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Abstract

Several methods have been proposed for cons1IW:ting the oonlinear IlOIlIUII modes of contmuous systems. AIl of them need
lbe linear eigenfunclions of the problem as a first srq>. In this pope< the case when these cigen1'unclions and eigenvalues are
not at hand but their approximations, is studied. The method is applied to the cak:uIalion of lbe non-linear axisymmetric
frequency coefficients and amplitude-dependeDt mode shapes of a oimply IUpported ciIcnlar plate. Tbe plate i. pariially
fuunded OD a cubic non-linear fuundalioD. The approach beIe presenled combines the optimized Rayleigh-Ritz method with
the invariant m.aaifold techniques. Tbe approach is applicable to a wid. variety of .ystems. In such cases where lbe exact
501utiPo of the linear systan is known the first step may be oveni<lden and lb. teCCntly developed Shaw and 'Pierre method
may be. aplied.

Introduction

Several methods have b-een recently proposed for constructing the nonlinear normal modes of
continuous systems [1-6}; They can be divided roughly into three groups. In the first group it's
postulated a dependence of the solution on time in the form:

N

W(X,t) = I q,n(x) cos nwl

n=O

Then the method of harmonic balance is used to obtain nonlinear boundary-Value problems of the
q,D' In the second group is the Galerkin procedure to discretize the problem. In this case the
exact solution is approximated in. the form:

N

W(X,I) = L q,n(x) qn(t)

where q,,(x) are the linear undamped mode shapes. Substituting this expansion into both the
partial differential equation and the boundary-value conditions a system of ordinary nonlinear
equations governing the modal amplitudes qn(t) is obtained. Then a number of perturbation
techniques may be applied to the discretized equations.

Finally the third group, includes the method of multiple scales. The governing partial
differential or integral partial differential equations and boundary conditions are directly
attacked and no assumptions are made a priori regarding the spatial or temporal dynamics of the
system.

It's important to notice that all th~ above mentioned methods ne~d the eigenfuncti0!lS of the
linear problem as a first step. In thiS paper the case when these elgenfunctlons and eigenvalues
are not at hand bUI their approximations, is studied. Among a wide variety of methods known as
·weighted residuals· both Galerkin and ~eig~-Ritz have prov:en to be v~ry efficient o~ for
obtaining solutions of the linear partial differential equations modelmg small amplitude



vibrations. They work fine in systems with a great variety of boundary conditions [7] and there
is a total equivalence. between both, in those cases where a functional may be found [8].

Any convenient family of functions satisfying 'the boundary conditions may be employed as a basis
for both the Galerkin projection or the Rayleigh-Ritz functional minimizanon approach.

Following Shaw [9] normal modes are vie~ as motions on invariant manifolds which are tangent
to, and of the same "dimension as, the linear eigenspaces in the system phase space. These
manifolds are the standard foliation of the center-stable manifold of the equilibrium point of
interest. The existence and smoothness of these manifolds in the conservative, Hamiltonian case
has been extensively studied. One of the important theorems is Lyapunov center's one which
states that if the Hamiltonian is Cl and the linearized system has purely imaginary eigenvalues
D, G = 1,2, ... ,m) such that for j ". k, DJ~'" n (n = 1,2, ... ) then there exists m two-
dimensional, local Cl invariant manifolds. these are the nonlinear normal mode manifolds of
interest here, and each one contains a one parameter family of periodic solutions. In what
follows this nonresonant condition is supposed. to be satisfied. This invariant manifold approach
is applied in order to determine how the nonliDear coupling distorts the mode shapes and the
dynamics of the nonlinear system. At this point it is important to treat the linear modal
amplitudes and velocities as independent variables, as they provide the coordinates which
parameterize the manifolds. This procedure provides a systematic mean for, determining the
amplitude-dependent shapes of natural vibration of weakly nonlinear, distributed parameter
systems. The existence of these manifolds is extensively studied in dynamical systems theory
[10], but they have not been previously exploited for the construction of nonlinear normal mode
shapes and modal dynamics.

As an example we pr~nrhere the case of a simply supported circular plate partially embedded
in a non-linear elastic foUndation.

1. The system under ~',

Systems to which the method is applicable are those described by equations of motion of the
form:

a2w(s,t) + L[w(s,t)] + N[w(s,t)]
, afl

with linear boundary conditions at s = 0, 1

The operator L is taken to be a linear one while the non-linear operator N is assumed to posses
smoothness properties that allow it to be expanded to any desired order. Both operators are
supposed to act on the ~atial variable s only. The case N = 0 corresponds to the linear system;
the exact solution of thIS' 'linear problem may be expressed by a standard variable separation in
the form: .

where the nnderscript O,,~ that we are in the N • 0 case
Then a Stqrm Liouvilleprl>!>lem for the spatial part x(s) arises. Any convenient co:QIPlete family
of orthogonal functions {Yj(s), jcl,2, ... ,•••} satisfYing the bonndary conditions is to be used as
a basis for the expansion ,or x(s) as follows:

where the coefficients 1j"are obtained by an inner product of the last equation with each basis
function. As the basis iSjiD Orthogonal set. the A;'s takes the form:
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Aj= <X(s),rp/s»

with the inner product defmed as usual:

