities = h=0.02
5
T T T T T T T T T

Time Time

Figure 15: Simple pendulum: velocities for test cagginconstrained) and test calséconstrained) in cartesian
coordinates.

both modelsgz andb whereas Figure 15 displays the velocities time responsesariglboth

responses are not similar at all. We observe a locking phenomin the responses for the
constrained model. This locking phenomenon is also obdarnvéhe responses for the double
pendulum, modelled with constraints. In all cases, thd &nargy is perfectly preserved for
the energy preserving scheme (Figure 16). Figure 17 shaarttount of dissipation changes
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Simple Pendulum - energies ~ h=0.02 Simple Pendulum - energies ~ h=0.02
T

i

\
4 -o05f |
\

@

)

\
\
rl

LV , . . _ . . . . . , . , .
1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Time Time

Figure 16: Simple pendulum: kinetic (blue line), poten{gieen line) and total energy (red line) for test case
(unconstrained) and test cdsé&onstrained).

Simple Pendulum - total energy - h=0.02 Simple Pendulum - total energy - h=0.02
T T T T T T T T T -

9.8102 1
a=0
9.8101 \
o=0 At \ \
981 N
N\ \
0\
N\ ) \. -
9.8099 \ — g —
T\ I 3
. O
9.8098 N — a=05 \. o
— 4 \ N\
S . \. —
9.8097 | p— — a=1.0
5 \ —
— AN ™\ -
9.8096 1 N ]
— sl N ]
\ o=1.0 a=0.5
9.8095 —\ a0 ~ i
0.8004 L L . L ! . . . . 8 . . . . L L . .
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Time Time

Figure 17: Simple pendulum: total energy for test cagenconstrained) and test cdsgconstrained) for different
values of parameter.

for different values of the parametearfor the simple pendulum. For the constrained model
we see that the greatest amount of dissipation does notideimgth thea = 1 like in the
case of unconstrained model. Moreover, the energy decayssall0000 times more for the
constrained case.

5.2.4 Conclusions

In this section we have introduced a scheme with an algorttieontrol of the amount of energy
dissipated. This control works well only for unconstraimg@blems (and also for linearly
constrained cases). The amount of dissipation increasastomously witho from 0 to 1 only
for unconstrained cases. A locking phenomenon arises festned cases, when= 0 and
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an excessive dissipation is reached whea 0. We attribute these problems to the independent
interpolation fields of displacements and velocities.
5.3 Energy decaying scheme with velocities constraintsand « and « parameters

In order to avoid the troubles that arose with the previoleste, we will reformulate it using
the constraint stabilization technique proposed by Geal,’ based on the reduction of the
governing equations from index-3 to index-2 DAES. The idetiintroduce a new algebraic
constraint equatiodBL~'v = 0 wheren is the Lagrange multiplier associated to the new
constraint. If we apply the Hamilton’s principle in the samay as we did in section 2, the new
motion equations will result from:

to
5/ {L—p"(v—Lg)—AN'®—n"BL 'v}dt=0 (54)

t1

If we perform the variation on the variable we get
pw=Mv—-LT"B™y (55)

Now introducing this expression in (54) and with the help3)fye finally obtain:
to 1
5/ {—§vTMv —V(q) +v"MLG— \"® — nTBL—lv} dt =0 (56)
t1

This is the Hamilton’s principle expression from which wdlwlierive our motion equations.
Now, performing the variation on the variables\, n andq successively, we get:

— variation ofv yields
—Mv+MLGg—L "B'n=0 (57)

variation of the multipliers\ restores the constraints set (1)

— variation of the multipliers; gives

BL 'v=0 (58)

— variation of the generalized displacemedqtgelds

2 gy (aqs)T . 0 .
—Z26qg— =) A+8q(L*Mwv)+ 6qg— [(Lg)" Mv] }dt =0 59
/tl{ 5271\ 34 q( ) qaq[( q) ] (59)

from which the dynamic equilibrium equations will be extexst
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Integration by parts of Eq. (59) yields

