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Resumen

Se presenta la simulacién computacional de deformaciones elasto-pldsticas inducidas por

" movimiento de defectos en cristales. Se adopta un modelo constitutive que vincula las
fuerzas impulsoras con la velocidad de las dislocaciones. El modelo hace uso de las relacio-
nes entre el tensor de deformaciones plasticas y el de densidad de dislocaciones. Dado un
cristal bajo ciertas condiciones iniciales y de contorno, se obtiene la evolucion del campo
de dislocaciones y de las deformaciones clasto-pldsticas mediante la resolucién acoplada
del sistema de ecuaciones resultante de la ecuacion de equilibrio y del balance de dislo-
caciones para cada paso de tiempo. Se discretiza el sistema de ecuaciones mediante el
método de los elementos finitos. Se ilustra el modelo a través de la simulacién del movi- -
miento de un campo de dislocaciones de borde que produce una banda de deformaciones
de corte en un monocristal.

Abstract

The computer simulation of elastic-plastic deformations induced by crystal defect motion
is presented.  The constitutive model relates the driving forces with dislocation veloci-
ties, The model makes use of the coupling between the plastic deformation rate and
the dislocation velocity. Given a crystal under certain boundary and initial conditions
the evolution of both dislocation field and elastic-plastic deformations is obtained by so-
Iving the coupled system of equations resulting from the equilibrium equation and the
dislocation balance for each time step. The set of equations is discretized by the finite
element method. As an example the movement of edge dislocation field inducing shear
band deformation in a monocrystal is considered.

Introduction

In continuum mechanics two different approaches may be identified for dislocation modelling.
The first one considers the dislocations as discrete lines in an elastic continuum; the second, as
a 3-dimensional region the dimensions of which are determined by the assumed size of the disloca-
tion core. An important drawback of the first approach is the discrete character of the dislocation,
“which represents a singularity within the continuum description of crystal deformation. As a result
stresses grow to infinity along the dislocation line. The second drawback, even more serious, is that
as a discrete model it cannot be implemented in continuum mechanics based on numerical methods,
e.g. the finite clement method. In spite of this, many attemptis are presently undertaken for di-
slocation modelling in a finite element context. Among them, Stigh [6] makes use of a cut-off and
welding technique to insert the elements which simulates the dislocation. However, such an approach
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1n practice does not allow to model the dislocation movement. In other approach Canova et al. [1] -
have used a model where discrete dislocations travel across the elements “jumping” from node to
node. In this approach the direction of dislocation movement is limited by the discretization.

In the present work the method developed by Dluzewski and Antunez {3] has been used.

Linear continuum dislocation theory
In the framework of the linear continuum theory of dislocations, the gradient of displacements can
be decomposed as follows i
‘ Vu=w+e.+& (1)

where w is the antisymmetric tensor of crystal lattice rotation, €. is the elastic deformation tensor
while €, is the (generally non-symmetric) plastic deformation tensor.
The dislocation density tensor is defined as

ay ¢ curle, (2
(see e.g. {4]), which reads, in index notation
Qdij = EpimnCimn (3)

where €jm, is the permutation tensor. In the linear theory it is also assumed that the plastic
deformation rate satisfies the kinematic condition

€y =ag X vy (4)
where v4 is the vector of the local velocity of discolations. The absolute dislocation velocity is written
as v + vg where v is the velocity of material (mass velocity).

Set of equations and unknowns
The dislocation field motion for quasi-static isothermal elastic—plastic problems can be described by
the following set

dive = 0 ‘ (5)
a, = curlg, (6)
€p = @pxvy M

with the constitutive equation relating the stress and the dislocation velocity vq

¢ = D(Vu-e,) ®)
va = ’}‘Adfd 9
pa

where D and A are respectively fourth and second order tensors depending on the material constants,
while f3 is the Peach-Koehler force {5] defined for a continuous dislocation density field. This force
is expressed by
Jfai = oiragjiin (10)
In order to reduce the number of unknowns we have additionally restricted the problem to the
conservative motion of edge dislocations. Moreover, limiting the dislocation motion to pure slip, the
plastic deformation tensor reads

€p = Pboa (]1)
where the tensor £, is taken as a constant and is expressed by
bq ba
o= = @ (1 x = 12
“ = byl © 4% o) 2
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where by and 1 are the Burgers vector and the unit direction vector along the dislocation line,
respectively. Taking into account the preceding relations, the equation system (5)-(7) reduces to the
following set

dive = 0 ‘ (13)
pa = —div(pava) (19)
Yo = vapaba (15)

where by = |bg|, va = |va|, while the stresses and dislocation velocity fulfill the following constitutive
equations

