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ABSTRACT
Moving boundary problems in which the location of an interface must be detennined as
part of the solution arise in many scientific and engineering applications. one of utmost
importance of which is crystal growth. There are three basic ways to address these
problems numerically: (l) Fixed grid methods based on a finite different or finite element
discretization in which the basic computational mesh is fixed and the interface is tracked
using either a field variable or a discrete set of points that define it. (2) Adaptive grid
methods also based on finite differences or finite elements in which the interface is
described by grid points in the computational mesh. (3) Boundary integral methods in
which the problem is cast in the form of an integral representation of the interface. Here,
we present a fixed grid method based on finite elements where the interface is described
by a set of tracer points. We solve the conservation equations of energy and solute
transport and pay special attention to the accurate calculation of the interface velocity.
We also show that the method is second-order accurate. Example applications including
the solidification of a binary alloy under a temperature gradient and the growth of
dendrites into an under-cooled liquid are presented.

The understanding of dendritic growth requires a detailed description of the heat and solute transport
in the Vicinity of the dendrite tips as well as the factors that control the stability of the shape of the
dendrites. The modeling of the heat and solute transport is complicated by the presence of the solid-
liquid interface. The poSition of the interface must be calculated as part of the problem solution and
interface conditions must be satisfied, resulting in a highly nonlinear problem that is very sensitive to
numerical error and is prone to numerical instability. The difficulties involved in the numerical
simulation of the "sharp interface" problem led to the development of "phase-field" methods over the
last 20 years [1,2]. The phase-field methqds are diffused interface models that introduce a continuous
transition between the two phases across a thin layer of finite thickness. An additional variable called
the phase field is introduced that identifies the phase. This has the advantage that the location of the
interface does not have to be explicitly detennined. On the other hand. an extra equation for the phase
field that contains very thin regions with large spatial gradients must be solved. A drawback of this
method is that it cannot be easily modified to treat other types of interface problems of engineering
interest.

Fixed-mesh methods that solve the sharp interface problem have been proposed over the last 10 years
[3.4]. These models are based on finite-difference approximations to the governing equations and are
only fll'Sl~rder accurale. Finite element models have also been published [5. 61. but these are based
on adaptive meshes.



in this work, we present a fixed-mesh finite-element model with interface tracking. The interfaces are
described by a set of marker points that move in time according to the interface dynamics. During the
development of the method. it was found that most existing models for the phase change problem
suffer from an inability to calculate the interface velocity without introducing severe oscillations.
Special techniques are developed that greatly reduce these oscillations. even though it does not appear
to be possible to eliminate them completely. Due to space constraints. we will present some of the
basic features of the method in a one~imensional context only. The reader should keep in mind that.
because the interface dynamics occur along the direction normal to the interface, most of the concepts
can be applied unmodified to two and three dimensions.

We consider the solidification of a binary alloy assuming that diffusion is the only mechanism for
heat and mass transport. The energy conservation equation is

dTdT/(1 )A::.:.L--= --y(T( -T. ) Van dn St m

The interface condition for the solid phase depends on whether the solute concentration at the
interface is eutectic or hypo-eutectic. If it is not eutectic, we have



The equations have been nondimensionalized using H as the reference length. 'r = H ~fat as the
reference time. T = (T* -Tm)/AT • and C = (C* -CO)/(CE -Co). where the asterisk (*) indicates a
dimensional quality.

The parameters are 7J=Pscps/PtcPt. 1\ = as/at • St=cPIAT/L. y=(cps -cpt)/cpt,

C = Co/{ CE - Co). Les = at! Os' Let = at! 0t • and fJ = (Ps - Pt)/ Pt ' where at = 1(1/ PtCpl and

as =I(S/PtCPI'

Here. the subscripts s and l refer to the solid and liquid phases. resIJC7tively; P is density; CP is

specific heat; V. is the interface velocity; I( is thermal conductivity; D is mass diffusivity; k is the
equilibrium partition ratio; Tlno is the initial melting temperature of the alloy; TE is the eutectic

temperature; Co is the initial concentration; CE is the eutectic concentration; AT = Tm - TE ; L is the
latent heat; and Ii denotes the unit normal to the interface pointing into the liquid phase.

where m is the slope of the liquidus line. C/ is the local interface concentration. u is the surface
tension. K is the local interface curvature. and J.l is the kinetic mobility.