L"Mv + G(Mwv)qg + g—z +B"A=0 (60)

Then the equations of motion become a first order DAE systdimgyiw, A andn as variables:

( oV
L"Mv+Gg+—+B"A=0

Jq
—~L"Mv+L"MLG—B'n=0 (61)
$=0
| BL'v=0

This formulation provides now the automatic enforcemerthefvelocity-level constraint be-
sides the position-level one, thus eliminates the probledrifi for these constraints.
5.3.1 Discretization of the equation of motion

The interpolated displacements and velocities have thes spressions as in the previous
scheme:

¢ = (9t ant) (@1 —0qi—(1-2)g) . _ (@1 — )
2 2 h (62)

(v; + Vps1) | (Vng1 —av; — (1 — )vy) . (n —vy)

v = 5 +7 5 V=

In the same way, internal and constraint forces are intatpdl

w
dq

dq

(1-a)

v _ov| 1o
8q_8qg 2 | Oq

n+1 7 n]

T (63)
B"X=B] )\, + 3 (BiyiAns1 — BI X))

T
B'n = Bjn,+ 5 (B 11 — Bim)

The Time Discontinuous Galerkin approximation of equagi(il) writes
1
/ Wi(r) [¢—=L"M'L™"B"n— L 'v] dr+
-1

1
/ Wa(7) [Mi) +L"Gg+ L "B" X+ L‘Tg—z dr+
-1

Wi(=1)(g; — @n) + Wa(=1)[M (v; — v,) + LT "Gi(q; — )] = 0 (64)
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where
W1 (T) = A1 + BlT WQ(T) = AQ + BQT (65)

Integration of this expression leads to the discrete egnsaystem formed by the equilibrium
equations, the velocities/displacements relationshmgsthe constraints at displacement-level
and at velocity-level:

(1, 1 A% T
EL M(v,41 — vy,) + EGm<qn+1 —q,) + % ) +(B'A),=0
1 1
ﬁL M(’Uj — ’Un) + EGh(q]' - qn)_
1|0V 150% 1 152% A% 1
i —a | =] — — — (BTN, —B'x) =0
3 aq , aq X —I— 6a aq ; 6(1 . 3( g9 h .7)
1 K
ELTML(qn-H - qn) - B;FTIg - §LTMvn+1 + v = 0
1 1 K
ELTML<qj —q,) + E(Bgﬂnnﬂ — Bn;) + ELTM('Un+1 —av; — (1 —a)v,) =0
®i(q) =0
Slsn-i-l(q) =0
BjL_l'Uj =0
\ BnJrlLilanrl =0

(66)
for0 < a <1.
We introduced an algorithmic parametethat will be adjusted to verify energy preservation in
the casev = 0, as it is shown in the next section. This parameteris 1 + O(At), that is

lim k=1
At—0

for consistency. Forv = 0 we have a scheme that perfectly preserves the total eneripe of
system and forv = 1 we reach the maximum energy dissipation.
5.3.2 Energy decay in the discrete scheme - computation of «

Now we pre multiply (66-a) byg, .1 —g.)", (66-b) by(q; —g.)”, (66-c) by(v, 1 —v,)" L™
and (66-d) by(v; — v,,)” L~'. Combining linearly these four equations and after somebaige
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we arrive at:
g (vp 1 Mv,1 — v, Mv, + oijMvj - oijM'vn — av) Mv; + av, Mv,) +
(@n1—q;)" g—z +(g—qn)" g— h+(Qj_qn)T% Z_z - g—z +(qur1—q;)" By Ayt
g i n
(@5 — @2)" By Aj +my ByL™ (vn41 — v,) — %(7777;+1Bn+1 —n; B;)L ™ (v; —v,) =0 (67)

The work done by the gyroscopic forces is null because ofkbersymmetry oiG,, andG,,
as it was said in the previous sections.
By identifying the different energy terms and grouping thegpether, we get:

«
K [lCnH - K, + §(vj — 'vn)TM('vj — ’vn)] +

_ g
_ 1 _
Ny ByL™ (vy41 — v,) — 5(777{“3%1 —n B;)L ' (v; —v,) =0 (68)

where we have used again the conceplistrete directional derivativyeas we did in the previ-
ous sections, replacing the expressitig/dq) , and(9V/9q), by the discrete counterparts in
order to verify the expressions (35). MatricBs and B, are approximated witl3; and B;, in
order to satisfy (37).

