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Se present a un elemento de contacto con fricci6n para procesos estacionarios de confor-
mado de metales. Conjuntamente se desarrolla Ill.formulaci6n para el ana.Jjsis de sensibi
lidad al coeficiente de fricci6n segUn Ill.ley de Coulomb. El interes de semejante modelo·
resulta del ana.Jjsis de procesos de larninaci6n, corte, etc., donde debe determinarse Ill.
zona de contacto existiendo un estado estacionario durante Ill.mayor parte del proceso.
La formulaci6n de flujo result a un metodo adecuado para modelar eficientemente esta
situacion. Los elementos de contacto imponen una restricci6n en Ill. componente de Ill.
velocidad normal a Ill.superficie de contacto y una fuerza tangente opuesta a la velocidad.
Las partes del contomo que no estan en conta,{.-toSOD tratadas como superficies libres, las
cuales deben cumplir Ill. condicion de ser llneas de corriente. Se presenta el ana.Jjsis de
sensibilidad con respecto al coeficiente de fricci6n mediante el metodo de diferenciacion
directa. Se discute el efecto de variar este parametro para un caso de extrusion y otro de
corte.

A simple element to model frictional contact in steady state metal forming processes is
presented together with the sensitivity analysis to the friction coefficient in a Coulomb
friction law. The interest of such model arises from the analysis of rolling processes
and a. two dimensional approach to cutting problems, where the contact zone is to be
determined, however a stationary state is present in most part of the operation. The
flow approach proves to be an adequate method to handle efficiently this situation. The
contact elements impose a restriction in the velocity component normal to the boundary
and a tangential friction force opposite to the velocity. The parts of the boundary which
are not in closed contact are treated as free surfaces, which must fulfill the condition of
being streamlines. Sensitivity analysis with respect to the friction coefficient is performed
by the Direct Diffe::entiation Method (DDM). The effect of variations in this parameter
is discussed for the simulation of an extrusion and a cutting problem.

1. Introduction
Numerical simulation of metal forming processes is a very clear example where the theoretical models
can have important practicai applications. In the last decades this field has been continuously
developed by researchers encouraged by the interest shown by the industry. This development was
made possible by the increasing a.vailable computing (",apabilities. For metal forming modeling two
main a.pproaches ha.ve become classical: the so-call solid, displacement based, approach and the flow



approach based on velocities, formulated in a.n Eulerian description. This one is best suited for
procesSell involving large displacements but where the ma.terial particles follow the same paths, in a
stationary state. In that case the whole problem is more simply described by giving the velocity field.
Extrusion, rolling, and under certain assumptions, cutting are typical examples of such processes.
In another context, sensitivit.y analysis has become a widely accepted element for evaluating engine-
ering problems. Applied most traditionally to structural mechanics, the advances a.nd developments
have mainly been done in this field. However other engineering problems have been enriched by
the knowledge given by the sensitivity a.nalysis and in some case been used successfully as a tool to
optimal design. Metal forming a.nalysis is one of the field where most recently these contributions
have appeared. There where some first applications of sensitivity a.nalysis to optimal design in metal
forming [1] but without use of the concept of sensitivity, at least without calling it in that way. The
gradients required in the optimization algorithm where calculated by the so called finite difference
approach. Use of sensitivity procedures to evaluate the derivatives of the basic problem variables
and of functionals built upon them was proposed for metal forming processes described in terms of
the flow approach in [2}and [3], accounting for material parameters, and in [4] to shape parameters.
In this paper a simple element to model frictional contact in steady state metal forming processes is
presented. The formulation aims to determine the contact zone a.nd simulate friction between metal
and tools in the steady state range of metal forming processes. The interellt in such a model comes
from the consideration of such processes as plane or tube rolling and a two dimensional approach
to cutting. A Coulomb friction law is assumed, a.nd sensitivity analysis to the friction coefficient is
provided as a byproduct of the analysis problem.
Since in the quoted processes the stationary state covers a major part of the operation, it is worth
taking advantage of this fact in order to avoid time integration, resulting in a simpler solution
and computer implementation. The flow approach[5j proves to be an adequate method to handle
efficiently this situation with a rigid-viscoplastic material model. A pressure stabilization procedure
proposed by Hughes et al.. [6} for Newtonian fluids in Stokes flow is extended to non-Newtonia.n
fluids and applied to eliminate spurious pressure modes. Then the pressure can be used both to
calculate friction force and to formulate a contact criterion. The contact elements are fixed to the
solid boundary and connected to the material.
When contact takes place a restriction on the velocity normal to the solid boundary is imposed via
the penalty method, while a friction force opposite to the velocity direction is calculated ta.ngentially
to the boundary. IT the contact condition is not fulfilled, the contact element stiffness ma.trix is
null. These elements are combined with the explicit treatment of free surfaces which proceeds by
integration along a streamline. Analysis of sensitivity to the friction coefficient is carried out by the
direct differentiation method. The procedure is illustrated by modeling an extrusion and cutting
problems. This paper extends previous results of the authors in sensitivity analysis of metal forming
processes [2, 3, 4J
First, the How approach is briefly recalled a.nd then the sensitivity analysis is developed following
the direct differentiation method, and illustrated with an extrusion and cutting process simulations.

