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Abstract. In this work we describe several numerical time integration methods for multibody
system dynamics: an energy preserving scheme and three energy decaying ones, which intro-
duce high frequency numerical dissipation in order to annihilate the non desired high frequency
oscillations. An exhaustive analysis of these four schemesis done, including their formulation,
energy preserving and decaying properties, taking into account the presence of nonlinear alge-
braic constraints and the incrementation of finite rotations.
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1 INTRODUCTION

Integration of second order index 3 Differential-Algebraic Equations (DAE) may lead to numer-
ical instability when an integration method of the Newmark family integration is used, because
of the algebraic constraints. These constraints are the cause of unbounded linearly growing
oscillations in the acceleration response (weak instability). If a high frequency dissipation is in-
troduced this instability can be controlled in the linear regime e.g. HHT,1 Hulbertα-generalized
methods.2

In the non linear regime, the stability cannot be guaranteedby usual methods of analysis which
are based on the properties of the system transition matrix.An alternative to ensure the stability
of the solution is by means of schemes that verify the preservation of the total energy of the
system at each time step. But this unconditional stability does not guarantee a satisfactory per-
formance of the scheme because the spurious high frequency oscillations that may appear, e.g.
with a sudden variation of stiffness or at a shock, are conserved all along the response, masking
the answer.
It becomes necessary to develop alternative schemes. A methodology that leads in a systematic
way to obtain energy dissipative integration schemes is Time Discontinuous Galerkin (TDG),3

initially developed for hyperbolic equations. In an early work4 we revisited an energy preserv-
ing scheme proposed by Géradin.5 Now we take that scheme to build a new one that guarantees
stability all along the numerical integration process and furthermore introduces numerical dis-
sipation for the high frequency oscillation. The paper is organized as follows: in section 2
we formulate the problem. In section 4 an energy preserving integration algorithm is derived
by using the Time Continuous Galerkin approximation. In section 5 three energy decaying
integration algorithms are derived by using the Time Discontinuous Galerkin approximation.
Every proposed algorithm is analyzed individually, using examples that are described in detail
in section 3.

2 FORMULATION OF THE PROBLEM

Let us describe a conservative mechanical system in terms ofN generalized coordinatesq
submitted toR algebraic constraints

Φ(q) = 0. (1)

Its dynamic properties can be derived from an appropriate description of the potential energy of
the systemV = V(q) and of its kinetic energy, which can be put in quadratic form without loss
of generality

K =
1

2
vT Mv. (2)

The(M ×M) inertia matrixM can be assumed constant, symmetric and positive definite since
velocitiesv are expressed in amaterial frame. The latter are treated as quasi-coordinates and
take thus the form of linear combinations of generalized coordinate time derivatives

v = L(q)q̇, (3)
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beingL(q) a (M × N) matrix with M ≤ N . This inequality covers the case in which the
description of angular velocities is made in terms of redundant rotation parameters such as
Euler parameters. In this case the redundancy between parameters has to be removed by adding
appropriate constraints to the global set (1).
The motion equations result from the application of Hamilton’s principle:

δ

∫ t2

t1

{

1

2
vT Mv − µT (v − L(q)q̇) − V(q) − λT Φ(q)

}

dt = 0 (4)

We perform successively variations on the variablesµ, λ, v y q.

– the variation of the multipliersµ restores the velocity equations (3)

– variation of the multipliersλ restores the constraints set (1)

– the variation of the velocitiesv shows that the multipliersµ have the meaning of gener-
alized momenta

µ = Mv (5)

– the variation of the generalized displacementsq yields
∫ t2

t1

{

δqT

(

−
∂V

∂q
−

∂ΦT

∂q
λ +

∂

∂q

[

(Lq̇)T µ
]

)

+ δq̇T LT µ

}

dt = 0 (6)

from which the dynamic equilibrium equations will be extracted.

Integration by parts of (6) yields

[

δqT LT µ
]t2

t1
+

∫ t2

t1

δqT

{

−
∂V

∂q
−

∂ΦT

∂q
λ +

∂

∂q

[

(Lq̇)T µ
]

−
d

dt

(

LT µ
)

}

dt = 0 (7)

The combination of (5) and (3) gives

µ = ML(q)q̇ (8)

then, the equations of motion become a first order DAE system,with variablesq, µ andλ:

LT µ̇ +
∂V

∂q
+ BT λ + L̇T µ −

∂

∂q

[

(Lq̇)T µ
]

= 0

µ − ML(q)q̇ = 0

Φ(q) = 0

(9)

whereB = ∂Φ/∂q is the Jacobian matrix of constraints. Note that the last twoterms in (9-a)
can be written as

L̇T µ −
∂

∂q

[

(Lq̇)T µ
]

= G(µ)q̇ (10)
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where the matrixG(µ) has the following components:

Gjp =
∑

i

µi

(

∂Lij

∂qp

−
∂Lip

∂qj

)

(11)

Skew-symmetry ofG follows immediately. The final form of the equations of motion is thus:

LT µ̇ +
∂V

∂q
+ BT λ + G(µ)q̇ = 0

µ − ML(q)q̇ = 0

Φ(q) = 0

(12)

