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Abstract

Several models[1,2,3,4] have been developed in order to reproduce the corneal behavior in oph-
th3.lmologicaIprocedures as tonometry, radial keratotomy and photokeratectomy with Exdmer
Laser. It has been found that the viscoelastic effect of a biological soft tissue, as the cornea, is
negligible in tonometry[5]. Nevertheless, clinical studies on humans showed refractive changes
with time in radial keratotomy. Wound healing is responsible for the long time effect (measured
in years). On the other hand, the short-time effect (hours or days) has not been clarified.
In this work a 3D viscoelastic finite element model is developed taking into a.ccount incom-
pressibility and large strains. An internal variable is introduced by means of a multiplil:ative
decomposition of the deformation gradient. The final goal of the study is to determinate the
importance of the viscoelastic effect in radial keratotomy.

Resumen

Distintos modelos [1,2,3,4]han sido desarrollados para reprodudr el comportamiento corneal en
108proeedimientos oftalmol6gicos como ia. tonometna, la queratotomia radial y la fotoqueratec-
tomfa con Exdmer Laser. Sa ha encontrado que el efacto viscoelastico de 108tejidos blandos
biolOgicos,como la cornea, es despreciable en tonometrfa. [5]. Sin embargo, estudios cliniC08hu-
manos mostraron cambi08 refra.ctiV08con el tiempo en la queratotomia radial. La cicatriza.cion
de 130herida es responsable del efecto a largo plazo (medido en alios). Por otro lado, el efecto a
corto plazo (horas y dias) no ha sido a.clarado. En cste trabajo un modelo en elementos finitos
viscoelastico en 3D es desarrollado teniendo en cuenta incompresibilidad y grandes deforma-
clones. Una variables interna es introducida por medio de una descomposid6n multiplica.tiva.
del gradiente de deforma.cion. El objetivo final del estudio es determinar Ia. importancla del
efecto viscoelastico en 130qUE'.ratotomiaradial.

In order to simula.te the viscoelastic effect in the cornea after a refractive procedure, e.g. radial
keratotomy, we developed a three-dimensional incompressible viscoelastic finite element with large
strains.
We follow the approach of Le Tallec [6,7J where a differential form is chosen which introduces an
internal variable through a multiplicative decomposition of the deformation gradient. This model is
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thermodinamically consistent, preserving incompressibility, and easy to solve the initial hyperelastlc
model.
The viscoelastic incompressibility constraints the admissible solution of the interna.! variable.
The fina.! mixed problem in three variables displacements-pressure-interna.! variable is reduced to an
standard mixed problem displacements-pressure by eliminating the interna.! variable.

2.1 Kinematics and weak form of equilibrium equations
Let r.p be a deformation of a body n with boundary an onto a region of E, the three-dimensional
Euclidean space where the displacements field u is defined by

u(X) = r.p(X) - X
and where X is a materia.! point and x = r.p(X) a spatia.! point.
The deformation gradient is defined

F(X) = Dr.p(X) = a~<:)= I + GRAD u

GRAD u(X) = grad u<p(x)F

The right Cauchy-Green tensor C = ]11' F measures the length of an elementary vector ox after
deformation in the reference configuration. So if

loxl2 = oX . C . oX

Similarly, the volume element dX is transformed after deformation into

dx = detF(X)dX = JdX
with J the determinant of the transformation.
Fina.!ly, an area element NdA is transformed after deformation into

where N and n are the normal vectors to the reference and deformed surface, respectively, and cof F
is the cofactor of F.
The weak form of the equilibrium equations (without body forces) can be written as

{ P: GRAD TJ dV = { (IN. TJ) dV, in nin ilJ,fl

where the surface tractions are

P is the non-symmetric Pioia-Kirchhoff stress tensor, and TJ is a material virtual displacements or
variation, such that



Tf<p € H<p =: {1f<p : <,0(0) -. E, '71p(x)= 0 Vx E olpD}
are the admissible variatioIlll of <,0, and

GRAD rJ= grad 1f<p F

The Kirchhoff, Cauchy, and Piola-Kirchhoff stress tensors are related by

2.2 Hyperelastic incompressible constitutive law
A material is said to be elastic if and only if its stress tensor P at a point X is a function of X and
of Fat X. This means it exists a functionP such that

