Mecánica Computacional, Volumen XVIII - pp. 901-908 Compilado por: E. Dari, C. Padra y R. Saliba San Carlos de Bariloche, noviembre de 1997

ANÁLISIS MODAL DE PLACAS POR EL MÉTODO DE RAYLEIGH-RITZ EN COORDENADAS FÍSICAS

Mario Scheble, Cristina N. Strizzolo, José Converti Centro Atómico Bariloche, 8400 Bariloche, Río Negro, Argentina

RESUMEN

En el presente trabajo se presenta la implementación del método de Rayleigh-Ritz en coordenadas físicas para el análisis modal de estructuras de placas rectangulares o combinaciones de placas rectangulares.

Se describe la forma de implementación y se presentan varios ejemplos y su comparación con resultados obtenidos mediante métodos alternativos.

Los resultados analizados indican que este método compite muy favorablemente con las técnicas alternativas y tiene un gran potencial para tratar estructura de grandes dimensiones.

ABSTRACT

In the present work, the implementation of the Rayleigh-Ritz method in physical coordinates is presented for the modal analysis of rectangular plates or combinations of rectangular plates.

The implementation procedure is described, several examples are presented and results compared with alternative methods.

The results analyzed show that the method is competitive with alternative techniques and shows a greay potential to deal with large structures.

1. Introducción

El método de Rayleigh-Ritz en coordenadas físicas para el análisis modal de estructuras, ref [1], tiene ventajas adicionales a los métodos de Rayleigh-Ritz implementados previamente.

La primer ventaja es la simplicidad del proceso de reducción de orden al utilizar técnicas de emsamblado "standard" similares a las utilizadas en Elementos Finitos. Esta simplicidad resulta del hecho que las matrices de ensamblaje son Booleanas.

La segunda ventaja radica en que las matrices resultantes son ralas y esto permite la utilización de las técnicas de matrices ralas.

Las etapas de aplicación del método se listan a continuación:

a) Descomposición de la estructura en componentes simples y adopción de modelos de biblioteca para cada componente. Las matrices de inercia y de rigidez en coordenadas generalizadas se realizan en forma sistemática.

b) Transformación de las matrices de inercia y rigidez de coordenadas generalizadas a coordenadas físicas e imposición de las condiciones de borde tanto internas como externas.

c) Solución del problema de autovalores para las matrices de rigidez y de inercia de la estructura completa.

d) Transformación inversa de coordenadas físicas a generalizadas. Esto se puede hacer en cada subestructura independientemente, a un costo computacional muy bajo.

2. Análisis teórico

Para analizar la dinámica de un sistema continuo se suele recurrir a métodos aproximados. El método de Rayleigh-Ritz supone que el campo de desplazamientos es aproximado por una serie de funciones de forma

$$\bar{u}(x,y,z) = \sum_{j=1}^{N} \bar{\varphi}_{j}(x,y,z) p_{j}$$

La energía cinética del fluido se puede expresar entonces integrando en todo su volumen como:

$$T = \frac{1}{2} \sum_{j=1}^{N} \sum_{k=1}^{N} \dot{p}_{j} \dot{p}_{k} \int \rho \bar{\varphi}_{j} \bar{\varphi}_{k} dV$$

donde ρ es la densidad del fluido.

Los componentes de la matriz de inercia son en consecuencia

$$m_{jk} = \int \rho \, \bar{\varphi}_j \, \bar{\varphi}_k \, dV$$

Para un material elástico que obedece la ley de Hooke generalizada

 $\{\tau\} = [G]\{e\}$

donde $\{\tau\}$ y $\{e\}$ son los vectores de tensión y deformación de seis componentes y [G] es la matriz con los componentes elásticos. La energía de deformación toma la forma

$$U = \frac{1}{2} \int \{e\}^{T} [G] \{e\} dV$$

Si el vector de deformación correspondiente a la función de forma $\bar{\varphi}_i(x, y, z)$ es $\{\bar{e}\}_i$, resulta

$$U = \frac{1}{2} \sum_{j=1}^{N} \sum_{k=1}^{N} p_{j} p_{k} \int \{\bar{e}\}_{j}^{T} [G] \{\bar{e}\}_{k} dV$$

Los coeficientes de la matriz de rigidez son

$$k_{jk} = \int \{\bar{e}\}_{j}^{T} [G] \{\bar{e}\}_{k} dV$$

Transformación a coordenadas físicas

La transformación a coordenadas físicas se obtiene por medio de una matriz $[\phi]$ cuyas columnas se obtienen evaluando cada una de las coordenadas físicas que resultan del campo de desplazamientos de cada una de las funciones de forma $\overline{\phi}_i(x, y, z)$.

La transformación de coordenadas se expresa como

$$\left\{p\right\} = \left[\phi\right]^{-1} \left\{x\right\}$$

donde $\{p\}$ es el vector con las coordenadas generalizadas y $\{x\}$ el vector con las coordenadas físicas.

