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SUMMARY
This papers presents a DeW method to the near-wall boundary condition problem for eddy viscosity
turbulence models. By using a novel approach for near-wall turbulence, presented recently in
literature, the eddy viscosity is computed as a function of mean flow characteristics and some
parameters. A closure tOr the turbuIeot kinetic energy equation is proposed through wbicll the
turbulent kinetic energy and the turbu.IeDtkinetic energy dissipation are obtained tOr this region. The
major properties of the DeW approach are the physical sound of turbulence and its robustness.
Some numerical tests are presented in which the results ftom standard are examiDed, and in which, in
spite of its simplicity, this method appears as a good predictor of rough effect of turbulence in the
near-wall region of shear flow.

INTRODUCTION
Turbulence models used in industrial flow computations today, fiill into eddy viscosity and stress transport
models. Even though the last models, as the Reynolds stress, (DwiliD, 1993) have more precisiOn and
physical sound of turbulence phenomena, the eddy viscosity models are still used owing to its siq)Jicity
and robustness.

The eddy viscosity main assumption is that the rough effects of turbulence can be mimicked through an
additional viscosity. This 'turbulent viscosity' .is function of the mean flow characteristics aodsome
universal parameters. The most popular and used eddy viscosity model is the K-E, (Launder and Spalding,
1974) in which the 'turbulent viscosity' in the high Reynolds region .is function of a characteristic velocity
fluctuation and a characteristic length. The scaling tOr these characteristic values gives the known
relationship of the eddy viscosity as a function of turbulent kinetic energy and turbulent kinetic energy
dissipation. This eddy viscosity formulae works in the high Reynolds flow region away ftom solid
boundary, but fauh in the viscous sublayer near-wall boundary. Consequently, the success of turbulent
models in the prediction of wall bounded flow has depended, at a large extent, on the tOrm that boundary
condition for high Reynolds region have been given at solid wan (Jovanovic, Ye and Durst, 1995).

Two general procedure have been followed to achieve this goal. The most. popular .is the so-<:alled wall
function procedure, which means that high Reynolds turbulent flow .is related directly with the wall
through a denominated wall function. This function is a form to give the boundary coDdition at solid wall



fur the K and I: equation, and to compute an eddy viscosity for the mean flow in this low Reynolds
turbulent flow. l'he second, more complex but not necessarily more precise, is the low Reynolds
procedure, in which a new adapted model is used in the ncar-wall region.

In this work a new-wall function procedure based in the approach of Haritonidis (1989) is proposed. In
addition, some numerical tests are shown in.which this method appear as a good predictor of rough ef'fuct
of turbulence in the viscous sublayer.

EDDY VISCOSITY HYPOTHESIS
The eddy viscosity is proposed in analogy with the molecular viscosity, i.e., it is assumed equivalence
between the process of momentum. transfer among diffi:rent scales in turbulence and molecular momentum.
transfer in gas flow. Nonetheless it is known today that these processes are very diffi:rent, from a
phenomenological point of view. In spite of this arguments, the eddy viscosity hypothesis bas recently
gained momentum because of some results obtained by renormaJizlItion procedure applied to turbulence
(Yakhot-Orszag, 1986; Kraichnan, 1987,). Basically this hypothesis is
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where u and 1 are the characteristic velocity fluctuation and c.bariIcteristic length; and ( ) means a mean
value. If the scaling for I: is used, and the square root ofK is taken as cbaracterist:ic fluctuation value, the
result is
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In the viscous layer, near the wall, this eddy viscosity expression is not valid. Moreover, near the walls the
conservation law fur &is not valid as it is used in the K-& model. An ahemative procedure consists in
obtainipg Ilt with other expression, and to interpolate values fur K and &in the viscous layer.

