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Abstract: Elastic-degrading and damage models have proliferated in the literature~ Fun-
damental issues, however, still remain unsolved. Three specific aspects to which the author
has contributed in recent years, are reviewed and discussed.

Resumen: Los modelos de degradaci6n el3Btica y dano han proliferado en la literatura
reciente. Algunos problemas fundamentales, sin embargo, todavia no han sido resuel-
tos. En el articulo se repasan y discuten tres aspectos especificos en los que el autor ha
contribuido en los liltimos aiios.

Models for Elastic Degradation and Damage (EDD) based on loading surfaces have become popular
and widely used for constitutive modeling of engineering materials such as concrete, rock, ceramics,
etc. EDD, however, is considerably more complex than ElastoPlasticity (EP), with several challenging
questions that still remain unresolved. A number of formulations have been proposed, roost of them
with their own terminology and notation. Some of them include complicated features such as stiffness
recovery due to Microcrack Closure/Reopening (MCR), combination of degradation and plasticity,
and have been used to solve boundary value problems involving locaIization, sometimes without a
full understanding of fundamental aspects. In this paper, the author reviews advances and pending
problems in three areas: unification and standarization of EDD formulations, formulation of MCR
effects and localization analysis based on the acoustic tensor.

Effective development in a field requires first a common terminology and notation. Recent years
have seen various attempts to provide such a theory for EDD models based on a loading surface.
The literature, however, still shows large dispersion of notations and approaches. One factor is the
role of thermodynamics in EDD models, notably more important than it is in EP. This has caused



historically a tendency to describe EDD in a different, more abstract way, resorting to concepts
which are not as familiar to engineers as strain, stress or stiffness. Pioneering work by Dougill
(19'76), Hueckel and Maier (1977), Ortiz (1985) and others [1, 2, 3], however, already suggested that
EDD models could be indeed formulated in a similar way to well known EP, and this should facilitate
standardization. Such a general formulation was proposed recently by Carol, Rizzi and Willam [4],
and is summarized in the following.

Eijkl and Cijl" denote the component.s of the elastic secant stiffness and compliance tensors E and C,
that remain constant during unloading/reloading, and that are symmetric to avoid spurious energy
dissipation or generation under closed stress or strain paths [4].

A loading function F(tJ, p) is used to define an elastic domain F <0 in which no further degradation
takes place (the secant stiffness remains unchanged). At the loading surface F=O, further degrada-
tion may occur, which is accompanied by increments of degmding "tmin, Clj• The degrading strain is
defined as the excess strain beyond the value that corresponds to the increment of stress according
to the current secant stiffness (Fig. 2).

With these definitions, the following set of rate equations are (;onsidered

Uij = Eij1c,(ikl - ~,)

(with ffl;j =: optionally)

. aF] aF]WIth ntj==-- and H==--aai; ~=ct a>. a=t

m defines the directions of the flow rule for degrading strains (38), that can be derived as the gradient
of the potential Q (3b). Eq. (4a) represents the consistency condition, and H has the usual meaning
of a hardening/softening modulus. The previous equations can be combined in the traditional way,
yielding the following expressions for the degrada.,tion multiplier and the tangent stiffness:

j = ncdEcdklfkl

H + I'lpqEpqrsffirs



Eqs. (2-5) are analogous to those in classical plasticity except for the secant stiffness instead of the
initial stiffness, and the degrading strain which takes the place of the plastic 8trlUn. F and m are
assumed to be defined in such a way that the denominator H+'npqEpqr~Tnr~ remains always positive.
The model is called associated in the stress space when m is proportional to n and consequently the
tangent stiffness exhibits major symmetry. If m is derived from a potential Q, associativity can be
alternatively stated as Q=F.