1

<j(s),g(s» = f j(~)g(~~
o

In the particular case of a circular plate with a non-linear elastic foundation here studied,
the differential equation is (see Figure 1):

D v4w + ph 8
2W + ~ (r) w + ."t<r) w3 = 0

at 2

D=.~
. 12(I-JL2)

I
bl--: c

2. The First Step: approximating the linear eigemunctioos.

In the Galerkin approach the spatial part of the linear solution is substituted by an
3IJProximated one:
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and then the time dependent approximate linear solution is proposed to be:

wOo(S.t) = X.(s) exp(±iOt)

Of course the finite set {¥'j(s), j=I.2 •...•N} generates a finite dimensional space instead of
the infinite dimensional one, required for the exact representation of x(s). Then when WOo is
introduced into the differential equation a spatial error function E1(S) arises:

The Galerkin condition states:

<E1(S)'¥'j(s) > =0 j=O.l •...,N (13)

it means that the error E1(S) has no co~nent on the finite dimensional space generated by
\'I'j(s)}, Thi;s condition implies that the ~ s must satisfy the following system of homogeneous
lInear equanons:

-02 < x.,'I'j > + <L[XJ,'I'j> = 0 j=O.l....,N (14)

The ~ts {OJ, j=I •...N} and. <Ar>. j.i=l•...N}, conStitute respectively the N eigenvalues and N
eigerrvectors of the operator L restricted to the N dimensional space. Once this system is solved
the corresponding set of approximate linear modes {X~I>,... ,x~N)} is easily obtained. The
functions in this set are now to be used as a basis for the second Galerkin projection as is
explained below, in the second step description.

On the other hand, in the Raleigh-Ritz method aconve.nient functional is minimized on the space
generated by a selected"family of functions satiSfying the boundary conditions. If the same
trial functions are used the calculations ·ateidl;ntical to the Galerkin projection.
In the case here studied an approximatioll .Cot',tIle plate transverse displacement, convenient in
the case of axisymmetric modes of vibration is:

N 3
- - \' \' -y-+2jW (r) $ W.(r) = L. LAj Cij R I

where thea/s and thefJ/s are determined by substituting each coordinate function into the
governing boundary conditions.

If use is made of the dimensionless variable r:::: ria and considering the case of a simply
supported plate, these boundary conditions can be written in the form:

~aw I '= - [ a2W + p. _1_ aW ]
• ar ar2 r ar

r=1 . r=1

'K. W Ir=1 = + [a(~~ L=1 (17b)

where d is the Laplace operator. ~. is the adimensional flexibility coefficient for the
rotational boundary spring and 1{. is the adimensional translational spring constant, given by:

a
~. = i0J



3

L Cij ( ('Yj+2j) ~. + ('Yj+2j)('Yi+2j-1) + 1L('Yj+Zj) )
i-I

3

L Cij ( K. - ('Yi+Zj)2('Yi+Zj-Z»)
i-I

The appropriate adimensional functional of the problem is:

J.d(W) .= Up + Vb + Uf - Tp

Up _ .•.0 JI[ (a2W + I aW)2 "2(1-1L) a2W ~} aw] r de
ar2 rar ar2 rar

'1/2
Ur = .•.DKr J W2 r de

111

are the potential energies corresponding to plate strain, plate boundary restraints, and
foundation elastic deformation respectively, while

1

Tp = 7rD 02 [J W2 r dr
o

are the frequency coefficient, and the dimensionless radio of inner and outer borders of the
foundation respectively.

In accordance with the Ritz method one requires:

aJ.d [W.]
- = 0a~

and from the non-triviality conditions one obtains the frequency determinantal equation. It's a
relatively easy task to obtain the frequencies with good precision but tor the calculation of
the .modal shapes a naive strategy is not sufficient. Thc system of linear equations to be solved



has a singular coefficients matrix. Pretending that a matrix is either singular or else isn't is
of course true anaIytically. Numerically, however, the far more common situation is that the
matrix is numerically very close to singular and roundoff errors in the machine render the
equations linearly independent. This problem particularly emerges if the dimension of the matrix
is too large. To solve it we employ a SingularValue Decomposition(SVD) technique. SVD methods
are based on the following theorem of linear algebra: any m x n matrix A whose number of rows m
is greater than or equal to its number of columns n, can be written as the rroduct of an m x n
column-orthogonalmatrix U, an n x n diagonal matrix W and the transpose 0 an n x n orthogonal
matrix V. The matrices U and V are each· orthogonal in the sense that their columns are
orthonormal [10].