3 TEST EXAMPLES

Four test examples were chosen in order to show the performance of the different algorithms in
the nonlinear regime, also taking into account the presenceof nonlinear constraints and the stiff
character of the differential equation. These examples are:

a) Nonlinear, unconstrained, non stiff problem: a simple pendulum with one degree of
freedomq = θ. The expressions of kinetic and potential energies are written as:

K =
1

2
mθ̇2ℓ2 V = (1 − cos θ)mgl

We adoptm = 1, ℓ = 1 with q0 = π/2 andv0 = 0 as initial conditions.

y

x

`

m

g

x

y

Figure 1: The simple pendulum

b) Nonlinear, constrained, non stiff problem: a simple pendulum with two degrees of
freedomqT = [x y] and one nonlinear constraintΦ = x2 + y2 − ℓ2 = 0. The expressions
of the corresponding kinetic and potential energies are:

K =
1

2
m(ẋ2 + ẏ2) V = −mgy

We adoptm = 1 andℓ = 1. Initial conditions arexT
0 = [1 0] andvT

0 = [0 0].
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c) Nonlinear, constrained non stiff problem: a double pendulum modelled with four de-
grees of freedom and nonlinear constraints:

qT = [x1 y1 x2 y2 ] Φ =

[

x2
1 + y2

1 − ℓ2
1

(x2 − x1)
2 + (y2 − y1)

2 − ℓ2

]

The corresponding kinetic and potential energies expressions are

K =
1

2
m1(ẋ1

2 + ẏ1
2) +

1

2
m2(ẋ2

2 + ẏ2
2) V = m1gy1 + m2gy2

We adoptm1 = m2 = 1 andℓ1 = ℓ2 = 1 with xT
0 = [1 0 1 1] andvT

0 = [0 0 0 0] as initial
conditions.

d) Nonlinear, constrained, stiff problem: the same double pendulum of the previous item
with a massm1 200 times smaller thanm2, forcing in this way an ill-conditioned mass
matrix. We adoptm1 = 0.005 andm2 = 1.

y

x

`1

`2

m1

m2

g

x
1

x
2

y
2

y
1

Figure 2: The double pendulum

4 THE TIME CONTINUOUS GALERKIN APPROXIMATION

4.1 Energy preserving scheme

4.1.1 Discretization of the equation of motion

In the Galerkin approximation the equations of motion are enforced in a weak (integral) manner.
The Galerkin approximation of the equations of motion (12) is written as

h

2

∫

1

−1

W1(τ)
(

q̇ − L−1v
)

dτ+

h

2

∫

1

−1

W2(τ)

(

Mv̇ + L−T Gq̇ + L−T ∂V

∂q
+ L−T BT λ

)

dτ = 0 (13)
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tn tn+1/2

tn+1

Figure 3: The time continuous Galerkin approximation of displacements and velocities

whereWi(τ) are the weight functions,h is the time step size andτ a nondimensional time
variable (τ = −1 at tn andτ = 1 at tn+1). By using piecewise linear interpolation functions for
the displacements and velocities (Figure 3) and piecewise constant test functionsW1 andW2,
we obtain the set of discrete equations:



























1

h
LT

n+
1

2

M (vn+1 − vn) +
1

h
Gn+

1

2

(qn+1 − qn) +
∂V

∂q

∣

∣

∣

∣

n+
1

2

+ BT
n+

1

2

λn+
1

2

= 0

1

h
Ln+

1

2

(qn+1 − qn) =
1

2
(vn+1 + vn)

Φn+1(q) = 0

(14)

The matrixLn+
1

2

will depend on the adopted rotation parametrization. The parametrization

used (Euler parameters) assures a constant matrixLn+
1

2

as it is shown in a previous work.4

4.1.2 Energy preservation in the discrete scheme

The total energy of the system isE(q, q̇) = K(q̇)+V(q) where the kinetic energy has as a final
expressionK = 1

2
vT Mv and the potential energyV(q) is function of the generalized coordi-

natesq. The total energy change in a time step can be evaluated computing the work done by
the elastic, constraint and inertia forces.
To prove the total energy preservation of the discrete scheme, we multiply (14-a) by the dis-
placements jump(qn+1 − qn)T over a time step

1

h
(qn+1 − qn)T Ln+

1

2

M (vn+1 − vn) +
1

h
(qn+1 − qn)T Gn+

1

2

(qn+1 − qn)+

(qn+1 − qn)T ∂V

∂q

∣

∣

∣

∣

n+
1

2

+ (qn+1 − qn)T BT
n+

1

2

λn+
1

2

= 0 (15)

By looking at the first term we can identify the kinetic energy jump over a time step as:

1

h
(qn+1 − qn)T Ln+

1

2

M (vn+1 − vn) =
1

2
(vn+1 + vn)T M (vn+1 − vn) = Kn+1 −Kn (16)
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Due to the skew-symmetry of the matrixG the second term becomes identically null.

