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ABSTRACT
In this paper an iterative method to solve the unsteady incompressible Navier-Stokes equa-
tions in primitive variables are presented. The pressure problem is solved with the normal
velocity as boundarY condition, while the boundary normal pressure gradient is used to
obtain' the velocity field. A finite volume method with a second-order approximation in
space and a second-order Crank-Nicolson in time are used to express the discrete equations.
Numerical results for 2D steady and unsteady flow have shown a good performance of the
proposed technique to resolve the gross features of the flow.

a
m(pu) + V'. (puu -/,V'u) = -V'p

where u(x, t) is the velocity, p(x, t) the pressure, /' the viscosity and p the specific mass. Equations
(I) are subject to the specification of boundary condition for t > 0 of u at rigid no-slip boundaries or
specification of Un and auT / an at no stress boundaries, where n and r denote the normal and tangential
directions.

The numerical implementation can be done in so many different way, that is very hard to write at the
present time a complete review of all used methods. When the primitive variables formulation is used,
the most common used method to solve equations (I) deal with a Poisson equation for pressure, which
is obtained operating the divergence on equation (I-a), and the momentum equations for velocity. The
solution of these coupled equations means a pressure field that is in equilibrium with a solenoidal velocity
field, which should satisfy the momentum equation.

A general technique that has been used to solve these coupled equations is the splitting or fractional step
method [II, [2J, [31. Nonetheless, when a split formulation is used the pressure problem poses a major
difficulty due to the lack of boundary conditions for the pressure variable. However, it seems that an
alternative to the splitting method is to use directly an iterative method. In other words, a procedure
that at each time step solves alternatively the equation for pressure and for velocity. One of the first
work on the use of an iterative method to solve the unsteady Navier-Stokes equations belong to Fortin
[4J.
The author have successfully implemented an iterative method for solving the unsteady incompressible
Navier-Stokes equations in 2D and 3D. The overall procedure will be reported in [5]. Here, for space rea-
son, only the essential of the iterative method and some 2D unsteady numerical results are reported. Then.
in this paper, in §2. the essential of the commented iterative method, like as some aspects of the pres-
sure problem implementation, are reported. In §3. the numerical solutions of some two dimensional
unsteady incompressible flows are reported using the finite volume method. with central second order
approximation. Then in §4. it is finished with some conclusions.

The method presented here is inspired in previous reported methods [41, [61. The following is a resume
of it: For the space discretization a finite volume formulation with a staggered mesh is used. A centered



second-order approximation is used to evaluate the flux at the sub volume surfaces. The second-order
Crank-Nicolson scheme is used for time advancing. The pressure into the domain fl is evaluated using
only the normal velocity at the boundaries, while the pressure normal gradient at the boundary r is used
to evaluate pressure at r.
Aiming at to present the essential of the method. the equations (I) are discretized according to the finite
volume method. Hence. for an arbitrary subdivision of the physical domain into sub volumes fix in time.
the conservation of momentum. for instance for the sub volume flu belong to velocity u. and mass for
the sub volume flm• are

~ r (pu) dfl + 1 (pUU - ILVU) . n dr = -1 vp dflk. ~ ~
r (pu). n dOll = 0Jfl_

where u, v and ware the velocity components with direction coincident with axis X, yand z respectively,
the sub volume flm for the continuity equation is centered at the node ijk coincident with the point
where pressure is considered. and the sub volumes of velocity u flu are centered at a point staggered in
x direction half sub volume from ijk.

Taking the () scheme. which for () = 0.5 is the second-order Crank-Nicolson scheme. for the time dis-
cretization of the momentum eqnation and the continuity equation evaluated at time (n + 1)6t. the
integral equations (2-3) at the discrete level are

where 'I is the volume of the discrete sub volume flu for velocity, the tenns ADF is the net advection -
diffusion flux through the surfaces of the sub volume flu, MF is the net flux of mass through the surfaces
of the sub volume flm. and S is the source term represented by pressure.