3. The Second Step: Galerkin projection

The solution of (3) is now approximated by:

1

w.(s,t) = r xG>(s) q.(t)~. )

Here qj(t) represents the contribution of the jib linear mode to the response. When substituted
into the equation of motion. (1) a new error function ~(s) is obtained. Repeating the Galerkin
procedure above, but now projecting onto each X~i), the follOWingsystem of equations arises:

1

L qk<X~~>X~i» + L qk<L[x~k)].x~i>
k~1 k=1

+ <Nf [ qkX~t)].X~i» = 0
lk=1

<L[x~j)].x~>

the system (25) may be rewritten:

L (qk+U£ q,J <X~t),X~i» + G;(qI,···,Ql)
k~1

This system may be expressed in a matrix form:

B(q+A'q)+G=O

As {x~k),(k.=I •...,J)}is a set of linearly independent vectors, matrix B is non singular
has an inverse 8-1 • Pre multiplying equation (16) by this inverse matrix one obtains:

q+A'q+M=O

M(q) = B·I G(q)

(30)

(31)



For example in the case of a cubic non-linear foundation the vector M(q) may be expressed in the
form:

J

M;(q(t» = L L L L Bj~ J!.J- q, qm qn

with coefficient.~ /ljlmn depending on the nonlinearity.

~ a proof of the convergence of the method employed we study de case of a clamped circular
plate without foundation. In this case we have the exact solution at band. It's given by: _

with Ii and Ii the ftrst kind and modified Bessel functions respectively.
~ an example Figure 2a shows the fundamental modal shape for N = 10 and Figure 2b shows the
error between approximate and exact solutions. The maximum value of the error is apprWtimately
10-9• Table I depicts the convergence of the fundamental frequency as the number of terms
increases. - -

Convergence of the fundamental frequency in the case of a
clamped circular plate without foundation

frequency coefficient
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Fig. 2: a) Approximated fundamental modal shape for a clamped circular plate; b) Relative error
in the determination of the modal shape in (a)

4. The Third Step: invariant manifold approach

Equation (30) is analogous to that ob~ed by. Sba~. His method may now be applied in a
straightforward way as follows: (l) equation (30) IS wntten as a first order system form:

qlt) = Pi(t)



(iz) a key observation is to be made [9]: it is that for either a linear or a nonlinear system,
a normal mode motion is one in family of motions for which the system behaves like a second-
order nonlinear oscillator. Such a motion will take place on a two-dimensional invariant
manifold. For weakly nonlinear systems these manifolds are curved but necessarily tangent to the
linear eigenspaces at the equilibrium (w(S,t) 5 0); (iiz) the construction of the invariant
manifolds is carried out in the usual manner by first choosing (qk'P,J as natural coordinates
which describe the manifold for the klh normal mode and then assUIIUDgthat the motion on all
other (qj,pj) pairs can be described in terms of (qk'P,J; this restricts the dynamics of the
entire system to a two-dimensional manifold and defining (qj<.P..) = (Ut..v,J. a normal mode motion
is assumed to exist and be (at least locally) expressible in the torm:

qj(t) = Qik(Ut.(t),vk(t»

Pi(t) == Pik(Ut.(t). vk(t»

Substituting (34) in (30) the equations to be satisfied by the Qit.'s and Pij.'s are obtained. A
closed form solution of these equations is not generally attainable, but a local solution series
expansion near the origin can be obtained. The procedure is the standard one for the
construction of invariant manifolds [10]. °

5. The non-linear correction

J 3 J 3

B;j = 2~ L L [ [ [AtilAP)] Cnl< CmI 2k+21+~~i).ythl)+ I
k-O 0=1 1=0 ID=I

For conservative non-gyroscopic systems, the expansions of Q~(u~,v,J and Pik.(uk.v,J are
restricted to those terms which are consistent with constant amphtuae, standing wave normal
modes. They are:

Qik(Ut.,Vk)= a1ik"k + ~ikzq + aSikvf + a6ik"i + as;Av, +

Pik(Ut.,vt) = b2ikVt + b4ikUtVt+ bTtt"£vk + b9ikvi + .--

In this expansion the only non zero "coefficients are:

(7at- ill) fJollk~= I I('¥ - lP.) (90£ - lP.)

6~iill
(at - lP.)(90£ . lP.)

(37a)

(37b)
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1

fJ.... = L Bi} J.l:J11DD

J-l

3 fJ U:Z00 0+ ooסס 0
- 0- 80i

x(O)· = Uo X~o) + LxIi) tl6jO Uo +...
i~2

While the above method ill in some respects similar to standard perturbation techniques, a
comparison between the results obtained by this method and those obtained using a combination of
harmonic balance and eigenfunction expansions shows that different results are obtained. for the
nonlinear mode shapes, even for the simple example presented here.
The approximations for the frequency of nonlinear modal oscillations agree to fIrst order, but
the· discrepancies in the mode shape approximations at first order will lead to differences in
higher order frequency estimates. The present method is based on the fundamental principle of
dynamic invariance and the results obtained here are expected to be the correct ones.
Employing two Galerkin projections is a computationally efficient teehniqueas it allows the use
of two different values for the dimension of matrices and vectors: J, a larger one, for the
fIrst projection then reducing the approximation error, and N, a lower one, for the second
projection then reducing de computing time.
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