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In this art.icle, a local anisot.ropic a posteriori error est.imator is presented. to solve compressible
flow equations using automatic mesh generators. The components of this association were
selected among se\'erai choices available (Almeida et. al. 1998).. (Borges et ai, 1998) giving
a powerful computational tool. The main aim of this simulation is to capture solution
discontinuities (in this case shocks), using the least amount. of computat.~onal resources
(elements) compatible with a solution of good qualit.y. This leads to high aspect ratio elements
(stretching). In order to achieve this, a direct.ional error estimator was specifically selecteel.
The numerical results show gooel behaviour of the error est.imator. resulting in st.rongly adapted
meshes in few steps (t.ypically 3 or 4 iterat.ions).

Local a po.,teriori error est.imat.ors are the apptopriate tool to identify automaticallv regions of
the domain where the solution is inaccurat.e. When the solut.ion shows a highly unidimensional
behaviour wit.h smooth variation in one elirection anel high graelients in the orthogonal one.
isot.ropic error estimators proeluce strongly refineel meshes in all elirect.ions. To overcome
this problem, in this work a non-isotropic error estimator is presented. A finite element
approximation for Euler equations in compressible flow is employed. A Newt.onian, compressible
inviscid fluiel in t.hermodynamic equilibrium is supposed and no sinks, sources or internal body
forces are considered. Since the first. papers by (Babuska and Rheinboldt. IJNME. 1978) and
(Babuska and Rheinboldt SIAM, 1978) on a post.eriori error estimat.es in the finit.e element
methoel, the subject has become increasingly import.ant. in finit.e element. comput.ations. There
are essentially two major t.ypes of estimators: I) estimators based on residual considerations, anel
II) estimators based on averaging techniques. A quite precise mathematical analysis has been
presenteel in some linear and nonlinear problems for estimators based on resielual considerat.ions
(Babuska et aI, 1992)(Verfiirt.h, 1989), (Verfiirth, 1994). However, some practical difficulties
arise trying to obtain anisotropic meshes based on these kinds of estimators. For this reason,
in this work a type II estimator has been chosen. An anisot.ropic error est.imator based on the
Hessian matrix is presented here, to get highly distorted meshes to approximate solutions with
high gradients in some directions and withsmooth behavior in the rest of the domain. This
estimator was combined with a flow solver (Quintana, 1993), (Donea and Giuliani. 1981), and
coupled together with an automatic mesh generator (Fancello et aI, 1991), (Fancello, Salgado
Guimaraes and Venere. 1991).

The Euler equations in conservativ,e form are usually preferred for CFD. The set of Euler
equations for compressible laminar flow of a perfect gas can be written as follows:

iJ [ 1'] .V iJ [ 1'11] ] [0]75i fJlli + L aT P11'iUJ + pSi) = 0
pc J~l J (pc + fI)'Uj 0

where, 'Ui stands for the velocity components, I' the density p pressure. f total sppcific energy
and 6iJ is the Kronecker delta. The state equation for a perfect gas. p = p (: - Ii [c- 0.5u,u, i has
proved to be a good approximation for diatomic gases at moderate temperatures and will be
used to complete the set.

Boundary conditions: A weak form of imposing boundary conditions was adopted in this work.
because the normal definition is not ambiguous (Dari. 199.5). As detailed in (Donea & Giuliani,
1981), the number of boundary conditions to be imposed (Donea and Giuliani, 1981) depends
on the number of positive eigenvalues in a characteristic analysis.
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Wi,ll bOllndary condition: The well known "lip condition is imposed here: Un = 0 where Un is the
normal component of the velocity field ami no restriction is imposed on density.

Far-field bOllndar,' condition: Inflow (Un < 0): Every variable is here prescribed. p = p~ "'n =
n::' 1L, = u'(" e = h!~P= + t ((u;:O)' + (u,"')')

Different strategies are possible for the outflow boundary:
i) Impose I' and cancel second ~erivatives for Il.

ill Cancel normal derivatives. (;f = O)(adopted in this work)
iil) No conditions imposed. n

Symmetries: On the symmetry plane Un = 0 (.tip condition) and for the other variables, the
condition (* = 0) is imposed.

NUMERICAL APPROACH

The Navier-Stokes set of equations is approximated with a stabilized finite element technique
using tetrahedra for 3D problems or triangles in two dimensions. No convergence accelleration
techniques have been implemented in this job.

