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Abstract

Several methods have been proposed for constructing the ponlinear noxmal modes of continuous systems. All of them need

" the linear eigenfunctions of the problem. as a first step. Io this paper the case when these eigeafu and eigenvalues are
not at hand but their approximations, is studied. The method is applied to the calculation of the non-linear axisymmetric
frequency coefficients and amplimde-dependent mode shapes of a simply supported circular plate. The plate is partially
founded on a-cubic non-linear foundation. The approach here pre d bines the optimized Rayleigh-Ritz method with
the invariant ifald tecbniques. The approach is applicable to a wide variety of systems. In such. cases where the exact
solution of the linear system is known the first step may be overridden and the recently developed Shaw and Pierre method
may be aplied.

Introduction

Several methods have been recently proposed for conmstructing the nonlinear pormal modes of
coptinuous systems [1-6}: They can be divided roughly into three groups. In the first group it’s
postulated a dependence of the solution on time in the form:

N .
wit) = | 6,0) cos mat M

=0

Then the method of harmonic balance is used to obtain nonlinear boundary-value problems of the
é,. In the second group is the Galerkin procedure to discretize the problem. In this case the
exact solution is approximated in the form: : .

N ,
wit) =} 6,00 4,(0) O]

n=0

where ¢,(x) are the linear undamped mode shapes. Substituting this expansion into both the
partial differential equation and the boundary-value conditions a system of ordinary nonlinear
equations governing the modal amplitudes g,(t) is obtained. Then a mumber of perturbation
techniques may be applied to the discretized equations. .

Finally the third group, ihcludes the method of multiple scales. The governing pértia]
differential or integral partial differential equations and boundary conditions are directly
attacked and no assumptions are made a priori regarding the spatial or temporal dynamics of the
system.

It's important to notice that all the above mentioned methods need the eigenfunctions of the
linear problem as a first step. In this paper the case when these eigenfunctions and eigenvalues
are not at hand but their approximations, is studied. Among a wide variety of methods known as
"weighted residuals® both Galerkin and Raleigh-Ritz have proven to be very efficient ones for
obtaining solutions of the linear partial differential equations modeling small amplitude
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vibrations. They work fine in systems with a great variety of boundary conditions [7] and there
is a total equivalence between both, in those cases where a functional may be found [8].

Any convenient family of functions satisfying the boundary conditions may be employed as a basis
for both the Galerkin projection or the Rayleigh-Ritz functional minimization approach.

Following Shaw [9] normal modes are viewed as motions on invariant manifolds which are tangent
to, and of the same “dimenmsion as, the linear eigenspaces in the system phase space. These
manifolds are the standard foliation of the center-stable manifold of the equilibrium point of
interest. The existence and smoothness of these manifolds in the conservative, Hamiltonian case
has been extensively studied. One of the important theorems is Lyapunov center’s one which
states that if the Hamiltonian is C! and the linearized system has purely imaginary eigenvalues
9 G= 1,2,....,m) such that for j=k Q/0 #n (n = 12,.) then there exists m two-
dimensional, local C! invariant manifolds. These are the nonlinear normal mode manifolds of
interest here, and each one contains a one parameter family of periodic solutions. In what
follows this nonresopant condition is s to be satisfied. This invariant manifold approach
is applied in order to determine how the nonlinear coupling distorts the mode shapes and the
dynamics of the nonlinear system. At this point it is important to treat the lLinear modal
amplitudes and velocities as _independent variables, as they provide the coordinates which
parameterize the manifolds. This procedure provides a systematic mean for. determining the
amplitude-dependent shapes of natural vibration of weakly nonlinear, distributed parameter
systems. The existence of these manifolds is eéxtensively studied in dynmamical systems theory
[10], but they have not been previously exploited for the construction of nonlinear normal mode

shapes and modal dynamics.

