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ABSTRACT

A DeW method for solving the boundary value ray tracing problem in laterally
variable media is presented. The strategy overcomes some well known difficulties
that arise in standard shooting and bending methods. Problems related to: (1) the
selection of DeW take-off angles, and (2.) local minima in multipathing cases, are
overcome by using a stochastic optimization algorithm. At each iteration, the ray
is propagated from the source by solving a standard initial value problem. The last
portion of the raypath is then forced to pass through the receiver. The problem
is put into a nonlinear optimization scheme in which total traveltime is globally
minimized with respect to the initial conditions that produce the absolute minimum
path. A number of examples of multipathing in 2D and 3D media are examined.

Ray tracing plays an important role in seismological studies. Large attention has been devoted
to the initial value problem (IVP), in which the ray is specified by the initial conditione: initial
point and initial direction of propagation (take-off anglu). The IVP is in general a well resolved
problem [I). However, geotomographic methods and earthquake location usually require precise
traveltime and trajectory computations of seismic waves propagating between two fixed points
in an laterally heterogeneous medium. This represents a boundary value problem (BVP) because
the ray is not only specified by the initial conditions.
Traditionally, there are two methods for solving the two-point BVP: shooting and bending [2) (3).
The shooting method represents a standard IVP. First, an initial point (source) is fixed and the
ray is propagated by specifying the take-off angles. Then, a search strategy is used to update
these angles until the ray emerges through the desired endpoint (receiver). Since frequently
the receiver location is an ill-behaved function of the take-off angles, the strategy for choosing
the new take-Qff angles may becolue a difficult tMk, and divergence i6 all common ilI8ue. The
problem is even more severe in the 3D case, where two take-off angles are to be found.
In the bending method both points are linked by an initial guess path, which is then perturbed
iteratively so as to satisfy the ray equations. Several bending techniques are reported in the
literature (2, 4, 5, 6), which, unlike shooting, always produce a ray connecting any source-receiver



pair. In general, bending involves the solution of a highly nonlinear optimization problem,
which requires some kind of gradient directions to update the raypath. In complicated velocity
structures, bending tends to overlook multipath propagation because the solution depends on
the first gueBB. AI> a result, the absolute minimum raypath can be miBBed.
I present here a new method for ray tracing through general 3D media that I call Simulated
Annealing Ray Tracing (SART). The purpose is to overcome the usual deficiencies of shooting
and bending for solving the BVP. The philosophy of the SART method is to put the BVP
into a convenient optimization framework which is in turn solved by means of an efficient
simulated annealing algorithm. In the two-point ray tracing case, SART is an iterative procedure
that attempts to find the optimum take-off angles corresponding to the raypath with minimum
traveltime connecting any given source-receiver pair [7].
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Fig. 1. The ray direction is described
by declination 0 and azimuth ~.

Fig. 2. Striught line construction used by SART.
When traveltime is minimum, P coincides with Pr

and the minimum path with take-off angle e has
been found.

THE INITIAL VALUE PROBLEM (IVP)

The ray equatioIl..'l are well developed in the literature [8, 1]. In their final form, they may be
written

{
~:::~::~:~::.'
8tz = vcos(J,

ate = -cose (z: cos~+ ~sin~) + ~: sinO, (1)

8t~= .~9 (~sin~- ~cos~).

where (J and ~ stand for the azimuth and declination angles which describe the direction of the
ray at every point of its trajectory (Figure 1), and v = v(x,y,z) is the wavespeed. Given the
initial conditions, the system (1) can be solved numerically (4th-order Runge-Kutta is a good
choice) and thus it is possible to describe the ray trajectory at ever,)' time t, the independent
variable of integration. The initial conditions (t = 0) are usually given by

{

[X(O)., y(O), z(O)] = (x., y., z.)
e(O) = eo
~(O) = ~o,



MODEL REPRESENTATION

The numerical integration requires the right-band side of (I) to be continuous and v to be
twice differentiable. To handle discontinuities, I describe the model by a number of regions
separated by surface interfaces. Rays are propagated until a discontinuity is found where the
reflection/transmission law is applied.
The velocity model is compounded of any number of regions separated by surface interfaces
representing geologic horizons or other discontinuities (e.g. fractures). I assume all surface
interfaces are one-to-one functions given by z = g(x, y). The velocity within each region may
be specified by any function v = v(x,y,z), and must be twice differentiable. This model
representation is quite flexible to describe a wide variety of velocity structures.