2. Flow approach
For a wide class of metal forming operations, it can be observed that a Eulerian approach is best
suited to describe them. Besides, the metal under plastic work can be considered as a non-Newtonian
fluid and studied by solving the corresponding equation of motion from fluid mechanics. As it results
from an non dimensional analysis[7], the dynamic terms in the equation of motion can be neglected.
Therefore we ca.n write it in weak form

{ot·udU== {ovfdU+ ( 6vtd(OO) (1)
lfl . In lellt
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is the rate of deformation tensor, IT, .f and t are the stress tensor, body forces and boundary tractions
acting on n., respectively. Stresses and strain rates are related by the constitutive equation

• .I.
(70+ (th)n

p.= :it
is the equivalent viscosity which is a function of the equivalent strain rate defined as

10 6p iiidO = 0

After discretization by standard finite element techniques the system (1),(6) reads

K(/of) = 1p. kodO = 10 2p. BTBdO

K(p) = -I BTm&i!l (8)

Q = Jp NfdO+ [ Ntd(OOt}+F10 Jao.
the vector m = [1 1 1 0 0 OJconverting the total strain into the volumetric component, B denoting
the strain-rate-velocity matrix i = Bit and B the shape functions interpolating the pressure.
We can write (7) shorter, in the residual form

Equa.tion (7) corresponds to the equa.tions describing the nonlinear Stokes flow. By defining the
residual at the i-th itera.tion as

we obtain the solution correction 6q from setting equal 0 the residual at the i + 1-th iteration, which
is approximated by the first order Taylor expansion



2.1 Frictional contact
The contact problem for steady state How somewhat differs from the more traditional contact as
considered for transient, displacement based situations. In fact, boundary conditions have to be
adjusted in order to have no traction on the boundaries in cOntact with solid surfaces. This condition
allows the definition of a criterion for determining the point where the material separates from (or
enters in contact with) the solid boundary. Our analysis, with respect to the flow direction, deals
rather with the separation point, but it can be directly extended to the point where the free surface
meets the solid boundary, if such is the case.
Along the surface which may be either free or in contact with the solid boundary, normal velocities
are constrained to zero if the flow tries to get through the solid boundary, and they are set free if a
traction exerted on the flow by the wall is observed. That is, a fixed node of the contact surface is
released if the pressure is negative, and a free node is fixed if it has penetrating normal velocity. The
changes are performed one node at a time, on the neighbourhood of the present limit of the contact
zone, keeping the rest in the previous state. In this way, the separation point is adjusted until the
free boundary starting from it becomes a strt>.amline.
It is worth to point out that points on the free part of the surface may have a normal c.omponent of
the velocity directed towards the solid boundary. However, this does not mean necessarily that the
:Howgets through the wall.
The imposition of optional restrictions on the velocity component normal to the wall is achieved
by four noded contact elements which connect two nodes of the material with two auxiliary nodes
fixed to the solid boundary (velocities and pressure are constrained to zero). At the beginning, both
sides are coincident. If the element belongs to the free surface, the element matrix is null, and no
restriction is imposed to the degrees of freedom of the fluid. But whenever the contact condition
is satisfied, the normal velocity is constrained for the nodes in the fluid by equating them to their
counterpart on the solid boundary (which is equal to zero) via a penalty parameter. According to
the element numbering given in figure 1, the equations