P: 0 X M~ -> M3,

M~ = {F E M3 = E ~ E,detF > O}
This mat.erial is homogeneous if

P(X) = P(F)

An elastic material is called hyperelasticiffor any admissible deformation field <,o(X,t) = F(t)X +c{ t),
the work developed by the stresses P during one time period is equal to rero:

WCS/Cl. = J: k P(F):F dXdt = 0

These are the only elastic materials usually considered in practice.
For incompressible materials, any deformation is volume preserving. In this case

P(F) : D x Mf -> M3,
M; = {F E M3 = E®E,detF = I}

So, there exists a function Wand an arbitrary scalar p (the hydrostatic pressure) such that [13]

P(F) = ~~(F) _ /detF... = oW (F) _ pp-T
of of of

By replacing the stress tensor P in the weak form of the equilibrium equations, and writing the
incompressibility condition in a weak form we have

.In [~~ (1 + GRAD u) - /det(1 +a~RAD U)] : GRAD '7 dV = fat/iN. '7) dV

In q(det(I + GRAD u) -1)dV = 0

where p and Ii arc pressu..-e Lagrange multipliers.
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2.3 VIScoelaStic constitutive taw
2.3.1 Small Strain

When a viscoelastic material is subjected to a step loading, there exist both an instantaneous and a
long term equilibrium response. The standard linear solid or Kelvin model is composed of combina-
tions of linear springs with spring constant Jl and dashpots with coefficient of viscosity II . It is able'
to model the two responses in a simple way.
If we add the force exerted in the elastic branch with the force in the viscoelastic branch we have

f = !'of + I~ee

The force in the viscoelastic branch can be written as

v e.= Jle.

We solve this linear rate equation obtaining the elongation response function (creep);

e(t) == e•.+ e. = L [1+ (~-1) e-t/,,]
ilo ~+~o

where Eo == P + Po measures the instantaneous elastic stiffness, Eoo == !'o measures the long term
elastic stiffness, and T = (1I/~)[1 + (~/~o)] is a characteristic relaxation time which indicates how
long it takes for the ma.terial to reach its long term equilibrium response.

We generalize the above simple model to three-dimensional situations involving isochoric large de-
formations. •
In the finite strains case, the right Cauchy-Green tensors G, G., and G. measure the total deformation,
the elastic part and the viscous part of the viscous branch, respectively. Varia.ble G. is an internal
viscoelastic variable.
In analogy with the small strains case we assume a free energy potential of the form;

W(G, G.) "" '11o(G) + '11e(Ge)

where '110 measures the stored energy of the elastic branch (long term behavior) and ili. measures
the stored energy of the viscous branch which, disappears in relaxation.
The intrinsic dissipation in the dashpot must satisfy the Clausius-Duhem inequality (TJ law of ther-
modynamics),

. .
We choose, ~(C.) = -II C;lwhere /I is a symmetric definite-positive tensorial viscosity and G;l is
the partial derivative of the inverse of G•.
lf ili.(G.) = tr(G.KG.) and assuming compressibility, we have as in small strains the linear rate
~~ I

/I C. +K(Gv - G) = 0
Gv(t) = ~ ftx> e-·K/"G(t - s)ds
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2.3.3 F'mlt~ Strams. Mulftpbcattve decompOSition of tbe deformailon

In the finite strains case the additive decomposition of the deformation is equivalent to a multiplicative
decomposition of the stretdl " = "e "V [11].
IT we decompose F = RlJ and R = J then U = UeUv = UvUe. But if Ue and Uv are not coaxial
then UeUv =F UvUe and this is not physically true in crystals. So the addtive dec.omposition of the
deformation in finite strains is not physically tme [11].
A better approach is taken into account. In crystals we were allowed to formally decompose the
deformation a.t microscopic level into

'P = 'Pe 0 'Pv
Therefore the deformation gradient and right Cauchy-Green strain tensor are