Now we have that forx = 0 the algorithmic total energy of the system must be perfectly
preserved, that is:

K'UCnJrl - ’Cn) + (VnJrl - Vn)+
1

3 [anBjL_l('vnH +v; — 2v,) + ngHBnHL_l('unH — 'vj)] =0 (69)

Then we obtain a closed form to compute theoefficient:

(Vny1 — V) + % [nj‘TBjLil(vn—i-l +v; — 2v,) + 777{+1Bn+1L71(vn+1 - 'Ujﬂ
o= (70)
(’CnJrl - ]Cn)
If the total energy of the system is preserved, we haveAfiat AV = 0 from whereAKX =
—AV. Thenk writes:

B n]TBjL_l(vn+l +v; —2v,) + n7{+1Bn+lL—1(vn+1 — vj)
2<’Cn+1 - Icn)

We see that is a measure of the work done by the constraint forces at toeityelevel with
respect to the kinetic energy jump.

k=1

(71)
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Simple Pendulum - velocities - h=0.02 Simple Pendulum ~ energies ~ h=0.02
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Figure 18: Simple pendulum: velocities and energies ines@h coordinates for test caséconstrained model)
anda =0

5.3.3 Numerical examples

Figure 18 shows that now this scheme works well in both casesstrained and unconstrained.
The locking problem has disappeared. In addition, the amoluanergy dissipated increases
monotonously withy for the constrained case and the values are now 1000 times kan
before, for the case af = 1. Figure 20 shows different plots of the evolution of the paeter

k, fora = 0 anda = 1, constrained case, and for a time step gize 0.02.

3

X 10" Simple Pendulum - total energy - h=0.02
1 T T T T T
a=0
0
At
2 — a=0.5
ab \
-4 —
a=1.0
-
sl \ i
—
0 1 2 3 4 5 6 7 8 9 10

Time

Figure 19: Simple pendulum: time evolution of total energy different values ofy for the constrained model
(test case)
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Time evolution of k for a = 0 Time evolution of k fora = 1
T T T

ir 1 1.005F

1
0.995

, , , , , , , , ,
[ 1 2 3 4 5 6 7 8 9 10
Time

Figure 20: Simple pendulum: time evolutionotoefficient forae = 0 anda. = 1 for the test casé (constrained
model)

5.3.4 Conclusions

A new algorithm for nonlinearly constrained DAEs that coldrthe amount of energy dissi-
pation has been proposed where displacement constrachthain time derivatives have been
imposed. Independent interpolation of displacements alatities are used and constraints at
velocity level are introduced to avoid the locking phenoorenThe proposed scheme uses the
concept of discrete derivative® get energy conservation. The most common holonomic type
of constraints are taken into consideration in the examples

6 CONCLUSIONS

A variety of time integration schemes for constrained nbokily dynamics were analyzed.

Discretization processes were developed for elastic artiahforces in order to achieve the
corresponding preservation or dissipation of the totallmatcal energy of the system at the
discrete solution level.

A discretization process was developed also for the canstidorces, in order to guarantee
the exact satisfaction of nonlinear constraints and théstaarg of the work performed by the
constraint forces.

It has been shown that in spite of Energy Preserving Schemadeass nonlinear uncondi-
tional stability for MBS, it lacks the high-frequency nuneai dissipation required to tackle
realistic engineering problems which many times can leatiécdamage of the computation.
The high frequency numerical dissipation is imperativetiiore integration in multibody sys-
tems, in order to assure the stability of the solution.

It has been shown that constraints and time derivativesradtcaints should be both imposed
when using independent interpolation of displacementsvalatities to avoid locking.
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