1

h
(qn+1 − qn)T Gn+

1

2

(qn+1 − qn) = 0 (17)

In the term of elastic forces derived from the potentialV, we substitute the derivative at the
midpoint(∂V/∂q)n+

1

2

by the approximation(∂V/∂q)∗n+
1

2

(discrete directional derivative6) that
satisfies the next condition:

(qn+1 − qn)T ∂V

∂q

∣

∣

∣

∣

∗

n+
1

2

= Vn+1 − Vn (18)

In the constraint forces term we use again the concept ofdiscrete directional derivativewhere
now the Jacobian matrix of constraintsBn+

1

2

is replaced by the approximationB∗

n+
1

2

in order

to satisfy
(Φn+1 − Φn) = B∗

n+
1

2

(qn+1 − qn) (19)

With this condition,

(qn+1 − qn)T B∗T
n+

1

2

λn+
1

2

= (Φn+1 − Φn) λn+
1

2

(20)

The configuration at timetn is assumed to be compatible,Φn = 0. Then, forcing

Φn+1 = 0 (21)

we guarantee that the work of the constraints forces is zero.
By replacing equations (16), (17), (18) and (19) into equation (15) we may see that the total
energy change of the system over a time step results

En+1 − En = Kn+1 −Kn + Vn+1 − Vn = 0 (22)

Therefore, the scheme formed by the equation set (14) preserves the total energy of the system
if (18), (19) and (21) are satisfied.

4.2 Numerical examples

The energy preserving scheme is applied to the four test cases. We observe in Figures 4 and 5
that the displacements and velocities responses computed by the energy preserving scheme are
correct in the two first test casesa andb, with an exact conservation of the total energy of the
system (Figure 6). The non-stiff double pendulum (test casec) is also correctly solved (Figure
7). Finally, for the stiff double pendulum (test cased), although energy is exactly preserved,
the ill-conditioned mass matrix generates large spurious oscillations in the numercial response,
which mask the response (Figure 8).
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Figure 4: Simple pendulum: displacement responses for testcasea (unconstrained) and test caseb (constrained)
in cartesian coordinates.
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Simple Pendulum − velocities − h=0.02
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Figure 5: Simple pendulum: velocity responses for test casea (unconstrained) and test caseb (constrained) in
cartesian coordinates.

4.3 Conclusions

In this section a time integration scheme based on Time Continuous Galerkin Approximation
with independent interpolation of displacements and velocities was introduced. A discretiza-
tion process was developed for elastic and inertial forces that preserves at the discrete solution
level the total mechanical energy of the system. The discretized constrained forces guarantees
the exact satisfaction of nonlinear constraints and the vanishing of the work performed by the
constraint forces. The Energy Preserving Scheme provides unconditional stability for nonlin-
ear multibody systems. However, it lacks the high-frequency numerical dissipation required to
tackle realistic engineering problems.
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Figure 6: Simple pendulum: kinetic (blue line), potential (green line) and total energy (red line) for test casea

(unconstrained) and test caseb (constrained).
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Figure 7: Double pendulum: time responses for velocities incartesian coordinates and kinetic (blue line), potential
(green line) and total energy (red line) form1 = m2 = 1 (test casec).

5 TIME DISCONTINUOUS GALERKIN APPROXIMATION

In order to annihilate the spurious high frequency oscillations that arise in flexible problems or
in rigid problems with ill- conditioned mass, we will construct in this section a new scheme that
provide bounds on the algorithmic total energy over a typical time step[tn, tn+1] and at the same
time introduces dissipation in the high frequency regime. For this purpose we will use the Time
Discontinuous Galerkin approximation, a natural way to arrive to a set of discrete equations of
an algorithmic total energy dissipative scheme.3

Discontinuities on displacements and velocity fieldsq andv at the initial timetn are allowed.
A contribution taking into account the value of these discontinuities will appear in the weighted
residual expressions. An additional state at timetj = limε→0(tn + ε) is added and the following
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Figure 8: Double pendulum: time responses for velocities incartesian coordinates and kinetic (blue line), potential
(green line) and total energy (red line) form1 = 0.005 andm2 = 1 (test cased)

tg
tn+1tjth

tn

Figure 9: Discontinuous Galerkin approximation of displacements and velocities

averaged quantities at the middle points are defined:

(·)g =
1

2

(

(·)n+1
+ (·)j

)

(·)h =
1

2

(

(·)j + (·)n

)

(23)

The scheme moves forward from the initial to the final time through two coupled steps, one
from tn to tj and other fromtj to tn+1.
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5.1 Energy decaying scheme without control of the amount of the dissipated energy

5.1.1 Discretization of the equation of motion

The discontinuous Galerkin approximation of the equationsof motion (12) writes:

h

2

∫

1

−1

W1(τ)
[

q̇ − L−1v
]

dτ+

h

2

∫

1

−1

W2(τ)

[

Mv̇ + L−T Gq̇ + L−T ∂V

∂q
+ L−T BT λ

]

dτ+

W1(−1)(qj − qn) + W2(−1)
[

M (vj − vn) + L−T Gh(qj − qn)
]

= 0 (24)

where the test function are

W1(τ) = A1 + B1τ W2(τ) = A2 + B2τ (25)

Displacements and velocities are linearly interpolated over the time step[tj, tn+1]:

q =
qj(1 − τ) + qn+1(1 + τ)

2
q̇ =

(qn+1 − qj)

h

v =
vj(1 − τ) + vn+1(1 + τ)

2
v̇ =

(vn+1 − vj)

h

(26)

Internal and constraint forces are similarly interpolated, by grouping the contributions at the
midpointg:

∂V

∂q
=

∂V

∂q

∣

∣

∣

∣

g

+
τ

2

(

∂V

∂q

∣

∣

∣

∣

n+1

−
∂V

∂q

∣

∣

∣

∣

j

)