are added to the global system in the respective equations for Va and V. through the element matrix,
being a the penalty parameter. Since VI and V2 are set to zero, the fluid normal velocities Va andV. will also be zero. In figure 1 the nodal velocities are given in the local coordinate system. If the
local axes are not coincident with the global ones, then the equations (16) are transformed and the
pt>nalty parameter will act in two equations of the global system for each node in order to assure
zero velocity across the boundary.
Then, upon integration of the free surface, no change will result in the nodes defining the surface
whenever the normal velocity is zero. This may happen either because the free surface is already
a streamline, or because it is in contact with the solid boundary. On the other hand, a different
updated configura.tion will be obtained if there is a non-zero normal velocity component.
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if (pressure in4 > 0)
otherwise
if (pressure in 3 > 0)
otherwise

With this same contact elements friction conditions can be imposed by means of the force vector. The
part of the boundary where the contact condition is active receives a distributed tangential friction
force which is proportional to the pressure and opposite in direCtion to the velocity, according to the
Coulomb friction law. (Other friction laws may also be assumed and easily implemented regarding
all the information available at the element level). Then if P3 and P4 are, respectively, the pressures
at nodes 3 and 4 (see figure 1), then the distributed friction force along the element side 34 will be

where,p = (x - X4)/(Xa - X4) and X4 S x S Xa is the local coordinate of side 34,0 S,p S 1 and 11 is
the Coulomb friction coefficient. This gives the equivalent nodal friction forces

~II(,!:-+~)
~II(~ + "t)

v f'Ivl 3
v f.'
Ivl 4

However, the actual friction forces will be bounded by the no-compression case (where the friction
force will be zero) and the sticking case, which gives the maximum (in absolute value) allowable
friction force, ft. Then the actual module of the friction force will be

for J. > Iftl
for 0 < J. < If: I
forj.<O

3. Sensitivity analysis
We consider now a general form of the sensitivity functional as

We wish to calculate the sensitivity of 4> with respect to a material parameter h entering the theory.
As h we may take any of the parameters of the constitutive equation (3)-(4) and in this case we talce
the friction coefficient 11.



Following the so-called direct differentiation method (DDM) we calculate the gradient

d~ 8~ 8<p ds 8~dq
dh = 8h + as dh + 8q dh

in which, given the solution of the equilibrium problem, 8~/8h, {}~/{}qand 8~/as are known, or can
be routinely obtained, and ds/dh can be written in an eaBily computable way as

ds ds dq
dh = dqdh

where ~ = {~dd~}, and, according to equations (3), (7) and (8)
dq dq p

Therefore, in order to compute d~/ dh by equation (21) only dq/dh has to be obtained from additiona.l
calculations. By differentiating the equilibrium equation (1) with respect to h we have

~(,.) = r ~ekodn + r (all dq) kodn
dh 108h 10 8qdh

By combining equations (24) and (25) we arrive at

This equation can be used for finding the nodal velocity a.nd pressure design gradients ~iprovided
the nodal velocity and pressure vector q has been solved for from the equilibrium problem .
.For the case of friction modeled by the contact-friction elements, the sensitivity to the friction
coefficient is now ca.lculated by simply derivating the friction force, equation (19), with respect to /I

a£ { O. for Ii > 1ftIa: = ~[fi for 0.< Ii < Iftl
o forf;<O

It is worth pointing out that for the sticking case these derivatives are 7,cro, that is t.he solution is
not sensitive to variations of the friction coefficient.