The equations are discretized using a Galerkin formulation with linear (I-D) or bilinear (2-D)
elements. It suffices to consider two types of intersections with bilinear elements as shown in Fig. I.
In these elements. the mass matrix is integrated separately over each phase with the aid of two
isoparametric transformations. This results in the exact mass distribution when the solid and liquid
phases have different heat capacities.
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Figure 2 illustrates !he oscillating velocities that are typical of!hese simulations if the stiffness matriJ\
is integrated eJ\actly. as was done for the mass matriJ\. To resolve this problem, we utilize !he
equivalent diffusivity proposed by Patankar (7) in one dimension.

where h is !he element size and Xl is the interface position. We have successfully eJ\tended !he
concept to two dimensions by applying it at every point in one spatial direction and then integrating in
the other direction. This yields anisotropic equivalent conductivities in two and three dimensions.
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Fig. 2. Interface velocity versus position in one-dimensional solidification of a
Pb-5.8wt%-Sb alloy showing oscillations.

The direction nonnal to !he interface and the interface curvature are calculated at each marker point
using a local quadratic interpolant centered at the marker. The distance between markers is kept
between O.3h < d < O.9h. If the distance becomes larger. a marker is added in between and. if it
becomes shorter. a marker is taken out.

The interface position and velocity are calculated iteratively using the method depicted in Fig. 3. The
quantity et is evaluated using Eq. (2b), where the derivatives are approJ\imated using the
temperatures 1j and T2 along the normal to the interface and h", is chosen as h", = 1.5h ,
guaranteeing that these points are not in the element containing the interface in the two-dimensional
case. The same idea has been eJ\tended to a quadratic interpolant of the normal derivative using four
points along the normal to ensure quadratic convergence.

Error analysis of the current method will show only a linear convergence rate because of the lack of
smoothness of the solution at the interface where the derivative of the temperature is discontinuous.
However. we can show that the method is second-order accurate through detailed calculations
performed in two cases involving a pure substance for which analytical solutions are available [8. 9].
The first is a one-dimensional problem in which the domain is at a uniform temperature larger than
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Till and at time t = 0 the temperature at the left-hand end is lowered below the freezing temperature.
This was also solved in [10). The second is an axisymmenic problem with a central sink that we solve
as a twCHiimensional problem in Cartesian coordinates. A typical result for the first such problem
measuring the error in the location of the interface after 150.100 seconds of solidification. together
with the data. is shown in Fig. 4 where the second-order convergence rate is evident.

The next example involves solidification of a Pb-22wt%-Sb alloy. In one dimension. the region length
is Lo = 0.02 m. an initial temperature gradient of 10.000 Kim is imposed with the temperature at x = 0
equal to the initial melting temperature T"'O = 585.474 K. This temperature gradient is applied at all

times at x = 0.02 and at t > O.A cooling rate of 0.03 Kls is imposed at x = 0.0. The rest of the material

properties are Ps =Pt =10.190 kg/m3• D( =7.53xlO-IO m2/s. k = 0.312. CE =11.2wt%.

TE = 524 K . m = -6.83. L = 28.770 11kg. Cp, = 141 1/kgK. CPt = 151 1/kgK. ICs = 20 1/m· s· K .

and IC (= 15 1/m· s . K . Results obtained on a 200-element mesh for the temperature. a 200-element
adaptive mesh for the solute concentration. and a time step 6J = 0.25s are shown in Fig. 5 . For
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Fig. 5. Results for solidification of Pb-2.2wt%-Sb alloy: (a) interface position versus time;
(b) interface velocity versus position; (c) interface concentrations at different times.





Co = 2.2 wt%-Sb. the eutectic concentration is not reached at the interface and therefore steady
solidification is not achieved. Figure 5c shows the concentration profiles that show the sharp
concentration boundary layer that forces us to use an adaptive mesh in the solution of the solute
concentration equation. Unfortunately. we cannot discuss this in more detail here; for details. see [11].

Finally. we present an example of dendritic growth into an undercooled liquid. At the center of a
square domain 4 units long and at uniform initial temperature lower than the melting temperature
(T. < Tm). we place a solid seed at temperature Tm specified by x = Xc + Rcos8 • y = Yc + Rsin8 •
where (xc.Yc) is the center of the square and R=0.1+0.02cos48. The undercooling Too-Tm is

chosen so that St = -0.5 and U =)1.=0.002. The heat capacities are uniform and ". =1.0. "t =0.1.
Results obtained in a lGO-by-IOO square mesh are shown in Fig. 6. where the innermost curve is the
initial condition and the rest of the contours are the interface position at intervals 6J = 0.05.

These results cannot be compared to exact solutions. Two-dimensional cases similar to our last
example compare very well with previously published results in some cases. However. in other cases.
our solutions are very different. We also observe that in those cases where our solutions agree with
previously published ones. we can obtain comparable accuracy in coarser meshes. typically with half
the number of nodes in each direction. The extension of the two-dimensional model to include the
solute conservation equation is currently being performed and will be reported in the near future.
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