2.2 Degradation role for compliance

In contrast to plasticity, however, the previous Eqs. (2) to (4) (and the additional definitions inherent
to H) are not sufficient to define the evolution of an elastic-degrading model, since no evolution law
has been specified for the (variable) secant stiffness. In order to do that, (1) can be differentiated and
compared to (2), and relation Eijkl =-Eijpq6pqrIEr~'" (obtainded from differentiation of E: C=I)
substituted, leading to

which provides the relation between secant compliance and degrading strain rates. When the first is
known, the second follows (but not the opposite). A "generalized flow rule" or degradation role for
the secant compliance can be defined and related to the flow rule for the degrading strains [4]

.\ specifies the magnitude and M the direction of the rate of change of C, and (7b) follows from
replacing (3a) and (7a) into (6b). This growth equation (in essence equivalent to Eq. 2.7 in [2] and to
Eq. 3.36 in [3]), indicates that once the degradation rule has been established, the corresponding flow
rule for degrading strains follows automatically. The requirement that E and C must remain always
symmetric requires that M is also symmetric. Similar to m, M can be also derived from a degradation
potential Q', although this requires recourse to some concepts of thermodynamics as explained in [4].
With the defiuition of the degradation rule, the elastic-degrading formulation is closed. The final set
of equations strictly necessary to integrate the model for a prescribed strain history reduces to (5a),
(7a) and (1) (plus the definitions inherent to H). In addition, equation (5b) with m from (7b) is
also necessary to implement the tangent stiffness for incremental-iterative solution procedures, or for
localization analysis, as developed in sect. 4.

In elastic-degrading formulations the state of degradation is characterized by the secant compliance
(or stiffness) tensor itself, with 21 independent components, and the corresponding evolution laws
must also involve 21 components (those of the tensor Mijld). Alternatively, it is reasonable to
assume a reduced set of variables which still fully characterize the state of degradation or damage
in the material, for which simple evolution laws can be postulated. These are the damage variables,
V., the number and nature of which (scalar, vectorial or tensorial) does not need to be specified
for the development of the general theory (the subindex * represents the desired number of indices).
According to that concept, one can write

. {JCijld .
Cijkl = --1).avo

where Cijld are a set of known, continuous and differentiable functions and repetition of subscript
* implies summation over all the indices represented by the symbol. A flow rule for the damage



variables 1)., can be formulated, and its relation to the flow rule for compliance can be established
[4] 88

Similar to (3a) and (7a) , ,\ specifies the intensity and M. the direction of the increment of the
damage variables in the damage space. The final equations for the evolution of elastic damage are
the same as for the elastic degradation where Mijkl is replaced by M. according to (9b).

2.4 General fonnulation for associated (I-D) scalar damage models

Using the unified theory described in previous sections it is possible to derive a general formulation
for associated scalar damage models of the traditional (1- D) type. In [4], this is done in terms of
strain, and it is shown that it includes 88 particular cases a number of models of this type found in
the literature [5, 6, 7J. Here, the derivation is presented 88 stress-based and with a different choice
of the scalar multiplier,\, although the resulting formulation is fully equivalent. First, consider the
traditional assumption for the 8OC8IltstiffnC8ll, and the corresponding inverse equation in terms of
compliance:

1
C;jkl = (I_D)C'?;kl

The choice of damage v-driable and scalar multiplier, and the subsequent identification of degradation
rules for damage, stiffness and stress, leads to:

. b
~= (I-D)'

This definition includes loading functions of the type F = f(w, D) - r'(D) since for F = 0 one can
isolate w and rewrite as above. As particular cases of f(w,D), the cases with functions based on
the stress-based or strain-based undamaged free energies wO = UijC~kIUkl/2 = (1- D)w or wO =
4jb1;kl€kI=w/(I- D) are also included. From F, the gradient in stress space can be obtained

njj turns out equal to fflij which means associativity in the stress space. From F one can also obtain
the hardening moduluB If=-oF/o;, for conBtant stress, which, given (l1b), is

. Or
H= -w+(I-D)-aD
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Finally, with ffltj, 'ni; and H, one can obtain the following expressions for the tangent stiffness:

H=W+(I-D>:

3 Spurious Dissipation in Microcrack Closure/Reopening Models

Stiffness degradation is normally attributed to opening of microcracks subject to tension. This poses
the additional problem of modeling stiffness recovery when stresses are reversed and microcracks
close. Normally, MCR etJectsare introduced by resorting to spectral decomposition of strain (or
stress) into positive and negative parts E=E+ + E-, and by defining the 4th order projection opera-
tors E+=P;-E and E- =P;-E, that are functions of strain (or stress) state. Then, the active stijJne88
is defined as a combination of initial and secant stiffness, e.g. EIIC= EO-Pt(EO -E)pt [3, 7, 5].
The formulation of MCR effects, however, should satisfy certain fundamental principles. Recovery of
stiffness does not mean that the degradation process which led to microcracldng is reversed; it is only
a transient closure, and reopening of the same microcracks should occur upon new tensile conditions
without additional energy dissipation. Assuming that no further degradation occurs during opening
and closing of existing microcracks, this can be stated 88 that the MCR model should conserve. energy
along the line of hyperelastic solids. In Carol and Willam (1994 and 1996), [8, 9] various types of
models are examined with regard to this postulate. The concept of spurious dissipation (that should
be zero if the formulation is conservative) is introduced. General isotropic as well as some specific
anisotropic secant stifFnesses are examined with different projection operators. Results show that all
MCR models are energy conservative when the secant stiffness is isotropic, but all of them exhibit
significant spurious dissipation if anisotropic secant stiffness is subjected to stress/strain histories
which involve rotation of principle axes. The conclusion seems general for all MCR models based on
positive/negative tensorial decomposition of strain. The only type of formulation that seems capable
of representing these effects with anisotropic degradation and no spurious dissipation, would be along
the line of the microplane model [10, 11], with opening/closure conditions decided independently for
each orientation in space, and where the active stiffness is obtained by integration over the appropri-
ate subdomain of the solid angle [8]. Beyond energy conservation, additional requirements have been
proposed concerning convexity of the corresponding energy potential [12]. A fully consistent fonnu-
lation of MCR effects valid for the recovery of both isotropic and anisotropic degradation remains,
therefore, an open subject for which further research is required.

4 Localization of Elastic-Degrading Models

The availability of general expressions for the tangential operator Etan of EDD models [4J, immedi-
ately suggests the possibility of a bifurcation study based on eigenvalue analysis of EtaD itself and
of the associated localization tensor QtaD, in analogy to elastoplastic bifurcation [13, 14J. Such an
analysis provides information about the failure modes, which are specially important for their imple-
mentation and use in the context of FE computations. Preliminary results were presented by Neilsen
and Schreier (1992) [6]. In 1995, Rizzi, Carol and Willam [15, 16J used the plasticity analogy of EWt

to extend the cloaed-form solutions proposed for EP [17, 18], to scalar damage models subjected
to various loading scenarios in plane strain, plane stress and 3D. In those references, the solutions
were presented in terms of strains. Here, equivalent solutions are presented in terms of stress, which
provides simpler expressions and other interesting advantages.



.1.1 Solution for iIcrit(N)m 3D

The general solution propo.'led by Ottossen an Rlwesson [17] for the critical ~ue of the hardening
modulus required to obtain singularity of Qjk for a plane of given orientation N, can be written as:

Due to the pefect analogy of the expresion of Etan, these equations are valid also for elastic degrading
materials provided Eijkl represents the secant stiffness instead of the initial.

In the case of traditional scalar damage as described in Sect. 2.4, n;j = Tnij = (ij and Eijkl =
(l-D).E?,;kl=>'OijOkl+J.t(OikOjl+OilOjk), where >'=(1-D)>.O and J.t=(I-D)J.t°. By substituting those
expressions, one can obtain

where UN and UT are the intensities of the normal and shear components of the stress (traction)
on the plane of orientation N. Eq. (18) is equivalent to its counterpart in terms of strains, Eq. 39
in [16]; one can be converted into the other by using (Ia,b) and (lOa). Smilarly to that case, the
localization condition in terms of stresses (18) can also be represented graphically as an ellipse in the
Mohr axes UN, UT. Here, however, the representation is simpler since the ellipse has a fixed center
at the origin, while in terms of strains the center moved along the horizontal axis depending on fV.
The major and minor axes of the ellipse are given by. J(>.+ 2J.t)H and .;;ii respectively.

