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ABSTRACT.

In this article, a local anisotropic a posteriori error estimator is presented. to solve compressible
flow equations using automatic mesh generators. The components of this association were
selected among several choices available (Almeida et. al. 1998), (Borges et al, 1998) giving
a powerful computational tool. The main aim of this simulation is to capture solution
discontinuities (in this case shocks), using the least amount of computational resources
(elements) compatible with a solution of good quality. This leads to high aspect ratio elements
(stretching). In order to achieve this, a directional error estimator was specifically selected.
The numerical results show good behaviour of the error estimator. resulting in strongly adapted
meshes in few steps (typically 3 or 4 iterations).

INTRODUCTION

Local a posteriori error estimators are the appropriate tool to identifv automatically regions of
the domain where the solution is inaccurate. When the solution shows a highly unidimensional
behaviour with smooth variation in one direction and high gradients in the orthogonal one.
isotropic error estimators produce strongly refined meshes in all directions. To overcome
this problem, in this work a non-isotropic error estimator is presented. A finite element
approximation for Euler equations in compressible flow is employed . A Newtonian, compressible
inviscid fluid in thermodynamic equilibrium is supposed and no sinks, sources or internal body
forces are considered. Since the first papers by {Babuska and Rheinboldt IJNME. 1978) and
(Babuska and Rheinboldt SIAM, 1978) on a posteriori error estimates in the finite element
method, the subject has become increasingly important in finite element computations. There
are essentially two major types of estimators: 1) estimators based on residual considerations, and
IT) estimators based on averaging techniques. A quite precise mathematical analvsis has been
presented in some linear and nonlinear problems for estimators based on residual considerations
(Babuska et al, 1992)(Verfiirth, 1989), (Verfiirth, 1994). However, some practical difficulties
arise trying to obtain anisotropic meshes based on these kinds of estimators. For this reason,
in this work a type II estimator has been chosen. An anisotropic error estimator based on the
Hessian matrix is presented here, to get highly distorted meshes to approximate solutions with
high gradients in some directions and withsmooth behavior in the rest of the domain. This
estimator was combined with a flow solver (Quintana, 1993), (Donea and Giuliani, 1981), and
coupled together with an automatic mesh generator (Fancello et al, 1991), (Fancello, Salgado
Guimardes and Vénere, 1991).

GOVERNING EQUATIONS

The Euler equations in conservative form are usually preferred for CFD. The set of Euler
equations for compressible laminar flow of a perfect gas can be written as follows:

o1 P AP P 0 .
F7 | e + Z 3| e +pbi; | =10 i=1,2
C | pe =177 | (pe + pru; 0

where, ug stands for the velocity components, p the density p pressure, ¢ total specific energy
and 6, is the Kronecker delta. The state equation for a perfect gas. p = p{v — 1)[c - 0.5u;u;] has

proved to be a good approximation for diatomic gases at moderate temperatures and will be
used to complete the set.

Boundary conditions: A weak form of imposing boundary conditions was adopted in this work.
because the normal definition is not ambiguous (Dari. 1995). As detailed in (Donea & Giuliani,
1981), the number of boundary conditions to be imposed (Donea and Giuliani, 1981) depends
on the number of positive eigenvalues in a characteristic analysis.
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Wall boundary condition: The well known slip condition is imposed here: u, = 0 where u, is the
normal component of the velocity field and no restriction is imposed on density.

Far-field boundarv condition: Inflow (u,. < 0): Every variable is here prescribed. p = p> u, =

2l S () + (u))

<
n

u u =ur e=

Outfow (u, > 0)

Different strategies are possible for the outflow boundary:

i) Impose p and cancel second gerivatives for v.
i1) Cancel normal derivatives. (§2 = 0)(adopted in this work)
ii1) No conditions imposed.
Svmmetries: On the symmetry plane u, = 0 (slip condition) and for the other variables, the
condition (g—,‘;’ = 0) is imposed.
NUMERICAL APPROACH

The Navier-Stokes set of equations is approximated with a stabilized finite element technique
using tetrahedra for 3D problems or triangles in two dimensions. No convergence accelleration
techniques have been implemented in this job.

THE A POSTERIORI ERROR ESTIMATOR

Standard assumption and notation are introduced in this section. Given a polygon Q C R?, we
consider a family of triangulations {7,} of Q such that any two triangles in 7 share at most a
vertex or an edge. In the definition of the error estimator we shall use the standard conforming
space

Va = {v € HYQ) : v|r € Pe(T)}

where P,(T) denotes the space of polynomials of degree not greater than k. With each node N;,
1 < i< M of the triangulation, we associate a basis function ¢; € Vi in the usual manner. For
each i, we set S; = suppy;.