¢ = D(Vu-1e,) » (16)
Yq = /\dbda 1€o (17)
Aq is the nonzero component of A4 such that
bg ba
Ad=Mar— @I x — 18
d dlbdl ( |bdl) ( )

Summarizing, the unknowns are: displacements — u;, uy, scalar dislocation density — pg, and plastic
deformation 7p. ’ ’

Numerical algorithm
The numerical simulation of dislocation motion was carried out by introducing the corresponding
numerical procedures developed to this purpose to the FEAP program [7]. Available elastic-plastic
programmes (like the one quoted) calculate each deformation increment without distinction of elastic
and plastic component. These models are approximated and do not assure good results during
unloading. Therefore in the presented algorithm we have chosen a more exact, but difficult approach
based on the separate modelling of elastic and plastic deformations.

The equation set to be solved is given by equations (13)-(15). They constitute a nonlinear
coupled set in which the displacements u,, u,, dislocation density pq and plastic deformation 7, are
the unknowns. The latter is treated as internal variable and is calculated by integration along the
process history, while the other three are nodal variables. Time integration is performed by the
(implicit) backward Fuler algorithm. The balance equation for forces is written in rate form. After
discretization the algebraic equation system reads

5 ellz][%]-1] o

where a,, a,, f, and f, are the displacement, dislocation density, nodal forces and nodal dislocation
flow vectors, respectively, while a, is the plastic deformation vector at the Gauss integration points.
Moreover,

C. = / V™W,DVNdv (20)
c, = / W, ® Ndv (21)
P, = — / V™W,De bapavady 22)
by
— T e
P, = / VW, e vaady (23)

where W, and W, are weight functions for displacements and dislocation density, respectively. N
is the shape function and pg, and vg, are, respectively, the dislocation deusity and velocity. This
velocity is determined at the Gauss points as

va = AgbaDe (VN @ a, — 1,£.) (29)
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Figure 1: a) Element grid with loading and boundary conditions, b) detail of the mesh refined region

The matrix equation (19) can be considered as the nonlinear ordinary differential equation system
with respect to the a vector ’
Ca+Pla)=f (25)

By use of the backward Euler scheme for time integration, equation (25} has been replaced by the
relation

EC (ant1 — 3n) + P(any) = f (26)
from which we obtain an4; for £,4;. In that case, (26) car be solved by the Newton-Raphson method.
Then the tangent stiffness matrix has the form

KGO = C P

T =t PRCN (27)

After substituting (22) and (23) and carrying out the differentiation we get

P [ §, VW ,De baparabae DVNdv [, VIW, De baugNdv (28)
8al 3"1 ~ fu(V"‘W,,i%h)pd)\deoDVNdv f"(VTW,,ITb;:T)dedv

In the present formulation the Galerkin method has been applied, i.e. W, = W, = N.

Numerical example
Let us consider the possibilities concerning the boundary conditions to the set of equations (13)-(15)
corresponding, respectively, to the variables u, pq and ¥,. For the first we can specify either displa-
cements or boundary tensions, while for the second, dislocation density values or dislocation flux
g = n - v4ps. However we can notice that equation (15) does not require boundary conditions. In
our simulation a square region of 108nm x 108nm, has been divided into 402 elements as shown in
fig.1a, with a refinement up to an element size of lnm in the region where the dislocation field is
expected to propagate (fig 1b). The domain has been fixed by constraining the vertical displacements
in the lower boundary and by additionally fixing the horizontal displacement of the left lower corner
node, in order to eliminate rigid body motion. On the left boundary nodal forces are imposed which
induce a shear stress field oy, see fig.2. The material constants used in this simulation are summa-
rized in table 1. With respect to the initial conditions for the dislocation density field, it is worth to
point out that the developed numerical algorithm does not allow to directly specify an initial field
for it with automatic generation of the corresponding (according to equation (16)) residual stress
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| Physical quantity | Value

Kirchhoff modulus G 0.3 x 10° MPa
Young modulus E 0.7 x 10°* MPa
Burgers’ vector b 0.3 am
Viscosity coefficient A 1x 1078 %