BT λ = BT
g λg +

τ

2

[

BT
n+1λn+1 − BT

j λj

]

(27)

By taking independent variations on the parametersA1, A2, B1 andB2 we obtain the following
discrete equation system, which is solved in an iterative form to obtainqn+1, qj, vn+1, vj, λg
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andλj























































































1

h
LT M (vn+1 − vn) +

∂V

∂q

∣

∣

∣

∣

g

+ BT
g λg +

1

h
Gm(qn+1 − qn) = 0

1

h
LT M (vj − vn) −

1

3

[

∂V

∂q

∣

∣

∣

∣

g

−
∂V

∂q

∣

∣

∣

∣

h

]

+
1

6

[

∂V

∂q

∣

∣

∣

∣

j

−
∂V

∂q

∣

∣

∣

∣

n

]

−

1

3

(

BT
g λg − BT

h λj

)

+
1

h
Gh(qj − qn) = 0

1

h
L(qn+1 − qn) −

1

2
(vn+1 − vj) = 0

1

h
L(qj − qn) +

1

6
(vn+1 − vj) = 0

Φj = 0

Φn+1 = 0

(28)

We have used the fact thatL is constant for the adopted rotation parametrization and where we
made the approximation :

Gg(qn+1 − qj) + Gh(qj − qn) ≃ Gm(qn+1 − qn) (29)

with:

Gm = Gm(Hm); Hm =
1

2
(Hn + Hn+1) =

1

2
J(Ωn + Ωn+1) (30)

5.1.2 Energy decay in the discrete scheme

If we multiply (28-a) by the displacements jump(qn+1 −qn) and (28-b) by(qj −qn), we have:

1

h
(qn+1 − qn)T LT M (vn+1 − vn) + (qn+1 − qn)T ∂V

∂q

∣

∣

∣

∣

g

+

(qn+1 − qn)T BT
g λg +

1

h
(qn+1 − qn)T Gm(qn+1 − qn) = 0

1

h
(qj − qn)T LT M (vj − vn) −

1

3
(qj − qn)T

[

∂V

∂q

∣

∣

∣

∣

g

−
∂V

∂q

∣

∣

∣

∣

h

]

+

1

6
(qj − qn)T

[

∂V

∂q

∣

∣

∣

∣

j

−
∂V

∂q

∣

∣

∣

∣

n

]

−
1

3
(qj − qn)T

(

BT
g λg − BT

h λj

)

+

1

h
(qj − qn)T Gh(qj − qn) = 0 (31)
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By using the displacements-velocities relationships (28-c) and (28-d) and by linearly combining
equations (31-a) and (31-b) we arrive at:

1

2
(vn+1 + vj)

T M (vn+1 − vn) −
1

2
(vn+1 − vj)

T M (vj − vn)+

(qn+1 − qj)
T ∂V

∂q

∣

∣

∣

∣

g

+ (qj − qn)T ∂V

∂q

∣

∣

∣

∣

h

+
1

2
(qj − qn)T

[

∂V

∂q

∣

∣

∣

∣

j

−
∂V

∂q

∣

∣

∣

∣

n

]

+

(qn+1 − qn)T BT
g λg − (qj − qn)T (BT

g λg − BT
h λj)+

(qn+1 − qn)T 1

h
Gm(qn+1 − qn) + (qj − qn)T 1

h
Gh(qj − qn) = 0 (32)

After some algebra, it can be shown that the two first terms areequal to the sum of the kinetic
energy jump over the time step[tn, tn+1] plus a positive termKnj which we callkinetic energy
of the jump:

1

2
(vn+1 + vn)T M (vn+1 − vj) −

1

2
(vn+1 − vj)

T M (vj − vn) = Kn+1 −Kn + Knj (33)

where thekinetic energy of the jumpis defined as

Knj =
1

2
(vj − vn)T M (vj − vn) ≧ 0 (34)

Once again, we replace the midpoint elastic forces(∂V/∂q)g and(∂V/∂q)h by theirdiscrete
directional derivativecounterparts, giving the jump of potential energy over the time step:

(qn+1 − qj)
T ∂V

∂q

∣

∣

∣

∣

∗

g

+ (qj − qn)T ∂V

∂q

∣

∣

∣

∣

∗

h

= Vn+1 − Vj + Vj − Vn = Vn+1 − Vn (35)

The third term involving derivatives of potential energy will be calledpotential energy of the
jumpand is positive for convex potential energy functions:

Vnj =
1

2
(qj − qn)T

[

∂V

∂q

∣

∣

∣

∣

j

−
∂V

∂q

∣

∣

∣

∣

n

]

≧ 0 (36)

For the constraint forces we approximate the matricesBg andBh with B∗

g andB∗

h, using again
the concept ofdiscrete directional derivativein such a way that

B∗

g(qn+1 − qj) = Φn+1 − Φj; B∗

h(qj − qn) = Φj − Φn (37)

Then we have:

(qn+1−qn)T B∗T
g λg−(qj−qn)T (B∗T

g λg−B∗T
h λj) = (Φn+1−Φj)

T λg +(Φj−Φn)T λj (38)
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The configuration at timetn is assumed to be compatible,Φn = 0. Then if we enforce

Φj = 0 and Φn+1 = 0 (39)

this implies that the work of the constraints forces vanishes.
Finally for the last two terms we have that

(qn+1 − qn)T 1

h
Gm(qn+1 − qn) = 0

(qj − qn)T 1

h
Gh(qj − qn) = 0 (40)

because of the skew-symmetry ofGm andGh.
By replacing (33), (34), (35), (36), (37) and (40) in (32) we may see that the change of the total
energy of the system becomes

En+1 − En = Kn+1 −Kn + Vn+1 − Vn + c2 (41)

where the quadratic term is thetotal energy of the jump

c2 = Enj = Knj + Vnj ≧ 0 (42)

Finally, we have that
En+1 = En − c2 −→ En+1 ≦ En (43)

that is the scheme proposed by the set of equations (28) implies the inequality (43), which
guarantees the decay of the total energy of the system if (35), (36), (37) and (39) are satisfied.