As an example we presént here the case of a simply supported circular plate partiaily embedded
in 2 non-linear elastic fq!ipgagjon. ]

Systems to which the “iethod is applicable are those described by equations of motion of the
form: RN

2‘3(7”2 + Liws,0] + Niw(s,)) = O A
with linear boundary conditions at s = 0, 1
BiwsAllmo = 0 Bw(sllpuy = 0 @

The operator L is taken o be a linear one while the pon-linear operator N is _assumed to posses

smoothness properties thit allow it to be expanded to any desired order. Both operators are

supposed o act on the spatial variable s only. The case N = O corresponds to the linear system;

g: :xact solution of this linear problem may be expressed by a standard variable separation in
orm:

wols,) = x(5) exp(iQs) )

where the underscript 0 fneans that we are in the N = 0 case
Then a Styrm Liouville problem for the spatial part x(s) arises. Any comvenient complete family

of orthogonal functions {g(s), j=12..=} satisfying the boundary conditions is to be used as
a basis for the expansion ,ofJ x(s) as follows:

x(®) = ZAj ?; ©)

j=1

where the coefficients 4; aré obtained by an inner product of the last equation with each basis
function. As the basis is an drthogonal set, the A;'s takes the form:
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Aj = <x(5), () > j=1,2,0.,00
with the inper product defined as usual:

1
<f).80)> = [ A
0

Q)

@®

In the particular case of a circular plate with a non-linear elastic foundation here studied,

the differential equation is (see Figure I):

D vw + ph Z"f Fh @ W+ ndn) w5 =0

where kg and »; are constants for @, < r < a, and 0 outside this range and as usual:

Eb®

T 20

non-linear -
foundation

Fig. 1: System undér study

2. The First Step: approximating the linear eigemfunctions.

In the Galerkin approach the spatial part of the linear solution is substituted by an
approximated one: ’

N
X(5) 2 () = ] 4 ¢fs)

j=1

(10)

®
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and then the time dependent approximate linear solution is proposed to be:
Waal(S,0) = x,(5) exp(xith) ’ (11

Of course the finite set {qu(s), j=12,.,N} generates a finite dimensional space instead of
the infinite dimensional one, required for the exact represemtation of x(s). Then when w,, is
introduced into the differential equation a spatial error function e (s) arises:

v - @ x,() + L) = &) 12
The Galerkin condition states: -

<g(s),p5)> =0 i=01,...N (13)
it means that the error ¢(s) has no component on the finite dimensional space generated by

{#,()}. This condition implies that the A’s must satisfy the following system of homogeneous
linear equations:

P<x,0> + <Llxle> =0 J=0LiN (14)

The sets {Q, i=1,.n} and 4D, i.j=;1,...N}- constitute respeétively the N eigenvalues and N
eigenvectors of the operator L rfestricted to the N dimensional space. Once this system is solved
the corresponding set of approximate linear modes {xfl),...,x:N)} is easily obtained. The

functions in this set are now to be used as a basis for the second Galerkin projection as is
explained below, in the second step description. -

On the other hand, in the Raleigh-Ritz method a comvenient functional is minimized on the space
generated by a selected..family of functions satisfying the boundary conditions. If the same
trial functions are used the calculations -are identical to the Galerkin projection.

In the case here studied an approximation for thé plate transverse displacement, convenient in
the case of axisymmetric modes of vibration is: =

N 3 )
WO swo =T TAc R (15)

. =0 i=1
Ci=1{L o 8} k=012.. and v = {024} (16)

where the o;’s and thevh.Bj’s. are determined by substituting each coordinate function into the
governing boundary conditions.

If use is made of the. dimensionless variable r = r/a and considering the case of a simply
supported plate, these boundary conditions can be written in the form: ‘

aw 2W 1 aw
—_— = - + PR
2, ar [ ar? r “ar ] (172)
r= . r=1
TK W = + _HAW) a7)
=1 °r  Jr=1

where A is the Laplace operator, ®, is the adimensional flexibility coefficient for the
rotational boundary spring and K, is the adimensional transiational spring constant, given by:

3
8 =5ty K= a8)
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Substituting (15) in (17) one obtains:

3 .
LG ((it2) & + Gid2it2iD) + kri¥2) | = 0 (19)
je=1 .
3 ‘ ]
LG K. - Git2reiv2a) =0 (190)
i=1

where j = 0,1,2,...N.