THE BOUNDARY VALUE PROBLEM (BVP)

A two-point BVP must be solved when both the initial (source) and the ending (receiver) points
are specified. Although the solution sometimes is nonunique, the purpose of the following method
is to find the raypath whose traveltime is a global minimum.

Simulated Annealing Ray Tracing (SART)

Basically, at each iteration an IVP is solved starting from the source, p., with take-off angles
(90, rPo). The propagation is terminated provided either: (1) the ray arrives at the model bound-
ary; or (2) the ray arrives at a prescribed near-receiver region, e.g. some predefined target
plane.
The point where the ray meets one of the above two conditions,. is called P. The raypath is
completed by connecting P with the receiver, Pr, with a straight line. Figure 2 illustrates this
situation when condition (1) is met for a 2D model. Note the segment that connects P with
Pr is quite arbitrary, and the resulting raypath may be completely unrealistic. But this is an
intermediate raypath that, like in bending, is updated iteratively.
The total traveltime is computed by integrating the path length s between both endpoints:

lPr 1 lP
1 lPr 1T= -ds= -ds+ -ds.

p. v p. v P v

Since source and receiver are fixed and P is uniquely determined by the solution of the IVP
[I assume the IVP can be solved for any given pair of take-off angles (9o, r/Jo)], T becomes a
function of the take-off angles only, so

The final raypath is found by recalling Fermat's principle. When traveltime T is minimum,
P coincides with Pr and the whole raypath satisfies the ray equations. (As a matter of fact
this is Dot always strictly true, and some ray for which P I- Pr may arrive earlier than any
other realistic paths. However, I will reformulate the problem so as to overcome this eventual
difficulty) .
The BVP now becomes an optimization problem in which two parameters (ta.lre-off angles) are
to be found so that T is a global minimum. Since expression (4) is a highly nonlinear, multi-
modal and nondifferentiable function, it cannot be properly minimized using classicaIlinearizing
methods. I use instead a global optimization algorithm called Very Fast Simulated Annealing
(VFSA) [9}, which is a very powerful tool for minimizing arbitrary functions independently of
its nonlinearities,discontinuities and sto~ticity.



Boundary value ray tracing as a constrained optimization problem

The boundary value ray tracing problem can be viewed as a constrained global optimization
problem. In the two-point ray tracing case, the function to be globally minimized is the travel-
time from p. to P, and the constraint is that P must coincide with Pr, within a given tolerance.
The set of parameters that satisfy the constraint is called jeasibleregion. Put it mathematically,

1P1
minimize T1 = -ds,

p v.
where d is the distance between P and Pr and du" is a tolerance distance. Since usually the
traveltime represents an observation with a certain error Ttol, the optimization problem can be
rewritten

minimize T1 = {P~d8, subject to T2 = {P. ~ds :os; Ttol' (6)Jp. v Jp v

Not only problem (6) is nonlinear (except for some simple fonn of the velocity field, for which
the path is known) but also multimodal and nondiHerentiablc in general. This is a rather difficult
optimization problem.
In standard shooting methods, the optimization problem is put simply as

Although this fonnulation seems much simpler, it is necessary to find all minima of d for which
d:OS; dtol to decide later which one corresponds to the minimum traveltime. Note some minima
may not belong to the feasible region (local minima).
In SART I solve (6) using VFSA, taking special care to properly incorporate the constraint. For
this purpose, I transfonn the constrained optimization problem (6) into an unconstrained one
by defining the following cost function:

where p ~ 1 is a penalty factor. In practice, it is generally enough to set p = 1 for the global
minimizer to be a feasible solution.