Using a centered second-order approximation to express the flux terms through the sub volumes surfaces,
the discrete momentum equation for the component u of velocity, which is centered at i - I!2jk is

au u0t1 = bu U~!ljk+ ... + gfJ U~jt~l + hu (Pi-ljk - Pijk) + iu
and the discrete continuity equation centered at node ijk is

n+l.m+! 1 {b n+l.m n+l,m '} hu ( )uijk = - u Ui-1jk + ... + 9u uijk+1 + lu + - Pi-ljk - Pijk
au au

Then. substitution of the discrete momentum equation (8) into equation (9) results in the following
discrete Poisson equation for pressure

where a,•. bu. cu' ... and ap' bp' cp' ... are the coefficients of the discrete equations.

Equation (10) allows to obtain the pressure in the domain fl. If the velocity field is known at (n + I)6t.
through equation (10) the real pressure in the domain is obtained at (n+ 1)6t. The numerical algorithms
of the iterative method to advance the solution from time (n)6t to time (n + 1)6t is:

( i ) Normal pressure gradient at r is evaluated for time (n + 1) and iteration (m + 1).
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( ii ) The coefficients au: bu: Cu: ... : av: bv: Cv: ... ; for velocity u; v and ware evaluated at (n + I), (m + I).

( iii ) Pressure into fI is evaluated at (n + I), (m + I) from equation (10).

( iv ) Velocity u. v and w at (n + I)(m + 2) are obtained using the previous coefficients and the evaluated
pressure field at the fl.

( v ) Step ( i ) - ( iv ) are repeated until a convergence norm is achieved.

( vi ) Time is advanced one step.

The pressure field into the fI is solved using the normal velocity at the boundaries as boundary condition.
using the conservative integral form of the momentum and mass equations to formulate the pressure
problem with a staggered mesh, it can be shown [51 that giving the normal velocity at the boundaries for
the pressure problem is equivalent to give the proper boundary condition. At this point it is important
to remark that only pressure into the domain fI is obtained from the Poisson equation (10). The pressure
at the boundary should be obtained in a different way. It is important to remark also that the previous
comment on the pressure problem implementation doesn't mean that boundary condition for pressure,
for instance the normal pressure gradient, is not necessary to solve the whole problem. Figure I shows a
discretized region of the physical space for the component u of velocity, next to the left boundary. The
discrete momentum equation for u(3jk) is

a" u;j-;,l.m-l = b" u;j'kl,m + ... + gu u;/k~7' + hu(P2jk - P3jk) + iu(Pljk - P2jk) + ju (ll)

where p(ljk) is the pressure at the boundary. Because (Pljk - P2jk) represent a source term in the
momentum equation, the pressure at boundaries should be evaluated based on an extra equation, based
on the pressure boundary condition. In this work the normal pressure gradient at the boundary is used
to evaluate p(ljk). as it is shown in [51.
Hence, if the velocity field is known at a time (n + 1)L;.t, the pressure gradient at r can be evaluated and
therefore the coefficients of the momentum equations for u, v and w can also be evaluated. Then, based
on these coefficients the pressure field into fI can be resolved at this time. Therefore, as it was commented
above, even though the pressure is evaluated using only the normal velocity at the boundary, in order
to enforce moment tun conservation in the physical domain, the pressure at the boundaries should be
evaluated using the proper boundary condition for pressure, for instance, the normal pressure gradient.