DERIVATIVE RECOVERY TECHNIQUES
Gradient recovery operator
As linear elements are being used, a specific procedure must be implemented to recover second-
order derivatives. These can be recovered using twice a polinomial expansion algorithm that

will be presented to compute first-order derivatives (gradients).

As a first step, we recall the Clément interpolation operator: given a function v € L*(R), we let
P;v denote the projection of the function v|s, € L?(S;) over the subspace P.(S;); i.e. one has

Pv € Pp(S:) and (v — Piv,p)s, =0, Yp € Pi(S:) (1)
where (-,-)s is used to denote the inner L2-product. We set

M
Nev = Z Poo(N;)o,

i=1

We define the following gradient recovery operator Vg : Va — (V4)? given by

Veup = [ec(Vup) = (1’1 (Oun n (duh>

a5
In (1) the Gaussian integration points can be used in the numerical computation of the integral.
In this case the technique is called patch recovery technique (Zienkiewicz and Zhu, 1992) or integral

polynomial expansion as will be referred to here. Integration of (1) with different techniques
leads to other gradient recovery alghoritms.

The following points must be remarked on:




R. Feijdo, C. Padra and F. Quintana

a)
b)

o
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The matrix of the svstem is symmetrical and independent of the component i to be recovered.

The number of equations to solve simultaneously is very reduced (3 for linear triangular
elements). Thus the cost of recovery becomes proportional to the number of nodes in the
mesh. .

Once the parameters a have been calculated, the gradient in the studied node is easily calculated.

The number of existent elements in a patch can be insufficient to ensure the well-posedness of
the least-squares problem. This usually happens on boundary nodes and element side nodes
(quadratic elements. for example). In this case the initial patch is redefined incorporating the
elements in those patches associated to the nodes of the elements in the initial patch.

For high-order polinomial expansion, the matrix P, can be ill-conditioned due to the monomials
degree and the coordinates of the integration points. To overcome this issue. the original
potch Q, is transformed into another normalized Q, and in this normalized domain the
polinomial expansion is carried out. For example, in two-dimensional problems we can take
Qp = [~1,1] x [~1.1 and the linear transformation which maps @, in Q, is given by

N 2 .2
I‘Z(‘I_Im)v U‘[y(?l_ym)
where £, = Zmaz = Tmins by = Ymaz — Ymins Tm = 3(Tmaz + Tmin)a0d ym = 3(Ymar + Ymin). In

the previous expressions we used the notation (Tmin,Ymin) aNd (Tmaz.Ymaz) tO represent the
maximum and minimum coordinates of the rectangle which contains the patch under study. In
the case of meshes generated using automatic techniques,such as the advencing front technique,
(Peiré, 1989), it is convenient to use a compatible transformation with the one used in the mesh
generation algorithm.

The second-order derivatives (Hessian matrix) can be recovered using twice the polinomial
expansion algorithm proposed to recover the first-order derivative (gradient). In fact, taking
V rus as a new field. on each of its components we can apply the algorithm described, obtaining
H*(up) = Va(Vaus). Since this matrix is non symmetric, its symmetrical part is adopted to
satisfy the symmertry of the Hessian matrix. Therefore, the recovered Hessian Hg(un) € Vf"z is
computed as

H*(un) + (H*(un))*

Hg{up) = 2 (2
It is assumed that u, € Vj, is a good approximation of u which verifies
[ ~ unliz2iq) = ClIHR(un(z))(z — 70) - (z = Zo)llL2(e) (3)

This shows that the interpolation error at one point z such that |z — x| is small enough is
governed by the behavior of the second-order derivative at this point. Thus, the interpolation
error is not distributed isotropically around point z¢; i.e. the error depends on direction z — x¢o
and the recovered Hessian matrix value at this point, Hg(u{z)). Therefore, (3) suggests the
use of this expression as a directional local estimator. However, the recovered Hessian matrix
cannot be used as a metric, because it is not positive definite. Using Peiré’s idea (Peiré. 1989),
the following tensor is introduced

G =QAQ7 (€]

where Q is the matrix which has the eigenvectors of the recovered Hessian martrix as columns,
and A = diag{|A]. A2|} and |\;},i = 1,2 are the absolute values of the eigenvalues (jA1] < {Aa|) of
Hp(ua(r)).