Table 1: Material constants used in the model

field. For this reason, zero initial dislocation density has been assumed in all the discretized domain,
pa(x, t)=o0 = 0, so that 7p(x,t)|¢~o = 0, and additionally, a constant-in-time incoming dislocation
flux g=1x lO‘“m 1s~1 is specified between nodes 85 and 105. For the rest of the boundary py = 0
is imposed. Edge dislocations are being modelled, and the Burgers’ vector components are

b, = c0s20°-0.3nm (29)
by, 8in20° - 0.3nm ~ (30)

l

The dislocation entering into the discretized domain propagate across the elements dragged by
the forces arising from the stress field. Under the effect of the flowing dislocation field the discretized
domain becomes gradually unloaded. Figure 3 shows the stress field at the end of the process, while
figure 6 presents the final configuration after 25 times magnification of the displacement field.

Conclusions from the computer simulation
The formulation presented here is one of the first attempts of simultaneous application of the conti-
nuum theory of discolations and the finite element method for computer simulation of elastic-plastic
deformation processes. In what concerns the deformation mechanism description (plastic flow rule),
the continuum dislocation theory results directly from the mathematical description of experimental
observations. On the other hand from the qualitative analysis of the obtained results, it should be
said that they remind rather a heat diffusion process.in a continuous medium than the really obse-
rved dislocation motion. We can ask Which is the main reason for the qualitative differences between
the real dislocation flow process and the computer simulation results? In the authors’ opinion, it
is not due to an erroneous kinematic assumption in the continuum theory of dislocations (plastic
flow rule), because the process history does not depend only on the kinematic assumptions, but and
mostly, on the thermodynamic forces which govern the process. To appreciate what au essential role
these forces have in the gualitative evolution. of the plastic deformation process, it suffices to compare
photographs of the deformed microstructure pattern corresponding to materials with low and high
stacking fault energy.

A crucial question arises, then: which forces should be considered in the continuum theory of
dislocations, in order to have a better description of the problem. An important argument here
is that material structures corresponding to a quasi-uniform field of monomial dislocations are not
found in practice. Moreover, in spite of the fact that the dislocation motion is generally accepted as
the fundamental mechanism of crystal plastic deformation, the lattice curvature observed in mono-
crystals are usually measured not in degrees but in minutes. This fact supports the statement that
structures with high dislocation density tensor (that is, high lattice distortion) are a very high energy
structures. Therefore, when in the continuum theory of dislocations the dislocation field ag{x, 1) is
assumned, it should not be simultaneously assumed also that the free energy does not depend on 4.
Unfortunately to such assumption, which is classical in the continuum theory, we have limited in
numerical implementations.
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Figure 2: State of stress in [MPa], at time t = @, - right: detailed view of the area with highest
stress gradient '
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“igure 4: Sequential stages of dislocation density field propagation, continued in the next figure
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Figure 5: Sequential stages of dislocation density field propagation
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Figure 6: A fragment of the final configuration (t=1.2s) with a 25 times displacement magnification.

Acknowledgement ‘
This research was supported by the State Committee.for Scientific Research (Komitet Badad Nauko-
wych) under Grant No. 7T07A01009 entitled Tensor measures of structural defects in description of
mechanical properties of materials.

References

[1] Canova G.R., Bréchet Y., Kubin L.P., Devincre B., Pontikis V. & Condat M., 3D simulation of
dislocation motion on a lattlce Proc. Int Coll. DISLOCATION 593 Mlcrostructures and Physwa.l
Properties (ed. L.P.Kubin et al.) Aussois 31 March- 9 April, (1993) France.

[2] Diuzewski P. On geometry and continuum thermodynamics of structural defect movement. Mech.
Mater. 22, 23-41 (1996).

{3] Dluzewski P. & Antinez H. Finite element simulation of dislocation field movement. CAMES 2,
141-148 (1995).

[4] Mura T., Method of continuously distributed dislocations. Mathematical Theory of Dislocations
(ed. T. Mura), 25-48. The American Soc. Mech. Engineers, New York (1969).

{5] Peach M.O., & Koehler J.S., (1950) The forces exerted on dislocations and the stress fields
produced by them. Phys. Rev. 80, 436.

[6] Stigh U., (1993) A finite element study of treading dislocations. Mech. Mater. 14, 179 187.

[7} Zienkiewicz O.C. & Taylor R.J., The Finite Element Method 4th ed. Vol.2, McGraw-Hill, London
(1991).