5.1.3 Numerical examples

We will solve now the test examples using the proposed energydecaying scheme. We can
observe that the numerical oscillations disappear in the displacements and velocities time re-
sponses for the double pendulum with ill conditioned mass matrix (Figure 10). However, Figure
11 shows that the scheme dissipates too much energy. For the simple pendulum the responses
are plotted in Figures 12 and 13. We observe that for the case of the constrained model, the
energy dissipation is again excessive.

5.1.4 Conclusions

We developed a time integration scheme based on Time Discontinuous Galerkin approximation
with independent interpolation of displacements and velocities. The scheme is closely related to
the Energy Preserving scheme and it implies a discrete energy decay statement. The discretiza-
tion process for the constraint forces is left unchanged, that is the work they perform vanishes
exactly and constraints are exactly satisfied. This procedure provides nonlinear unconditional
stability and high frequency numerical dissipation. We note that there is no control on the
amount of dissipated energy. We note also that, although unconstrained problems are solved
correctly with a small amount of dissipation, the computed solutions for nonlinear constrained
problems present an excessive amount of energy dissipation.
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Figure 10: Double pendulum: time responses for displacements and velocities in cartesian coordinates form1 =

0.005, m2 = 1 (test cased)
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Figure 11: Double pendulum: time responses for kinetic (blue line), potential (green line) and total energy (red
line) for m1 = 0.005 andm2 = 1(test cased).

5.2 Energy decaying scheme with control of dissipated energy

The algorithm proposed in the previous section is now extended to a numerically dissipative
scheme with control of dissipation. The procedure is exactly the same as before but the expres-
sions of the interpolated displacements, velocities and internal forces are now:

q =
(qj + qn+1)

2
+ τ

(qn+1 − αqj − (1 − α)qn)

2
q̇ =

(qn+1 − qj)

h

v =
(vj + vn+1)

2
+ τ

(vn+1 − αvj − (1 − α)vn)

2
v̇ =

(vn+1 − vj)

h

(44)
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Figure 12: Simple pendulum: displacements for test casea (unconstrained) and test caseb (constrained) in carte-
sian coordinates.
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Figure 13: Simple pendulum: kinetic (blue line), potential(green line) and total energy (red line) for test casea

(unconstrained) and test caseb (constrained).

∂V

∂q
=

∂V

∂q

∣

∣

∣

∣

g

+
τ

2

[

∂V

∂q

∣

∣

∣

∣

n+1

− α
∂V

∂q

∣

∣

∣

∣

j

− (1 − α)
∂V

∂q

∣

∣

∣

∣

n

]

(45)

where the algorithmic parameterα ∈ [0, 1] controls the amount of dissipation. On the other
hand, the forces of constraint are interpolated as in the previous scheme:

BT λ = BT
g λg +

τ

2

(

BT
n+1λn+1 − BT

j λj

)

(46)

The weight functions are the same used for the previous scheme.
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5.2.1 Discretization of the equation of motion

A weighted residual expression of the equations of motion (12) is formed, as in the previous
scheme, and after integration, the TDG discrete form of the equations of motion writes:































































































1

h
LT M (vn+1 − vn) +

1

h
Gm(qn+1 − qn) +

∂V

∂q

∣

∣

∣

∣

g

+ (BT λ)g = 0

1

h
LT M (vj − vn) +

1

h
Gh(qj − qn) −

1

3

[

∂V

∂q

∣

∣

∣

∣

g

−
∂V

∂q

∣

∣

∣

∣

h

]

+
1

6
α

[

∂V

∂q

∣

∣

∣

∣

j

−
∂V

∂q

∣

∣

∣

∣

n

]

−
1

3
(BT

g λg − BT
h λj) = 0

L
1

h
(qn+1 − qn) =

1

2
(vj + vn+1)

L
1

h
(qj − qn) = −

1

6
[vn+1 − αvj + (α − 1)vn]

Φj = 0

Φn+1 = 0

(47)

with 0 ≤ α ≤ 1.