Now, given a partition 7, of {2, the anisotropic error estimator of T € 7, is defined as

— {[ﬂ (G(un(20)(z = 0) - ( = 70))2d02}* (5)
T
and the global estimator n by
n={Y nH (6)
TET,
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where zo is the baricenter of T. The definition of nr can be used to obtain the following upper
bound

= /Q (Glun(xo))(z — x0) - (z = 70))?dQ =

= /ﬂ (3 Iilzolllextzo)  ei(zo)l(w — 20) - (7 ~ 0))dS) =

T i=12

= [ {3 Wialietzo) - (@ = w) a0 <

T i=12

< [ (S IGmlhtan

T =12
where e;(N),i = 1,2, are the eigenvectors of the recovered Hessian matrix.

It is expected that the shape of the element be such that the local error in any direction yields
the same value. This is equivalent to stating that the local error in the principal directions of
curvature vields the same constant in each element, i.e. [A{|A] = |A2;h3 = constant and therefore,

the stretching of element T is defined as st := %; = ,/1%1 and combining sz with (7) it follows that
n% < arear{2|As(zo)| h3}* Which leads to the following upper bound of the local error estimator

7 < 2arear? [Aa(zo)| A3

This inequality shows that the local estimator is bounded by the maximum of the second-order
derivative in the baricenter of the element multiplied by the square of the element length in this
direction.

NUMERICAL RESULTS

Some numerical results obtained by applying the proposed methodology on the solution of
compressible Euler equations are presented here. As a vector field of unknowns is computed, and
a scalar field indicator is needed to evaluate the Hessian matrix, density has been selected. Mach
number and velocity moduli have alternatively been used with similar results. In a forthcoming
paper, we shall consider the idea of generalizing our error estimator (5-6) to account for all
vector field components simultaneously.

Compression corner

This problem deals with an inviscid supersonic flow (M = 2) over a wedge at an angle 6 = 10°.
The domain is shown in figure 1. At the inflow (z = 0) the values of the variables are:
p = 1.0(density), |v{ = 1.0(velocity),p = 0.17857(pressure), and the slip condition was set along
the wedge (y = 0). The outflow exact solution yields p = 1.45843,v, = 0.88731,v, = 0.0,p =
0.30475, M = 1.64. Density was used as the key scalar field to compare with the previous test.
Figure 1 shows the last adapted mesh (step 3, 1354 elements and st € [1; 30]). Comparing density
contours of fig. 1 with the exact values, a good agreement can be verified.

Figure 1. Final finite element mesh (1391 elements, 738 nodes) and corresponding
solution (density contours)using density as the key variable
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Supersonic flow over a blunt body

This second example has been selected to study the estimator behaviour in the vicinity of strong
shocks and the quality of meshes in regions where the body shape is convex. A two-dimensional
Mach 2 inviscid flow over a blunt body at zero angle of attack is studied. Due to the problem
symmetry we consider only one half of the domain. The undisturbed flow is set at the inflow
and at the top of the domain, and is given by: p = 1.0,||»|] = 1.0,p = 0.17837(pressure). The
stagnation streamline has been selected as the symmetry boundary, where velocity is corrected
on each step with a slip condition (this is imposing u, = 0). Figure 2 shows the last adapted
mesh (786 nodes, 1484 elements, sy € [1;21]) which was generated using the density the key
scalar variable for the error estimator. The corresponding solution (density contours) is also
plotted here.

Figure 2. Final finite element mesh (1484 elements, 786 nodes) and corresponding
solution (density contours)using density as key variable

Comparing with the previous test, it is evident that a good solution can be found in just three
steps (compared with 5 in the previous test) and using a coarser mesh (786 vs. 1597 nodes)with
the density as the key variable.

CONCLUSIONS

Based on the recovery of the Hessian matrix, the definition of an anisotropic a posteriori error
estimator, a mesh-adaptive procedure has been presented. Some numerical applications show
that the proposed anisotropic error estimator provides an accurate approximation of the exact
error. As a consequence, highly accurate solutions are obtained keeping the number of unknowns
affordably low. A further interesting aspect of this mesh-adaptive procedure is that it is problem
independent, i.e. the algorithm can be easily incorporated to any finite element solver to perform
an adaptive analysis. In addition, although an unstructured advancing front mesh generator is
used, this approach can be employed in association with any unstructured mesh generation that
accounts for a local metric defined on the old mesh taken as a background mesh during the mesh
generation procedure. Future works are under way to extend procedure capabilities to vector
unknowns, time-dependent problems and 3-D applications.
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