The appropriate adimensional functional of the problem is:

J,dW) = Up+Ub+Uf—Tp (20
where:
v ] |
?W  1aW Y _, W 1 W
J = D o] (§ 7Y I A
[p i I[[6r2+ rar] (“) ar? rar]rdr (213)
H
aw )2 2
Uy =D [o, [PH] wr (W] ] (21b)
81 Yy r=1
and
72
U, = *DK [ W' rdr )
T

are the potential energies corresponding to plate strain, plate boundary restraints, and
foundation elastic deformatior respectively, while

1

. 2 2
Tp—wn[fw;dr 22)

0

is the kinetic energy of the plate and

2 hatw? b ¢ ke a*
Q =_de wi;‘!l:“;‘;("z:‘;;Kf:T

are the frequency coefficient, and the dimensionless radio of inner and outer borders of the
foundation respectively. . .

In accordance with the Ritz method one requires:

oty [W, .
-J%rl=o i=01..N 23

and from the non-triviality conditions one obtains the frequency determinantal equation. It's a
relatively easy task to obtain the frequencies with good precision but for the calculation of
the modal shapes a naive strategy is not sufficient. The system of linear equations to be solved
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has a singular coefficients matrix. Pretending that a matrix is either singular or else isn’t is
of course true analytically. Numerically, however, the far more common situation is that the
matrix is numerically very close to singular and roundoff errors in the machine render the
equations linearly independent. This problem particularly emerges if the dimension of the matrix
is too large. To solve it we employ a Singular Value Decomposition (SVD) technique. SVD methods
are based on the following theorem of linear algebra: any m x & matrix A whose number of rows m
is greater than or equal to its number of columns n, can be written as the })roduct ofanm xn
column-orthogonal matrix U, an n x n diagonal matrix W and the transpose of an n x n orthogonal
matrix V. The matrices U and V are each orthogopal in the sense that their columns are

orthonormal [10]. ‘
3. The Secomd Step: Galerkin projection
The solution of (3) is now approximated by:

]
wish = [x96) 40 @)

i=1
Here g;(t) represents the contribution of the j* linear mode to the response. When substituted

into the eguation of motion (1) a new error function ey (s) is obtained. Repeating the Galerkin
procedure above, but now projecting onto each x{9, the following system of equations arises:

¥ I ¥

L @<x®x®> + | <D x> +<N| ] go®| x(9> =0 @5)
k=t k=1 k=1
ti=1,2,...0
Taking into account:
<LIP)x®> = <@xPxP> @6
the system (25) may be rewritten:
¥ .
Z@k'*'ﬂﬁ 99 <X§'°,X5i)> + Glgy,-...qy) = 0 @n
k=1
(i=1, ...D)
This system may be expressed in a matrix form:
B@+A-@Q+G=0 (28)
where
- ’ 4 y >
B, = <xPx®>, A, = Gt and G; = <N qu x> (29)

k=1

As {x{®,&=1,...n}is a set of linearly independent vectors, matrix B is non singular and it
has an ioverse B* . Pre multiplying equation {16) by this inverse matrix one obtains:

qg+A-qg+M=0 30
M@ = B! G(g 3

where:
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For example in the case of a cubic non-linear foundation the vector M(q) may be expressed in the
form: :

J ¥ ¥ J
M@ =57 7 7 IR Gt el ()
=1 m=1 a=1 j=1
with coefficients py,, depending on the nonlinearity.

As a proof of the convergence of the method employed we study de case of a clamped circular
plate without foundation. In this case we have the exact solution at hand. It’s given by:

Wo@) = C Jo(“_'i r] l1{ﬁ r] +D Io(m r) L(ﬁ? r)

with J; and J; the first kind and modified Bessel functions respectively.