5.2.2 Energy decay in the discrete scheme

Now we will prove the decay of the energy for this scheme. For this purpose we multiply Eq.
(47-a) by(qn+1 − qn)T and Eq. (47-b) by(qj − qn)T and get

1

h
(qn+1 − qn)T LT M (vn+1 − vn) +

1

h
(qn+1 − qn)T Gm(qn+1 − qn)+

(qn+1 − qn)T ∂V

∂q

∣

∣

∣

∣

g

+ (qn+1 − qn)T (BT λ)g = 0 (48)

1

h
(qj − qn)T LT M (vj − vn) +

1

h
(qj − qn)T Gh(qj − qn) − (qj − qn)T 1

3

[

∂V

∂q

∣

∣

∣

∣

g

−
∂V

∂q

∣

∣

∣

∣

h

]

+ (qj − qn)T 1

6
α

[

∂V

∂q

∣

∣

∣

∣

j

−
∂V

∂q

∣

∣

∣

∣

n

]

− (qj − qn)T 1

3
(BT

g λ − BT
h λj) = 0 (49)
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Combining linearly these two last expressions we arrive at

1

2
(vj + vn+1)

T M (vn+1 − vn) −
1

2
[vn+1 − αvj + (α − 1)vn]T M (vj − vn)+

(qn+1 − qn)T ∂V

∂q

∣

∣

∣

∣

g

− (qj − qn)T 1

2

[

∂V

∂q

∣

∣

∣

∣

g

−
∂V

∂q

∣

∣

∣

∣

h

]

+

− (qj − qn)T 1

2
α

[

∂V

∂q

∣

∣

∣

∣

j

−
∂V

∂q

∣

∣

∣

∣

n

]

+ (qn+1 − qn)T BT
g λg − (qj − qn)T (BT

g λg −BT
h λj) = 0

(50)

where, after some algebra, we identify the terms corresponding to the kinetic energy jump
Kn+1 −Kn, and thekinetic energy of the jumpKnj, multiplied by the factorα:

1

2
(vj + vn+1)

T M (vn+1 − vn) −
1

2
[vn+1 − αvj + (α − 1)vn]T M (vj − vn) =

Kn+1 −Kn + αKnj = Kn+1 −Kn + αKnj

The expression of thekinetic energy of the jumpis as before:

Knj =
1

2
(vj − vn)T M (vj − vn) ≧ 0 (51)

Once again, we will use the concept of thediscrete directional derivativefor the potential
energy terms, to replace the expressions(∂V/∂q)g and(∂V/∂q)h by their discrete directional
counterparts in order to verify (35).

(qn+1 − qj)
T ∂V

∂q

∣

∣

∣

∣

∗

g

+ (qj − qn)T ∂V

∂q

∣

∣

∣

∣

∗

h

+ (qj − qn)T 1

2
α

[

∂V

∂q

∣

∣

∣

∣

j

−
∂V

∂q

∣

∣

∣

∣

n

]

=

(Vn+1 − Vj) + (Vj − Vn) + (qj − qn)T 1

2
α

[

∂V

∂q

∣

∣

∣

∣

j

−
∂V

∂q

∣

∣

∣

∣

n

]

In the RHS we identify the potential energy jump over the time step[tn, tn+1] plus thepotential
energy of the jump, that in order to be positive must also satisfy the local convexity expressed
in (36). The constraint and gyroscopic forces are treated inthe same way as in the previous
section, i.e. the work done by them is null.
Finally the total energy has the expression:

En+1 − En = Kn+1 −Kn − αKnj + Vn+1 − Vn − αVnj = 0 (52)

from which
En+1 = (Kn + Vn) − α(Knj + Vnj) = En − αc2 c2 ≥ 0 (53)

For α = 0 we have an energy preserving scheme (note it is different from that of section 4)
while for α = 1 we have the maximum energy dissipation. Note also that we recover the energy
decaying scheme presented in the previous section forα = 1.
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5.2.3 Numerical examples

We will show the results obtained for the simple and the double pendulum described in section
4.2. Figure 14 plots the simple pendulum displacements responses for the caseα = 0 for

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Simple Pendulum − displacements − h=0.02

Time
0 1 2 3 4 5 6 7 8 9 10

−1.5

−1

−0.5

0

0.5

1
Simple Pendulum − displacements − h=0.02

Time

Figure 14: Simple pendulum: displacements for test casea (unconstrained) and test caseb (constrained) in carte-
sian coordinates.
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Figure 15: Simple pendulum: velocities for test casea (unconstrained) and test caseb (constrained) in cartesian
coordinates.

both models,a andb whereas Figure 15 displays the velocities time responses. Clearly both
responses are not similar at all. We observe a locking phenomenon in the responses for the
constrained model. This locking phenomenon is also observed in the responses for the double
pendulum, modelled with constraints. In all cases, the total energy is perfectly preserved for
the energy preserving scheme (Figure 16). Figure 17 shows the amount of dissipation changes
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Figure 16: Simple pendulum: kinetic (blue line), potential(green line) and total energy (red line) for test casea

(unconstrained) and test caseb (constrained).
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Figure 17: Simple pendulum: total energy for test casea (unconstrained) and test caseb (constrained) for different
values of parameterα.

for different values of the parameterα for the simple pendulum. For the constrained model
we see that the greatest amount of dissipation does not coincide with theα = 1 like in the
case of unconstrained model. Moreover, the energy decays almost 10000 times more for the
constrained case.

5.2.4 Conclusions

In this section we have introduced a scheme with an algorithmic control of the amount of energy
dissipated. This control works well only for unconstrainedproblems (and also for linearly
constrained cases). The amount of dissipation increases monotonously withα from 0 to 1 only
for unconstrained cases. A locking phenomenon arises for constrained cases, whenα = 0 and
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an excessive dissipation is reached whenα 6= 0. We attribute these problems to the independent
interpolation fields of displacements and velocities.