OPTIMIZATION USING SIM:ULATED ANNEALING (SA)

In 1953, Metropolis et al presented a Monte Carlo sampling technique for modeling the evolution
of a solid at a given temperature [10]. In 1983, Kirkpatrick et al generalized the concept and
applied it to nonlinear optimizatioIl problems [11]. Here the unknown parameters play the role
of the particles in the solid, and the cost flmction represents the energy of the system. In the SA
approach, at each iteration the parameter space is randomly perturbed and Ilew configurations
are accepted (or rejected) so that the cost function decreases. Occasionally, some increases of
the cost function are allowed so that the system can escape from local minima.
The decision for accepting/reje<:ting new configurations is known as the Metropolis criterion [10].
If 6.Ek is the change of the cost function at iteration k with respect to the previous iteration, the
criterion states that a new configuration is accepted unconditionally if ti.Ek < 0, and accepted
with probability
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Take off angle

70.16
87.44

108.21
125.90

Traveltime [s)

35.986
36.410
35.915
34.714Fig. 3. Blocky model with planar interfaces and

constant velocities. A fracture plane has also been
defined. Coordinates are given in units and velocities
in units per second.

Initially, the temperature is high enough so that almost all proposed configurations are accepted.
At low temperatures, the probability of accepting a new configuration corresponding to an
increase of the cost function is small. Clearly, as the temperature approaches zero, the acceptance
probability decreases exponentially and only the lowest energy states are accepted. The system
is stopped after a maximum number of iterations or when no further improvement in the cost
function iB observed.
The selection of an appropriate cooling schedule iB essential in SA. In [12] it iB showed that a
global minimum of E can be obtained (statistically) provided the temperature iB lowered no
faster than Ck = eo/ln(k), where eo is a constant. For many practical applications, thi8 cooling
schedule is too slow, and many researchers use a faster cooling schedule, but global convergence is
no longer guaranteed. These types of algorithms are called simulated quenching (SQ) rather than
SA [13]. However, a faster cooling schedule can indeed be used that still guarantees convergence
by modifying the generating function that governs the parameter perturbation stage. In [9] it is
proposed a VFSA technique that allows a much faster cooling schedule.
In VFSA parameters are drawn from a long-tailed Cauchy-like distribution that expands and
contracts dynamically according to the sensitivity of the cost function of each dimension (this
procedure is called "re-annealing"). At high temperatures, the model space is sampled more
or less Uniformly, but at low temperatures, models with lowest energy are preferably sampled.
The long-tailed diBtribution permits exploration of the parameter space more effectively, and a
faster cooling rate is allowed to accelerate convergence. In VFSA, the temperature is given by

Cj,I;= c;.oexp(-ojk1/M) i = I,M (10)

where M is the number of parameters and OJ is some user-defined constant.
The advantage of VFSA over traditional SA techniques lies in the choice of the generating
distribution and the cooling schedule, which has proven that VFSA is faster than other SA
algorithms [15].

Two blocky models representing geological structures were considered. Distances and coordi-
nates are expressed in distance units, velocities in units per second and traveltimes in seconds.
Angles are in degrees. Model 1 is compounded of 7 regions with constant velocities delimited
by plane interfaces and a fracture plane, as shown in Figure 3. For simplicity, I first take into



account a 2D slice of the model: the plane x = 50. I placed a SOUIceat (50,0,70) and a receiver
at (50,100,16.5), and produced a fan of rays with take-off angles 0 varying from 60 to 140
degrees (iP is fixed at 90 degrees so that all ray trajectories lie on the plane x = 50). Figure
4 shows distance d and traveltime T as a function of 0, with p = 1. The nonlinearity of the
objective functions and the complexity of the optimization problem are evident by observing
the plots. Local minima, multipatbing and discontinuities are all present in this simple two-
dimensional example. Distance d, for example, has fOUIzeros (multipatbing) and two extra
local minima, among Y1llious discontinuities generated by the velocity structure. Clearly, the
multipatbing problem cannot be obviated by minimizing d. The shape of CUIveT is similar to
the shape of curve d, but the former ma.1cesit possible to differentiate among those rays arriving
in the receiver. These raypaths are shown in Figure 5. Table 1 summarizes their corresponding
take-off angle and traveltime.

Take off angle
41.15
41.84
43.89
44.75
50.03
53.79
58.61
59.50
78.02
80.07
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Fig. 4. (a) Distance d as a function of take-off angle O.
(b) Traveltime T as a function of take-off angle O. Both
curves correspond to Model 1.