4. Numerical results
..p Direct extn4sion
The sensitivity ana.lysis with respect to the friction coefficient is shown for an extrusion process, where
the horizonta.l part of the matrix has been covered by frictional contact elements. Figure 2 shows a
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Figure 3: Velocity (left) and its sensitivity w.r.t. the friction coefficient v (right) on the die boundary.
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Figure 2: Extrusion process - layout
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scheme of the discretized model. Since during the procellS all the points inside the extrusion matrix
are at compression, the contad condition will be· active for all the contact elements. A constant
ram velocity is imposed and the effect of changing the friction coefficient is studied. The boundary
conditions obtained by variation of the friction coefficient range between the pure slip (no friction)
to the sticking (zero velocity) condition. Figure 30 shows the velocity along the ma.trix boundary for
different values of the friction coefficient. It can be seen that there is a transition zone between the
velocity imposed by the rarn and the dead zone. For increasing values of the friction coefficient, the
velocity at the boundary decreases to zero in a shorter space interval. The sensitivities of the velocity
at the boundary are plotted in figure 3b, where results obtained by DDM (full line) are compared to
those of the central finite difference approach (dotted line). It can be seen that they match very well.
From the 3-D plot of figure 3 we see that the variations in terms of the friction coefficient are quite
irregular, therefore we can expect that relatively small perturbations will have to be taken in order
to ha.ve a good approximation with finite differences. In fact, for the finite difference verification we
have taken variations of the friction coefficient of 0.0002. Finally we show in figure 4 the plot of the
extrusion force in terms of the friction coefficient and the sensitivities obtained by both methods and
the sarrie lines convention as in figure 3b.
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Figure 5: Cutting problem: final mesh (left) and velocity field (right).

-/.2 2-D cutting
A cutting problem may be modeled by assuming a serni-infinite flow meeting a rigid tool wich causes
the separation of a thin chip from the main flow. There is a small region where all the plastic work is
concentrated. The flow is uniform in the rest of the domain. The most critical part of the problem is
the chip, which has two free surfaces, one of them starts from the tool, from which it separates after
some distance from the edge. The other free surface exhibits a sharp angle as a consequence of the
shen.r deformation band roning from the tool edge to the corner of the surface, which in the ideally
plastic ease it is a discontinuity line. The chip shape is highly dependent on the friction between the
metal flow an.d the tool. The final'mesh is shown in'figure 5a, where the sharp change of direction
of one of the free surfaces can he seen, typical of perfectly (or almost) plastic materials, which is



Figure 7: Cutting problem - module of the velocity sensitivity to the friction coefficient, Idv/dvl:
DDM (right) and Finite differences (left)

the pre.sent case, with a inverse exponent of the visco-plastic law (4) of n = 40. This final mesh
has been obtained after starting the calculation with a smooth shape for the corner. The velocity
field is plotted in figure 5b, while figures 6 and 7 show the velocity module contours for the chip and
the sensitivities calculated by DDM and finite differences, respectively. Apart from the agreement
between both contour maps, we can point out that while the velocity gradient is directed across
the chip, the gradient of the velocity sensitivity runs along the chip and it grows in the direction of
the flow. This is a logical result since the chip tends to have a circular movement (so the velocity
gradient is radial) but the longer the chip, the more unstable and sensible to any change it is.

5. Conclusions
The presented contact element allows the friction treatment with no additional degrees of freedom and
the contact handling for steady state problems. As a byproduct, sensitivity analysis can be carried
out and, for the analyzed problems, helps to indicate the effect of changing the frictional boundary
conditions. From a practica.l point of view thi5 can be a useful informa.tion when a decision is required
a.bout the lubricant to use in a given metal forming process.
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