5.3 Energy decaying scheme with velocities constraints and α and κ parameters

In order to avoid the troubles that arose with the previous scheme, we will reformulate it using
the constraint stabilization technique proposed by Gearet al,7 based on the reduction of the
governing equations from index-3 to index-2 DAEs. The idea is to introduce a new algebraic
constraint equationBL−1v = 0 whereη is the Lagrange multiplier associated to the new
constraint. If we apply the Hamilton’s principle in the sameway as we did in section 2, the new
motion equations will result from:

δ

∫ t2

t1

{

L − µT (v − Lq̇) − λT Φ − ηT BL−1v
}

dt = 0 (54)

If we perform the variation on the variablev, we get

µ = Mv − L−T BT η (55)

Now introducing this expression in (54) and with the help of (3) we finally obtain:

δ

∫ t2

t1

{

−
1

2
vT Mv − V(q) + vT MLq̇ − λT Φ − ηT BL−1v

}

dt = 0 (56)

This is the Hamilton’s principle expression from which we will derive our motion equations.
Now, performing the variation on the variablesv, λ, η andq successively, we get:

– variation ofv yields
−Mv + MLq̇ − L−T BT η = 0 (57)

– variation of the multipliersλ restores the constraints set (1)

– variation of the multipliersη gives

BL−1v = 0 (58)

– variation of the generalized displacementsq yields

∫ t2

t1

{

−
∂V

∂q
δq −

(

∂Φ

∂q

)T

λ + δq̇(LT Mv) + δq
∂

∂q

[

(Lq̇)T Mv
]

}

dt = 0 (59)

from which the dynamic equilibrium equations will be extracted.
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Integration by parts of Eq. (59) yields

LT Mv̇ + G(Mv)q̇ +
∂V

∂q
+ BT λ = 0 (60)

Then the equations of motion become a first order DAE system with q, v, λ andη as variables:


























LT Mv̇ + Gq̇ +
∂V

∂q
+ BT λ = 0

− LT Mv + LT MLq̇ − BT η = 0

Φ = 0

BL−1v = 0

(61)

This formulation provides now the automatic enforcement ofthe velocity-level constraint be-
sides the position-level one, thus eliminates the problem of drift for these constraints.

5.3.1 Discretization of the equation of motion

The interpolated displacements and velocities have the same expressions as in the previous
scheme:

q =
(qj + qn+1)

2
+ τ

(qn+1 − αqj − (1 − α)qn)

2
q̇ =

(qn+1 − qj)

h

v =
(vj + vn+1)

2
+ τ

(vn+1 − αvj − (1 − α)vn)

2
v̇ =

(vn+1 − vj)

h

(62)

In the same way, internal and constraint forces are interpolated:

∂V

∂q
=

∂V

∂q

∣

∣

∣

∣

g

+
τ

2

[

∂V

∂q

∣

∣

∣

∣

n+1

− α
∂V

∂q

∣

∣

∣

∣

j

− (1 − α)
∂V

∂q

∣

∣

∣

∣

n

]

BT λ = BT
g λg +

τ

2

(

BT
n+1λn+1 − BT

j λj

)

BT η = BT
g ηg +

τ

2

(

BT
n+1ηn+1 − BT

j ηj

)

(63)

The Time Discontinuous Galerkin approximation of equations (61) writes

∫

1

−1

W1(τ)
[

q̇ − L−1M−1L−T BT η − L−1v
]

dτ+

∫

1

−1

W2(τ)

[

Mv̇ + L−T Gq̇ + L−T BT λ + L−T ∂V

∂q

]

dτ+

W1(−1)(qj − qn) + W2(−1)[M (vj − vn) + L−T Gh(qj − qn)] = 0 (64)
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where
W1(τ) = A1 + B1τ W2(τ) = A2 + B2τ (65)

Integration of this expression leads to the discrete equations system formed by the equilibrium
equations, the velocities/displacements relationships and the constraints at displacement-level
and at velocity-level:











































































































1

h
LT M (vn+1 − vn) +

1

h
Gm(qn+1 − qn) +

∂V

∂q

∣

∣

∣

∣

g

+ (BT λ)g = 0

1

h
LT M (vj − vn) +

1

h
Gh(qj − qn)−

1

3

[

∂V

∂q

∣

∣

∣

∣

g

−
∂V

∂q

∣

∣

∣

∣

h

]

+
1

6
α

[

∂V

∂q

∣

∣

∣

∣

j

−
∂V

∂q

∣

∣

∣

∣

n

]

−
1

3
(BT

g λg − BT
h λj) = 0

1

h
LT ML(qn+1 − qn) − BT

g ηg −
κ

2
LT Mvn+1 + vj = 0

1

h
LT ML(qj − qn) +

1

6
(BT

n+1ηn+1 − BT
j ηj) +

κ

6
LT M (vn+1 − αvj − (1 − α)vn) = 0

Φj(q) = 0

Φn+1(q) = 0

BjL
−1vj = 0

Bn+1L
−1vn+1 = 0

(66)
for 0 ≤ α ≤ 1.
We introduced an algorithmic parameterκ that will be adjusted to verify energy preservation in
the caseα = 0, as it is shown in the next section. This parameter isκ = 1 + O(∆t), that is

lim
∆t→0

κ = 1

for consistency. Forα = 0 we have a scheme that perfectly preserves the total energy ofthe
system and forα = 1 we reach the maximum energy dissipation.