The propose of this section is to perform comparison with the help of some numerical tests. The iterative
method reported in §2. has been implemented for both 20 and :10 unsteady flow in Cartesian coordinates.
Here some comparison of steady and unsteady 20 flow are reported. Numerical results for steady and
unsteady 3D flow will be reported in [5]. The discussion on the numerical results are centered on the
comparison between the iterative method presented here and other resolution reported in the literature
and with a high-order resolution performed by the author in a previous work [71. For space reason. only
a comparison on the ability of the method to resolve the gross features of the flow is presented. Some 20
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steady and unsteady driven cavity flowand channel floware reported. The reason of this choice results
from the simplicity of the geometry and from the number of numerical results available.
Figure 2 shows the skin-friction coefficientfor a developing flowbetween plates. The only problem in this
solution is a little bump presented by the coefficientnext to the outflowboundary. It is thought that this
oscillation of the pressure field next to the outflow boundary could be yield by numerical errors in the
evaluation of the normal pressure gradient at the boundary. However,more numerical test with outflow
boundary conditions is necessary to check this problem, and also to check the ability of the method to
resolve boundary layers next to rigid boundaries.
For the driven cavity flowthe domain is a square of dimensions [I, IJ in both direction, x and y, with the
no-slip condition imposed on three sides and with velocity tangent to the fourth ones. In most of the
works the fluid velocity have a constant value equal to 1 on this fourth side. The solution of this problem
is singular at the corner making more difficult the comparisons. Thus, here the Boucier and Francois
driven cavity flowis considered [4J. In this flow the upper side of the square moves with velocity Ub(X),
Here, two tests with the Boucler and Francois driven cavity flow were performed. First, for the final
steady state case with Reynolds equal to 400 and for the flowat time t = 2 seconds for Reynolds equal
to 10". In the first case, Ub(X) = -16x2(1 - x)2 and the initial date are U = _(3y2 - 2y)16x2(1 - X)2
and v = (y3 - y2)(1 - 2x)(1 - x)32x. This test has been extensively solved in [4Jwith a coharse 2Ox20
mesh for different schemes, thus aiming at to perform comparison here the same mesh was chosen. In
the second case, Re = 104, Ub(X) = 16x2(1 - X)2 and initial date are U = (3y2 - 2y)16x2(1 - x)2 and
v = _(y3 - y2)(1 - 2x)(1 - x)32x. Because this case has been solved by E and Liu [81with a 257 x 257
mesh, the same mesh Wasalso chosen here for comparison reason.
Figure 3 shows the comparison of velocity u on the line x = 0.5 for the first case, for the proposed
method and for a fourth-order resolution with a compact scheme [7J.Figure 4 shows also for this case the
final steady state for the vorticity field for the iterative method, which uses a second-order volume finite
approximation and for the fourth-order scheme. Figure.5 shows the state of the flowfor the second case
with the driven cavity flowwith Re= 104, for time t = 2 seconds. This solution has been also reported by
[8J.As it is shown in Figure 5-(a), the characteristic bump of this flowin the upper side of the right-low
vortice of this Figure is well resolved.



Figure 3: Velocity u on the line x = 0.5. for the final steady state for the driven cavity flow for Re=400:
(a) -- iterative method. 20 x 20 uniform mesh; (b) V'V' V' V' fourth-order compact scheme. 64 x 64
uniform mesh [7J

Figure 4: Final state of vorticity for the driven cavity flow for Re=400: (a) Iterative method with a
20 x 20 uniform mesh: (b) Fourth-order compact scheme with a 64 x 64 uniform mesh [71



Figure 5: Stream function for the driven cavity flow for Re = 104 at t=2 seconds. (a) Iterative method,
257 x 257 uniform mesh; (b) Fourth-order resolution, 128 x 128 uniform mesh [7]

An iterative method, that resolve alternatively a pressure equation and the momentum equation, to solve
the incompressible unsteady viscous flowhas been presented. The procedure takes some features of other
previous numerical implementation reported in the literature. The pressure equations is solved using the
normal velocity at the boundaries and the proper pressure boundary condition is used in the momentum
equation. Some steady and unsteady 2D and 3D incompressible flowwere tested. Here, for space reason,
only some 2D steady and unsteady flow for a channel and for the driven cavity problem were reported.
The comparisons with other numerical solution on the ability to resolve the gr05Sfeatures of the flow
have shown in general a good performance of the method.
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