4·2 Maximization with N
The onset of discontinuous bifurcation at material level will be obtained by maximizing iIcritwith N,
which will give iIdb and Ndb• Graphically, that is equivalent to establishing the tangency condition
between the ellipse (that shrinks as loading progresses because II and the secant moduli decrease) and
the largest Mohr circle of stresses (that expands with increasing load). Geometrical considerations
lead to the following three cases of tangency depending on the ratio between Ul +U3 and Ul -U3:

Case (a) corresponds to tangency on the right hand end of the ellipse where the radius of the Mohr
circle is smaller than the radius of curvature of the ellipse at that end. In this case, the first plane to
satisfy detQ = 0 coincides with the plane of major principal stress. The corresponding strain-based
hardening modulus is obtained by enforcing that UN= Ul. Describing the localization direction in
terms of the angle (jdb between N and the major principal stress, in this case we have



-db £1JH =--
.H2Jl

Case (b) is more complicated with tangency at intermediate points of the ellipse. Writing the
corresponding equations and enforcing a single solution, one obtains:

Hdb=!.(£11-£13)2 +_1_(£11+£13)2 (22 b)
Jl 2 .\+Jl 2 a,

It is immediate to verify that, in the limit cases given by inequalities (19), these equations collapse
into (20) and (21) The usual stress-based hardening softening modulus H is related to iI in previous
equations using iI = H+najEijklmkl, which in this model can be rewritten as

with w=eurrent elastic energy (12b). Note that, while Bdband iI are independent of the intermediate
principal stress £12,H in general is not, because of the term w.

The previous equations can be used to study specific loading situations. The first example is uniaxial
tension, where £11>0 and £12=£13 = O. Since 0 < 1-2v < 1, this corresponds always to case (b).
Substituting the values of the stresses and introducing w=£1l!E, Eqs. (22-23) yield

tan2 udb = _v_
I-v

2
Jrlb = -~£1f

E

The angle reproduces exactly the formula obtained in (16J, which exhibits a dependence on the
Poisson ratio not observed in yon Mises plasticity, with edb=O for v=O, Bdb=33.21° for v=0.3 and
(Jdb=45° for v=0.5. On the other hand, Hdb is always negative indicating that a certain amount of
softening is always required to achieve localization.

The second example is uniaxial extension, where (11 > 0, £13= 0 and £2 = O. This case would
correspond to an apparent uniaxial tension state applied under plane-strain conditions, with out-of-
plane intermediate stress £12. The definitions of the three cases and the localization angle do not
depend on £12and therefore they are the same as before. H however does depend on £12through the
elastic energy w, and this leads to the new value Hdb = 0, i.e. no softening required in this case.

The third example is pure shear, with £11>0, £12=0 and (13=-£11. This also corresponds to case (b),
and applying the various expressions we obtain the results Hdb=O and Bdb=45°. Additional results
for scalar damage and plane stress can be found in [16J.

The formulation of degradation and damage in a format which is similar to classical elastoplasticity
offers several advantages. One is to standarize the notation and terminology, which is always neces-
sary to advance in any field. Also, it becomes possible to use a number of existing developements
such as some analytical solutions for the localization condition based on the acoustic tensor. Damage,
however, is more complex than plasticity and poses a number of new difficulties not completely solved
at present. Recovery of stiffness upon load reversal in a fully energy-consistent framework is one of



them, since the formulations proposed to this, end in the literature all seem to generate/disipate
spurious energy if used in conjunction with anisotropic degradation. With regard to the localization
study, existing solutions from plasticity can be used to obtain the critical hardening modulus for
any given plane orientation. The subsequent maximization process is however considerably more
complicated in the general case of anisotropic degradation. The elastoplastic solutions can only be
applied directly to traditional scalat damage of the (1 - D) type, yielding some new dependencies
such as the one on Poisson ratio. Recent studies extend these solutions to scalar damage combined
with von Mises plasticity [19].
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