Las matrices de inercia y rigidez transforman en consecuencia como

$$[M] = \left[\phi^{T}\right]^{-1}[m] \left[\phi\right]^{-1}$$
$$[K] = \left[\phi^{T}\right]^{-1}[k] \left[\phi\right]^{-1}$$

Siendo la ecuación dinámica resultante

$$[M]{\ddot{x}} + [K]{x} = 0$$

Reducción de orden y ensamblado

El método presentado comienza con un conjunto invariable de funciones de forma elegidas a priori, sin considerar las condiciones de borde en esta etapa. Las matrices de inerci ay de rigidez se pueden determinar entonces en forma sistemática.

Las condiciones de borde, tanto internas como externas y la reducción de orden correspondiente se obtiene por un procedimiento de ensamblaje similar al utilizado en elmentos finitos.

Reducción de orden para una estructura simple

Para un sistema mecánico cuyas variables físicas son $\{x\}$ y algunas de estas son vinculadas a cero obtenemos un nuevo vector $\{x^*\}$ suprimiendo del anterior las variables restringidas. Esta operación se puede formalizar mediante una matriz Booleana como

$$\left\{x^{*}\right\} = \left[\Delta\right]^{T}\left\{x\right\} \quad y \quad \left\{x\right\} = \left[\Delta\right]\left\{x^{*}\right\}$$

donde $[\Delta]^T$ se obtiene a partir de la matriz unitaria quitando las columnas correspondientes a las variables eliminadas.

Esto nos permite obtener un sistema de ecuaciones reducido

$$\left[M^*\right]\left\{\ddot{x}^*\right\}+\left[K\right]\left\{x^*\right\}=0$$

[M*	$= [\Delta]^{T} [M] [\Delta]$
	[K*]	$= [\Delta]^{T} [K] [\Delta]$

donde

Ensamblado de estructuras complejas

Para estructuras complejas compuestas de componentes sujetos a vínculos internos de manera tal que una o más variables físicas son comunes a dos o más componentes estructurales se efectúa una reducción de orden. Ésta se formaliza de la siguiente manera:

Se definen matrices Booleanas que establecen la correspondencia entre las variables locales para cada componente y las variables seleccionadas para la estructura global

$$\left\{\boldsymbol{x}^{(i)}\right\} = \left[\Delta^{(i)}\right]\left\{\boldsymbol{x}\right\}$$

donde $\{x^{(i)}\}$ es un vector con las variables locales, $\{x\}$ es un vector con las variables de la estructura global y $[\Delta^{(i)}]$ es una matriz de ensamblaje correspondiente al componente i. Se debe notar que esta matriz es rala y Booleana y no requiere almacenamiento completo.

Si $[M^{(i)}]$ y $[K^{(i)}]$ son las matrices de inercia y rigidez correspondientes al mismo componente, la ecuación resultante para la estructura global es

$$\sum_{i} \left[\Delta^{(i)} \right]^{T} \left[M^{(i)} \right] \left[\Delta^{(i)} \right] \left\{ \ddot{x} \right\} + \sum_{i} \left[\Delta^{(i)} \right]^{T} \left[K^{(i)} \right] \left[\Delta^{(i)} \right] \left\{ x \right\} = 0$$

Aplicación a una placa cuadrada

Consideraremos ahora la aplicación del método a una estructura elástica bidimensional.

Una placa delgada tal como se ilustra en la Figura 1 está articulada en los cuatro lados a una base fija y se sintetiza a partir de dos placas rectangulares idénticas. Para cada placa, las funciones de forma se formaron eligiendo polinomios de Legendre de orden máximo y 9 en y formando todas las combinaciones de productos de estos conjuntos. Intencionalmente se efectuó un análisis basado en el concepto de subestructuras y ensamblado en coordenadas físicas tal como se propuso en este estudio.

Se tomó una base de NMM funciones de forma. Las variables físicas se eligieron dividiendo los lados de la placa en (N-i) y (01-1) espacios iguates y adoptando los desplazamientos normales de los puntos resultantes excepto para los puntos internos adyacentes a los extremos que fueron reemplazados por las derivadas parciales de los desplazamientos en los extremos en dirección normal al borde. Para los puntos internos adyacentes a las esquinas se tomaron las derivadas cruzadas.

El ensamblaje y establecimiento de las condiciones de vínculo en coordenadas físicas implica fijar los desplazamientos de los puntos del contorno a cero y en el borde común a ambas placas fijar iguales desplazamientos y derivadas.

Los resultados numéricos se muestran en la tabla 1. Se puede verificar fácilmente que los autovalores aproximados se acercan a los valores exactos desde arriba. Los resultados obtenidos son idénticos a los reportados por Jen et al [Ref. 2]. En estructuras simples ambos métodos dan resultados iguales pero en sistemas grandes, el ensamblado en coordenadas físicas da resultados más exactos como resulta evidente del próximo ejemplo.

Figura 1 Placa cuadrada artículada en sus cuatro lados y subestructuras indicadas por las líneas punteadas.

 TABLA 1

 Frecuencias naturales de vibración transversal adimensionalizadas de una placa cuadrada articuladaa en sus bordes, sintetizada con dos placas rectangulares.