In this work IJt is computed as a function ofmean flow characteristics, and K and Ii are interpolated. The
algorithm is based on Haritonidis' (1989) approach, who has recently proposed an improved
phenomenological profile of mean flow velocity, from the wall to the beginning of the logarithmic region.
This approach is based on a new model of the mixing length and on the experimentally known bursting
process in the wall region. The behavior of tbat new function bas shown a very good agreement with
experimental date. For a boundary layer wIthout pressure gradient, the Haritonidis' model gives
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where if --Diu*; ut --ujiu*; U2+-- U2iu*;y+-- P Y u*iJ.l; and u* -- M is the friction velocity; U is the
mean velocity and Uj e U2 are the velocity fluctuations in the x and y directions, respectively and 'ts is the
wall shear stress. The parameters A. n, y and 11: are cIefiDedas n = 3, y = 0.27, ~ = 0.09365 and 11: (von
KArman constant) = 0.41.
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Figure 1 illustrates the dimensionless cinematic WJcosity v+ = 11+= JJJIl as a function of the dimensionless
distance y+. This expression for the eddy viscosity should be used in the viscous layer instead ofEq. (2).
The advantage of this latter expression. is that it can be computed based only on the mean flow
characteristics.
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Figure 1. Non dimensional eddy viscosity in the near-wall region
as a function of non dimensional wall distance

TURBULENT KINETIC ENERGY IN THE NEAR-WALL REGION
The kinetic turbulent energy K is defined as

wbeie the subscript 1 will be used for mean flow direction; 2 for cross-flow direction lIDd 3 for the third
coordinate.

In the near wall region. it is observed experimentally that the velocity fluctuations in the cross-flow
directiom are of the same order of magnitude, (Schlichting, 1968), therefore K can be estimated as



Based on the inean flow velocity given by Eq. (3) and with 1C 2j(n y A.2) ~ 23.47 , the dimensionless

kinetic energy can be obtained as

23.47
2

DISSIPATION OF TURBULENT KINETIC ENERGY IN THE NEAR-WALL REGION
The dissipation of turbuIcmt kinetic energy for the near wall region can be derived from the conservation
equation of the turbulent kinetic energy, which is obtained from the Navier-Stokes equation as
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In the near-wall region changes in mean flow direction are slower than in cross-flow direction , therefore
the characteristic 1ength in the mean and cross-flow direction are very di:lIerent. Further, it can be assumed
that the flow field is 2-D and in steady state. With this hypothesis, the dissipation can be obtained from Eq.
(14), for a boundary layer near the wall equation. as



The first term in Eq. (15) can be obtained directly from Eq. (12). The second tenD is uegljgible in relation
to the first one. The third and fuurth terms in Eq. (IS) are usuaDy modeled as a diffusion term in K-e
models, in the high Reynolds region. They are the most complex terms in the K equation. In the present
work, the fullowing approximation is done
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Figure 2 shows the behavior of the three different terms in the dimensionless dissipation (e+) equation
above, as a function of dimensionless wall distance (y+). The first term is the inertial transfer (T+), the
second is the diffusion term (D+) and the third is the production (P+). The dissipation distribution is also
presented. It can be observed that the contribution of the inertial tenn is very small. The diffusion is large



near y+ = 0, but rapidly decays. The major contribution comes from the production term. In Figure 3 the
production and the dissipation are compared. The traditional hypothesis fur the wall region (pataDkar and
Spalding, 1970, Mansur et al., 1989, Lai e So, 1990) is that production and dissipation are equal. By.
examining Figure 3, it can be seen that this is true, fur y+ > 7. Closer to the wan. diffusion is important,
resulting in an dissipation YlI1uearound 0.2 in agreement with experimeutal observations of Patel et at,
1984.
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Figure 2. Near-wall behavior of turbulent dimensionless dissipation (s+), viscous ditfusion
(D+), production (P+) and inertial transfer (T+), as a function of dimensionless
wall distance (y+).
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Figure 3. Relationship between dimensionless turbulent production
and dissipation as a finxtion of dimensionless wall distance