Standard assumption and notation are introduced in this section. Given a polygon n c IR2, we
consider a family of triangulations {1h} of n such that any two triangles in 1h share at most a
vertex or an edge. In the definition of the error estimator we shall use the standard conforming
space

Vh = {v E HJ(n) : VIT E 'Pk(T)}

where 'Pk(T) denotes the space of polynomials of degree not greater than k. With each node N.,
1 $ i $ M of the triangulation, we associate a basis function 'P. E Vh in the usual manner. For
each i, we set Si = SUpp'Pi.

As linear elements are being used, a specific procedure must be implemented to recover second-
order derivatives. These can be recovered using twice a polinomial expansion algorithm that
will be presented to compute first-order derivatives (gradients).

As a first step, we recall the Clement interpolation operator: given a function v E £'(n), we let
p.v denote the projection of the function uls. E £2(S.) over the subspace 'PdS;); i.e. one has

M

IIell = L P(v(Ni)'Pi
i=l

In (1) the Gaussian integration points can be used in the numerical computation of the integral.
In this case the technique is calleLl patch recovery techlllque (Zienkiewicz and Zhu, 1992) or integral
polynomial expansion as will be referred to here. Integration of (1) with different techniques
leads to other gradient recovery alghoritms.

The following points must be remarked on:



b) The number of f'quations to solw simultaneously is very reuuceu (3 for linear triangular
elements). Thus rhe cost of reCOVf'rybecomes proportional to the numbf'r of noues in rhf'
mesh.

u) The number of existent elements in a patch can be insufficient to ensure the well-poseuness of
the least-squares problem. This usually happens on bounuary noues anu element siue noues
(quauratic elements. for example). In this case the initial patch is reuefineu incorporating the
elements in those patches associateu to the noues of the elements in the initial patch.

e) For high-order polinomial expansion, the matrix Pp can be ill-conditioned due to the monomials
uegree anu the cooruinates of the integration points. To overcome this issue. the original
patch flp is transformed into another normalized (1p anu in this normalizeu uomain the
polinomial expansion is carried out. For example, in two-uimensional problems we can take
flp = [-1,11 x [-1. r anu the linear transformation which maps fl. in (1. is given by

i: = i-(x - xm),

"x
y = i-(Y - Ym)

~'Y

where fx = Xmax - Tmin, fy = Ymax - Yminl Xm = ~(xmax + xmin)and Urn = }(,t)max + Ymi.n)' In
the previous exprf'ssions we useu the notation (X;"in, Ymin) anu (xmax. Ymaxl to represent the
maximum and minimum cooruinates of the rectangle which contains the patch unuer stuuy. In
the case of meshes generateu using automatic techniques,such as the adl'ancin,q front technique,
(Peiro, 1989), it is convenient to use a compatible transformation with the one used in the mesh
generation algorithm.

The second-order derivatives (Hessian matrix) can be recovered using twice the polinomial
expansion algorithm proposed to recover the first-order derivative (gTauient). In fact, taking
\7 RUh as a new field. on each of its components we can apply the algorithm described, obtaining
H"(Uh) = \7R(\7RUh)' Since this matrix is non symmetric, its symmetrical part is adopted to
satisfy the symmetry of the Hessian matrix. Therefore, the recovereu Hessian HR(Uh) E V,;X2 is
computeu as

HR(Uh) = W(Uh) + (H"(Uh))' (2)
2

It is assumed that Uh E Vh is a good approximation of U which verifies

This shows that the interpolation error at one point x such that Ix - Xo I is small enough is
governed by the behavior of the second-order derivative at this point. Thus, the interpolation
error is not distributed isotropically around point Xo; i.e. the error depends on di'rection x - Xo
and the recovered Hessian matrix value at this point, HR(u(x)). Therefore, (3) suggests the
use of this expression as a directional local estimator. However, the recovered Hessian matrix
cannot be used as a metric, because it is not positive definite. Using Peiro's idea (Peiro. 1989),
the following tensor is introduced

where Q is the matrix which has the eigenvectors of the recovered Hessian matrix a.'i columns,
and A = dia,q{IAJi. A21} and IAiLi = 1,2 are the absolute values of the eigenvalues (lAd $ !A2!) of
HR(Uh(X)).