As an example Figure 2a shows the fundamental modal shape for N = 10 and Figure 2b shows the
error between approximate and exact solutions. The maximum value of the error is approximately
109. Table 1 depicts the convergence of the fundamental frequency as the number of terms
increases. . :

TABLE I

Convergence of the fundamental frequency in the case of a
clamped circular plate without foundation

Number of terms frequem;)y coefficient exact value
(]
2 10.217027669954404701
3 10.215827743253612425
4 10.215826231455139350
5 10.215826229854428675 10.21582620060082
(a) (b) .
i -9
1. 10
0.8 . -10
i’ 8. 10
0.6 -10
6. 10
0.4 -10
4. 10
0.2 -10
2. 10
0.2 0.4 0.6 0.8 ° 1 0.2 0.4 0.6 0.8 1

Fig. 2: a) Approximated fundamental modal shape for a clamped circular plate; b) Relative error
in the determination of the modal shape in (a)

4. The Third Step: invariant manifold approach

Equation (30) is analogous to that obtained by Shaw. His method may now be applied in 2
slraightfprward way as follows: (i) equation ’(30) is written as a first order system form:

a0 = p®
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. G=1,2,...5) (33)
P = - B g - M(q®)

(if) a key observation is to be made [9]: it is that for either a linear or a nonlinear system,
a pormal mode motion is one in family of motions for which the system behaves like a second-
order nonlinear oscillator. Such a motion will take place on a two-dimensional invariant
manifold. For weakly nonlinear systems these manifolds are curved but necessarily tangent to the
linear eigenspaces at the equilibrium (w(s,f) s 0); (i) the construction of the invariant
manifolds is carried out in the usual manner by first choosing (gy,p,) as natural coordinates
which describe the manifold for the k® pormal mode and then assuming that the meotion on all
otber (g;,p) pairs can be described in terms of (g,,p); this restricts the dymamics of the
entire system to a two-dimensional manifold and defining (g, ,p}) = (u4,Vy), a normal mode motion
is assumed to exist and be (at least locally) expressible in tﬁe orm:

40 = Cx(sOv )
P = Fylu®.n()
Substituting (34) in (30) the equations to be satisfied by the Q,’s and Py’s arc obtained. A
closed form solution of these equations is not generally attainable, but a Jocal solution series

expansion pear - the origin can be obtained. The procedure is the standard one for the
construction of invariant manifolds [10]. o ’

i=1,2,..., (34)

0

5. The non-Knear correction
For this particular case matrices and vectors of (32) take the form:

J I § 3
= 2y DA 1
B=2e [ [ [ [ [4o4p] cu ca AT T (35)

k=0 n=1 1=0 m=|

J . 2
bia = 1e| TP AP A 4P [ o 0, 0 0y (36)
st LD

For conservative nop-gyroscopic systems, the expansions of O, (w4,vy) and Pu(4,v,) are
restricted to those termos which are consistent with constant amplitude, standing wave normal
modes. They are:

Ou(i,vy) = aydy + @i + ag Vi + Gga + Vg + . (37a)
Py, ) = by + b+ by, + b + .o ' (37b)

In this expansion the only non zero coefficients are:
Qe = by = 1 (382)

(T - B) By
= 3
I N ) (380)

6 B
o= . 38¢
Y = G ® 00 ) (8

with
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-
Boos = ] B} o

j=1

30§ - 08
b = Gy ~——2——( %W (39
by = ag, (40)
The corrected fundamental frequency is:
3 U3
0 - 0, + Foom 8 @1
1
and the corrected fundamental normal mode is:
- .
X = Uy x® + | x age U +... o “2)

i=2

6. Conclusions

While the above method is in some respects similar to standard perturbation techniques, a
comparison between the results obtained by this method and those obtained using a combination of
harmonic balance and eigenfunction expansions shows that different results are obtained for the
nonlinear mode shapes, even for the simple example presented here.

The approximations for the frequency of nonlinear modal oscillations agree to first order, but
the discrepancies in the mode shape approximations at first order will lead to differences in
higher onir frequency estimates. The present method is based on the fundamental principle of
dypamic invariance and the results obtained here are expected to be the correct ones.

Employing two Galerkini projections is a computationally efficient technique as it allows the use
of two different values for the dimension of matrices and vectors: J, a larger ome, for the
first projection then reducing the approximation error, and N, a lower one, for the second
projection then reducing de computing time.
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