5.3.2 Energy decay in the discrete scheme - computation of κ

Now we pre multiply (66-a) by(qn+1−qn)T , (66-b) by(qj −qn)T , (66-c) by(vn+1−vn)T L−1

and (66-d) by(vj − vn)T L−1. Combining linearly these four equations and after some algebra
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we arrive at:

κ

2

(

vT
n+1Mvn+1 − vT

n Mvn + αvT
j Mvj − αvT

j Mvn − αvT
n Mvj + αvT

n Mvn

)

+

(qn+1−qj)
T ∂V

∂q

∣

∣

∣

∣

g

+(qj −qn)T ∂V

∂q

∣

∣

∣

∣

h

+(qj −qn)T α

2

[

∂V

∂q

∣

∣

∣

∣

j

−
∂V

∂q

∣

∣

∣

∣

n

]

+(qn+1−qj)
T BT

g λg+

(qj − qn)T BT
h λj + ηT

g BgL
−1(vn+1 − vn) −

1

2
(ηT

n+1Bn+1 − ηT
j Bj)L

−1(vj − vn) = 0 (67)

The work done by the gyroscopic forces is null because of the skew-symmetry ofGm andGh,
as it was said in the previous sections.
By identifying the different energy terms and grouping them together, we get:

κ
[

Kn+1 −Kn +
α

2
(vj − vn)T M (vj − vn)

]

+

Vn+1 − Vn + (qj − qn)T α

2

[

∂V

∂q

∣

∣

∣

∣

j

−
∂V

∂q

∣

∣

∣

∣

n

]

+

ηT
g BgL

−1(vn+1 − vn) −
1

2
(ηT

n+1Bn+1 − ηT
j Bj)L

−1(vj − vn) = 0 (68)

where we have used again the concept ofdiscrete directional derivative, as we did in the previ-
ous sections, replacing the expressions(∂V/∂q)g and(∂V/∂q)h by the discrete counterparts in
order to verify the expressions (35). MatricesBg andBh are approximated withB∗

g andB∗

h in
order to satisfy (37).
Now we have that forα = 0 the algorithmic total energy of the system must be perfectly
preserved, that is:

κ(Kn+1 −Kn) + (Vn+1 − Vn)+

1

2

[

ηT
j BjL

−1(vn+1 + vj − 2vn) + ηT
n+1Bn+1L

−1(vn+1 − vj)
]

= 0 (69)

Then we obtain a closed form to compute theκ coefficient:

κ = −
(Vn+1 − Vn) + 1

2

[

ηT
j BjL

−1(vn+1 + vj − 2vn) + ηT
n+1Bn+1L

−1(vn+1 − vj)
]

(Kn+1 −Kn)
(70)

If the total energy of the system is preserved, we have that∆K + ∆V = 0 from where∆K =
−∆V. Thenκ writes:

κ = 1 −
ηT

j BjL
−1(vn+1 + vj − 2vn) + ηT

n+1Bn+1L
−1(vn+1 − vj)

2(Kn+1 −Kn)
(71)

We see thatκ is a measure of the work done by the constraint forces at the velocity level with
respect to the kinetic energy jump.
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Figure 18: Simple pendulum: velocities and energies in cartesian coordinates for test caseb (constrained model)
andα = 0

5.3.3 Numerical examples

Figure 18 shows that now this scheme works well in both cases:constrained and unconstrained.
The locking problem has disappeared. In addition, the amount of energy dissipated increases
monotonously withα for the constrained case and the values are now 1000 times lower than
before, for the case ofα = 1. Figure 20 shows different plots of the evolution of the parameter
κ, for α = 0 andα = 1, constrained case, and for a time step sizeh = 0.02.
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Figure 19: Simple pendulum: time evolution of total energy for different values ofα for the constrained model
(test caseb)
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Figure 20: Simple pendulum: time evolution ofκ coefficient forα = 0 andα = 1 for the test caseb (constrained
model)

5.3.4 Conclusions

A new algorithm for nonlinearly constrained DAEs that controls the amount of energy dissi-
pation has been proposed where displacement constraints and their time derivatives have been
imposed. Independent interpolation of displacements and velocities are used and constraints at
velocity level are introduced to avoid the locking phenomenon. The proposed scheme uses the
concept of discrete derivatives6 to get energy conservation. The most common holonomic type
of constraints are taken into consideration in the examples.

6 CONCLUSIONS

A variety of time integration schemes for constrained multibody dynamics were analyzed.
Discretization processes were developed for elastic and inertial forces in order to achieve the

corresponding preservation or dissipation of the total mechanical energy of the system at the
discrete solution level.

A discretization process was developed also for the constrained forces, in order to guarantee
the exact satisfaction of nonlinear constraints and the vanishing of the work performed by the
constraint forces.

It has been shown that in spite of Energy Preserving Scheme provides nonlinear uncondi-
tional stability for MBS, it lacks the high-frequency numerical dissipation required to tackle
realistic engineering problems which many times can lead tothe damage of the computation.
The high frequency numerical dissipation is imperative fortime integration in multibody sys-
tems, in order to assure the stability of the solution.

It has been shown that constraints and time derivatives of constraints should be both imposed
when using independent interpolation of displacements andvelocities to avoid locking.
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