F = Feli'v
C=F;CeFv

J = JeJv
where J = det(F) > O. This idea is taken from plasticity where F = FeFp [10].
So, by applying the first principle of thelmodynamics in an isothtrrmic process we have

work - free energy = dissipated heat

Then, in a reference configuration we have

1 .
25: dC - dlli = .(Cv) : dCv

where S is the syrrmletric Piola- Kirchhoff stress tensor. By introducing the isotropic components,
the viscoelastic constitutive laws are

s = 289~C.) _ pC-I
det(C) = 1

4l(Cv) = _89~C.) + qC-l
. det(Cv) ';" 1 v

The first equation is a standard hyperelastic constitutive law with Cv as Il. constitutive parameter.'
The third equation is a first order diffelential equation in time where the variable C. introduces the
time dependence in the model. The other two equations are the incompresibility relations. IT the
material were elastically compressible the second relation would be dropped.

2.4 Equilibrium equations. Variational formulation
By writing the weak fonn of the equilibrium equations in a fixed reference configura.tion H, neglecting
the body forces, considering lp pressure external forces in on, and choosing an adequate dissipation

form (4\(Cv) = -11 C;l) we obtain the classical variational formulation together with the dissipative
constitutive laws

{ P: GRAD,., dV = ( (tp'''') dV10 180
.In q(detF -1)dV;;; 0



V C-I - 8it(C,c.) + qC-I = 0
v 80" tI

det(Cv) = 1

where Cv(', to) = given_value with to the initial time. We call the third equation as dissipation
equation.

3.1 Continuous problem
When the internal variable Cv is given the continuous problem reduces to a standard well-posed
mixed problem where

q E P = LS'(fl; R),
is+t.=l

The number S ~ 1 is such that the integrals in the weak form of the equilibrium equations make'
sense for any choice of u and 1/. For example WI,S = HI and LS' = L2.

We will not use the mixed form of the incompressibility constraint det( Cv) = 1. Instead of this we
propose. a constrained space of the internal variable such that

Cv E A = {A E L2(fl), det(A) = I}

The incompr~sibility condition can be rewritten by developing the expression of the determinant in
the third line:

a3I cof 31A+ a32cof 32A + a33cof 33A = 1

Since Cv is positive definite, the diagonal cofactors are different from zero. Then we can write

1- a31cof slA - aS2 cof 32A
ass = cof ssA

So in the dissipation equation we have five unknowns (the components of Cv, taking into account
that is symmetric, except ass, which is given by the above equation), and we have five equations since
the six components of the dissipation equation are not independent because of the incompressibility
condition. That is A = {al,a2,aS,a4,aS,a6} where as = ass = a6(ah a2, as, a4, as).

3.2 Associated discretized problem
We now use a st.andard finite element procedure to approximate the continuous problems. More
precisely, we suppose that fl is a polyhedral domain in R3 which can be decomposed into a finite
number Nh of hexahedra flt such that:
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8.2.1 DIsplacement/pressure IDlxed approxnnatlon

We introduce a space H" for displacements built with hexahedral isoparametric finite elt'.lnents of
order 2 (Q2),

"" E H" = {w" : 0 -+ E;continuou." w"lr. =0, W"IB, = WI 0 'P,\ WI E lQ2(njj"", VI = 1,...,N,,},

Here 'PI is the mapping from the reference element n = (-1, +I)Ninto Ol defined by

2N

'PI(X) = I:N"(X)x"l
0'=1

and Q2(n) is the usual space of biquadratic polynomials.
So, one has the general interpolations of the displacements over an element

m
u,,(X) "'. LN"(X)I.l"

0'=-1

where u'" = {u1,u~, un are the displacements components at node or, and N'" are the standard ele-
ment shape functions of the node a with values I at vertex 0, 1/2 at mid-edges in the neighbourhood
of a, and 0 at all other vertices. From this we have the discrete version of the deformation gradient,

m

Fh = 1 + L Su'"
(,t'~1

B = GRAD N"(X) = aN"(xlax
The space Ph for pressures is made of first Qrder polynomials (PI) defined independently Qn each'
hexahedron (hence pressures are discontinuous) sampled at each element center.

p" E Ph = {q,,: 0 -> R,qhln, E P1(OI),VI = 1,...,N,,}

The displacement-pressure mixed variational problem with a Q2/PI element verifies the LBB (Ladyz
enska.Ya-Babuska.-Brezzi) condition, then the problem is well-posed.