	Frecuencia angular natural $\left/ \left(D / ho h L^4 ight)^{rac{1}{2}}$			
Modo, i	MRR en Coordenadas Físicas	Versión revisada del MRR, desarrollada por Jen.	Solución teórica	
1	19.7392	19.7392	19.7392	
2	49.3480	49.3480	49.3480	
3	49.3480	49.3480	49.3480	
4	78.9568	78.9568	78.9568	
5	98.7105	98.7105	98.6960	
6	98.7161	98.7161	98.6960	
7	128.316	128.316	128.304	
8	128.321	128.321	128.304	
9	167.986	167.986	167.783	
10	168.423	168.423	167.783	
11	177.675	177.675	177.652	
12	197.576	197.576	197.392	
13	197.963	197.963	197,392	
14	246.909	246,909	246.740	
15	247.243	247.243	246.740	
16	259.886	259.886	256.609	
17	276.422	276.422	256,609	
18	289.289	289.289	286.218	
19	305.181	305.181	286.218	
20	316.389	316.389	315.827	
Número total de grados de libertad:	80	80	œ	

 $D = Eh^3 / [12(1 - v^2)]$ = rigidez de la placa a la flexión, siendo: E = módulo de Young, h = espesor, v = módulo de Poisson (0.343 para este caso); = densidad de masa; L = longitud del lado de la placa cuadrada.

Estructura compleja de placas

Ahora consideraremos una placa delgada de forma compleja como se ilustra en la Figura 2. La placa se encuentra articulada en todos sus bordes a una base fija y se sintetiza a partir de seis placas cuadradas iguales. Las funciones de forma se obtuvieron a partir de polinomios de Legendre de orden máximo 12 en 2 variables espaciales para cada subestructura. El ensamblado y la reducción de orden se efectuaron en coordenadas físicas.

Figura 2 Placa de acero de forma más o menos compleja, articulada en todos sus bordes, con dimensiones a = 188 mm, espesor h = 2 mm y subestructuras indicadas por las líneas punteadas.

Figura 3 Modos de vibración transversal de la placa de forma más o menos compleja, articulada en sus bordes. (a) Modo 3; (b) Modo 28

Los resultados numéricos asi como los obtenidos por Jen et al. [Ref. 2] se muestran en la tabla2. En ambos análisis, el módulo de Young, la densidad de masa y el coeficiente de Poisson fueron tomados como E = 205 GPa, $\rho = 7820 \text{ Kg/m}^3$ y $\nu = 0.2975$ respectivamente.

De la información obtenida de frecuencias y modos naturales, varios de ellos coinciden con los modos de una placa cuadrada cuyas soluciones exactas se listan en la misma tabla a los efectos de comparación. El modo 28 se identifica con el cuarto modo de una placa aislada (ver Figura 3).

TABLA 2

Frecuencias naturales de vibración transversal de una placa de forma más o menos compleja, articulada en todos sus bordes.

	Frecuencia natural (Hz)			
Modo, i	MRR en Coordenadas Físicas	Versión revisada del MRR, desarrollada por Jen.	Solución teórica	
1	174.4779	174.491		
2	189.1711	189.187		
3	192.9254	192.938		
4	220.5195	220.531	_	
5	252.0961	252.102	-	
6	275.2138	275.213	275.2138	
	360.1352	360.141	-	
8	420.3254	420.333		
	453.3078	453.312	-	
10	486.0066	486.020	-	
12	529.5403	529.550		
13	600.4474	600.469		
14	621.7624	621.778		
15	663 4461	631.658		
16	664 9167	664 927		
17	688 0345	699 034		
18	688 0345	688 034	688.0345	
19	781 2012	781 209	688.0345	
20	808, 9843	809 003		
•••	• • •	•••	•••	
28	1100.8553		1100.8553	
•••	• • •	• • •	•••	
37	1376.0691	-	1376.0691	
38	1376.0691	-	1376.0691	
•••	•••	•••	•••	
48	1788.8898		1788.8898	
49	1788.8898	-	1788.8898	
•••	•••	•••	•••	
67	2339.3502		2339.3175	
68	2339.3502		2339.3175	
•••		•••	•••	
/1	2476.9244	-	2476.9244	
•••		•••	• • •	
79	2752.1674	-	2752.1382	
80	2752.1674	-	2752.1382	
•••	•••	•••	•••	
98	3440.1979	-	3440.1728	
99	3440.1979	-	3440.1728	
Número total de grados de libertad:	720	720	œ	

Conclusiones

El método presentado ha probado ser muy útil para estructuras de placas rectangulares y para analizar problemas complejos.

El ensamblado y reducción de orden en coordenadas físicas es muy conveniente desde el punto de vista numérico ya que simplifica el ensamblado y las matrices resultantes son ralas y permiten incorporar la tecnología desarrollada para las mismas.

REFERENCIAS

- [1] Converti J, Scheble M y Strizzolo C. N. *Journal of Sound and Vibration* A Rayleigh-Ritz Substructure Synthesis Method in Physical Coordinates for Dynamic Analysis of Structures (enviado para publicar).
- [2]. C. W. Jen, D. A. Johnson and F. Dubois 1995 Journal of Sound and Vibration 180(2), 185-203. Numerical modal analysis of structures based on a revised substructure synthesis approach.