NUMERICAL PROCEDURE
Some numerical tests were perfurmed to validate the proposed method. The numer.icaJ.solution are
obtained using a control volume based formulation (pataDkar. 1980). In this procedure. the domain is
discretized by a series of control volume, each containing a grid point. The grid system used is a so-called
staggered grid system in which the value of each scalar quantity is associated with every grid node, while
the vector qwmtities are displaced in space relative to the scalar ones. The CODSel'VlItionJaws are expressed
in an integral manner over the control volume and power profile approximation are considered, leading to
a system of algebraic equation solved in an iterative IDlIDIIel' by the TDMA algorithm The pressure field is
computed by the SIMPLEC algorithm (Van Doormaal e Raithby, 1984).

TURBULENCE METHOD
The two-equation K-t: differeDtial turbulence Imdel was selected to Imdel the turbulence in the domain.
However. this Imdel can only be applied in the regions where ~ »Jl. In the region y+ < 11.6, or near-
wall region, the eddy viscosity, Kandt: are computed with the expression (6). (13) and (21), respectively.

can be co~ from the mean velocity value U, if the y+ ""U+ hypothesis, vatid for y+ < 5 ( Kline et al.
1967) is considered. u· can be obtained in the following way

+ +
y+2 = yy u. = yu u. = yU = y+

v v v
Hence, in the near-wall grid point, the y+ is computed and the u· parameter is recuperated.

Since y+ = U+ for y+ < 5, in the calculation of the wall parameter u·. with the procedure suggested above,
it is necessary that the nearest to solid wall grid point must be located in y+ < S.

NUMERICAL RESULTS
The proposed wall function was tested, at first, for shear flow in the boundary layer of a circular duct and
for turbulent flow between parallel plates, with excellent resuh. Then, it was tested for a more complex
turbulent flow, ie., the turbulent flow over a backward fucing step, which is presented here.

Turbulent flow over a backward fiJcing step is one of the standard test case to evaluate perfonnance
model. The backward-fucing step domain is shown in figure 4. The same situation experimentally
investigated by Kim et at (1980) was considered here. The Reynolds number is Re = 132000, based in the
inlet centerline mean velocity Uc and the outlet high lis. The specified aspect ratios was HlHs = 113.where
H is the step height.
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The reattachment distance was predicted as XrIH = 6.65 fur a mesh of 118 x 82 points in the x and y
directions, respectively (pasinato and N"JeCkele,1996). This resuh presents a difference of 5% in relation to
the experimental results of Kim et al, whO measured XrIH = 7. At the present work a timer mesh equal
to 200 x 100, was employed and the reattachment point predicted was 7.35. The difference in relation to
the experimental resuh was again of 5%. In thicIcase the recirculating zone was over predicted.

It should be IDCDtionedhere, that the present Jaw of the wall is valid fur zero pressure gradient, which is a
great simplification of the model However, even with this simplification, reasonable results were obtained.

Figure 5 ~ the mean velocity profile along the vertical direction, near the wall, befure and after the
reattachment pOint. The negative velocities at xIH = 5.89 and 6.56 indicate the presence of the secondary
flow. For xIH = 7.0, the derivative at tbC wall is ahnost zero, indicating that thicIposition is very close to

. the reattachment point. Further doWnstream, xIH = 7.71, all velocity profile is positive, indicating that the
flow field is developing.
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Figure 5. Mean velocity profile next to the reattachment
point fur the backward king step problem



CONCLUSION
The present work presented a new law of the wall blIlIedon the velocity profile proposed by Haritonidis
(1989). The dissipation of turbulent kinetic eocrgy near the wall is obtained. keeping the inertia and
diffusion terms. As a consequence the predicted It value at the wall agreed with experimental observations.
The method was tested in the backwards tilcing step problem. The results obtained can be considered
satisfactory, with a good predic:tion of the reattachmeut point.

As a final comment, it can be said that the model presented here, although simple, can predict reasonable
weD the flow field in complex geometries, with a low cost, what is very attractive fur teclmoIogk:al
applications.
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