3.2.2 Approximation of the viscoelastic internal variable

For the approximation of the viscoelastic internal variable we choose piecewise constant functions
belonging to the space

c"" E Ah = {A,,: 0 -+ (E I8iE).ym,Alco = constant, det(A) = I}

with Ci a given partitiQn of O.
The analysis Qfthe linearized case indicates that the choice Qf the cells Ci can he made independently
Qf the finite element spac-es H" and p" [7]. Nevertheless, to keep the local structure of the finite
elt'JDent matrix and for stability and cost-effectiveness, a natural wa.y of defining this partition is to,
associate a cell Cjl to every integration point x~ of a given integration rule

NG1 f(x)dx = ~ w f(.,.1.\
J L }J -J/

0, j=l

defined on each finite element {ll' For second order elements we take eight cells per element.
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Then the discrete internal variable is

NG
Ah(X) = Ea7P(X)M1

'1'=1

where'Y E {I, ..., NG} is the cell number and NG is the number of cell (number of gauss points),
P is the indicator function of the cell c'Y, 1 E {I, ...,6} is the component number of Hh in the space
of square symmetric matrices of order 3 and M1 is the canonical basis of this space. By taking into
account the incompressibility constraint we have

Since the main cost is associated with the solution of the first equation giving u asa function of th~
viscoelastic variable. either an explicit or an implicit scheme have a similar cost per time step.
We choose an implicit scheme because it is unconditionally stable. This is important in situations
where the time scales are of different order of magnitude.

The Euler scheme is chosen; it is not second order accurate as the midpoint rule, but it requires
less computer memory and has very nice stiff stability and long term convergence properties [6J.
Let interval-time t:.t > 0 ; for each iteration n ~ 0, we have to solve

L
h

Fi:+I (2:~(Ch+I,C::l) - Pi:+I(CR+lt1) : 'T/hdV = h/lp' 'T/h)dV

f qh(detFh+1-l)dV=0Joo

B9(Cft~!C:+l1 _ q(C:;+I)-1 = 0
det(C:;+i) = 1

5.1 Algebraic problem
From our choice of the approximated spaces (Hh,Ph,Ah) the discrete system forms a non-linear
algebraic system of N equations with N unknoWIIS, N = n" + np + n. :

{

g(u, p, a) = 0, n••equilibrium equations
k(u) = 0, np incompressibility conditions
h( u, a) = 0, no dissipation equations

The linearization of the system gives

r
~

8k

l~
vg 1
8a [t:.ul fg(u,p,a)]o . t:.p = - k(u)
VhJ t:.a J L h(u,a)
8a .
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Slllce

[::] # [::]
the tangential stiffness matrix of the linearized problem is non-symmetric.
The submatrix

lOgOg]
ou op
og 0
au

is the tangential stiffness matrix of the incompressible hyperelastic problem with the internal variable
acting as a given parameter. This matrix is symmetric and banded. So, we can eliminate the internal
variable leading to the usual incompressible hyperelastic strategy and a much cheaper algorithm.
If we find a solution a(u) to the system h(u, a) = 0, then we can eliminate Aa, to reduce the system
to

lrag' (Og (Vh) <1 Oh)] og]ou- aa' oa 'au op .[AU]=_[g(u,p,a(u»]
ak Ap k(u)
- 0ou

We take the symmetric part of the coupling of the equilibrium equations, it says

(Og) = og _ (ag . (ah)-l .Oh)
au", au aa aa au

"lI'"

5.2 Algorithm
1. (u, p) given, Au = ~p = 0;

2. compute a such that h(u, a) = 0;

3. compute r = -g(u,a(u» ;

4. test IIrll, IIAu II, IILlpll;stop on convergence ;

(
ag(U,a) . (Oh)-l .~h~U,a»)

aa aa au
.ym

og(u,p,a)
au
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6 Conclusions
We have formulated the finite element developed by Le Tallec. The implementation is performed in
Oofelie, an object oriented finite element program {12]. This software enhances the simplicity of the
formulation.
Numerical results a.pplied to the refractive surgery will be showed at the oral presentation.
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