Traveltime [s]

43.567
43.566
41.805
43.588
41.718
39.717
46.985
46.652
49.780
49.748

In the previous 2D example, an exhaustive scan of all possible take-off angles is viable in order
to find the absolute minimum raypath. But in a 3D model, where raypatha are specified by
IDore than one parameter, a scan is not recommended for obvious reasons. Figure 6 shows T as
a function of e and iP for Modell (3D version). What makes it difficult to globally minimize T
is not only the presence of local minima, but also the great number of discontinuities generated
by a blocky model. Simulated annealing appears to be a natural tool for solving this kind
of nonlinear optimization problems. In effect, convergence was achieved after 200 iteration as
shown in Figure 7. Note that both 0 and iP were involved in the optimization.
Model 2 represents a salt dome with several layers with non-constant velocities (Figure 8). A
total of eight regions are delimited by nonplanar interfaces with cylindrical symmetry. The
same symmetry is not observed for all the velocities. A source is located at (0, -50,0) and a
receiver at (0,50,0). Again, for simplicity consider iP = 90 so that all raypaths will lie on the
plane x = O. Figure 9 shows d and T as a function of e. The complexity of these two functions is
enormous: nine rays arrive in the receiver satisfying the ray equations, more than 10 other local
minima and an uncountable number of discontinuities are also present in function d. Figure 10
shows these nine raypaths and Table 2 summarizes their traveltime and take-off angles.
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Fig. 5. Multipathing in Model 1. The four
plotted raypaths satisfy the ray equations, but
exhibit different traveltimes.

Fig. 10. Multipathing in Model 2. The nine
plotted raypatbs satisfy the ray equations, but
exhibit different traveltimes.

By inspecting the curves in Figure 9, it is clear that any local minimizer would likely fail to
converge to a useful solution. Function d cannot be used because it is impossible to differentiate
among the nine raypaths that connect source and receiver. On the contrary, the global minimum
of T corresponds to the desired raypath. Besides, the global minimum lies in an very narrow
valley of less that one degree. If 4J is also considered, the topography of T(B,t/» becomes so
complex I was not able to plot it at all. Despite the rather difficult optiinization problem, SART
found the true solution in about 300 iterations, as shown in Figure 7.

Fig. 6. Tcaveltime T as a function of both
take-off angles. Note the complex topography.
The surface is explored during the SA process
in order to locate the global minimum.

Fig. 7. Convergence behavior of SART for
Model 1 and Model 2. Each iteration involves
basically the solution of one IVP.

I have presented a new method for solving the two-point ray tracing problem which exhibits
some improvements over existing techniques. Specifically, the problem of local minimum path
which exists in the bending method is fully overcome, as well as the difficulties associated with
the strategy for choosing the appropriate take-off allgles iu Lilt: llhuuw!% Ult:lllOd. It is emphasized
that, unlike in bending methods, the physical nature of the resulting ray is known a priori and
a posteriori, a point that is very important in phase identification. In SART, any available
initial value ray tracer can be used to generate the raypath at each iteration. Moreover, the
accuracy of the results is not dependent on the parameterization of the ray trajectory, but
on the selected initial value ray tracer algorithm. One possible disadvantage is that raypaths



connecting each source-receiver pair are obtained one at a time. However, since the dimension
of the search space is very low, the computational cost is not at all related to the accuracy of
the ray parameterization, like in bending methods.
Even for moderately complex 3D structures, the associated nonlinear optimization problem
which is involved in solving the BVP represents a very difficult task for standard techniques.
SART makes use of a powerful stochastic optimization algorithm to find the solution which
exhibits the global minimum traveltime. The results are encouraging because good results were
obtained despite the fact that traveltime may be an extremely ill-behaved function of the take-off
angles.
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Fig. 8. Blocky model with curved interfaces and non constant velocities. Note the
salt dome with high velocity contrast. Coordinates are given in units and velocities
in uDits per second.
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Fig. 9. (a) Distance d as a function of take-off angle 9. (b) Traveltime T as a
function of take-off angle 9. Both curves correspond to Model 2. Note how ill-
lH>.havedthe curves are. A great number of local minima and discontinuities make
them extremely difficult to minimize using standard methods. Besides the global
minimum of T lies in a very narrow valley.
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