'7 = {I>J:~·}t
TE7i.



where Xo is the baricenter of T. The definition of 'IT can be used to obt.ain t.he following upper
bound

'7~ = /. (G(nh(xo))(.1: - xo) . (x - xolfdrl =
.llr

= r (L 1-';(.1:oll[e;(xol® e;(.1:oll(x- xo)' (x - :ro))~dn =
Jnr i=1,2

= J {L 1-';(xo)l[e;(xo)' (x - .Tolj2}2drl:::;
Or i=1,2

:::;for \~21-,;(xo)lhi}2drl

It is expected that the shape of t.he element be such that t.he local error in any direction yields
the same value. This is equivalent to stating that the local error in the principal directions of
curvature yields the same const.ant in each element, i.e. I-'llhi = 1-'2ih§= con.,tant and therefore,
the stretching of element T is defined as 8T := j;; = ~ and combining 8T with (7) it follows that.
'1~ :::;areaT{21-'2(xoll hn2 Which leads to the following upper bound of the local error estimator

This inequality shows that the local estimator is bounded by the maximum of the second-order
derivative in the baricenter of the element multiplied by the square of the element length in this
direction.

Some numerical results obtained by applying the proposed methodology on the solution of
compressible Euler equations are presented here. As a vector field of unknowns is computed, and
a scalar field indicator is needed to evaluate the Hessian matrix, density has been selected. Mach
number and velocity moduli have alternatively been used with similar results. In a forthcoming
paper, we shall consider the idea of generalizing Our error estimator (5-6) to account for all
vector field components simultaneously.

Compression corner
This problem deals with an inviscid supersonic flow (M = 2) over a wedge at an angle B = 10°.
The domain is shown in figure 1. At the inflow (x = 0) the values of the variables are:
p = 1.0(density),llvll = 1.0(velocitYl,p = 0.17857(pressure), and the slip condition was set along
the wedge (y = 0). The outflow exact solution yields p = 1.45843,v. = 0.88731,11"= O.O,p =
0.30475,Al = 1.64. Density was used as the key scalar field to compare with the previous test.
Figure 1 shows the last adapted mesh (step 3, 1354 elements and ST E [1;301). Comparing density
contours of fig. 1 with the exact values, a good agreement can be verified.

Figure 1. Final finite element mesh (1391 elements, 738 nodes) and corresponding
solution (density contotlrs)using density as the key variable
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Supersonic .Bm\' o\"cr a blullt budy
This second example has been selected to stud.v t.he estimat.or behaviour in t.he vicinit.y of st.rong
shocks and t.he quality of meshes in regions where the body shape is convex. A two-dimensional
Mach 2 inviscid flow over a blunt. body at zero angle of attack is studied. Due to the problem
svmmetrv we consider onIv one half of the domain. The undist.urbed flow is set at. t.he inflow
~~d at the t.op of the do~ain. and is given by: p = 1.0,IHI = 1.0,P = 0.17857(pressure). The
st.agnation streamline has been selected as the symmet.ry boundary, where velocity is correct.ed
on each step with a slip condition (this is imposing Un = 0). Figure 2 shows the last adapted
mesh (786 nodes, 1484 element.s, 8T E [1;21]) which was generated using the density the key
scalar variable for t.he error estimator. The corresponding solution (density contours) is also
plot ted here.

Figure 2. Final finite element mesh (1484 elements, 786 nodes) and corresponding
solution (density contours)using density as key variable

Comparing with the previous test, it is evident that a good solution can be found in just three
steps (compared with 5 in the previous test) and using a coarser mesh (786 vs. 1597 nodes)with
the density as the key variable.

Based on the recovery of the Hessian matrix, the definition of an anisotropic a po"terio'ri error
estimator, a mesh-adaptive procedure has been presented. Some numerical applications show
that the proposed anisotropic error estimator provides an accurate approximation of the exact
error. As a consequence, highly accurate solutions are obtained keeping the number of unknowns
affordably low. A further interesting aspect of this mesh-adaptive procedure is that it is problem.
independent, i.e. the algorithm can be easily incorporated to any finite element solver to perform
an adaptive analysis. In addition, although an unstructured advancing front mesh generator is
used. this approach can be employed in association with any unstructured mesh generation that.
accounts for a local metric defined on the old mesh taken as a background mesh during the mesh
generation procedure. Future works- are under way to extend procedure capabilities to vector
unknowns, time-dependent. problems and 3-D applications.

This work was partially supported by PIA 7116 Conicet (Argentina) and PICT 12-03239 of
ANPCyT (Argentina).
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