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‘ SUMMARY ' : ’
This papers presents a new method to the near-wall boundary condition problem for eddy viscosity
turbulence models. By using a povel approach for near-wall turbulence, presented recently in
literature, the eddy viscosity is computed as a function of mean flow characteristics and some
parameters. A closure for the turbulent kinetic energy equation is proposed through which the
turbulent kinetic energy and the turbulent kinetic energy dissipation are obtained for this region. The
major properties of the new approach are the physical sound of turbulence and its robustness.
Some numerical tests are presented in which the results from standard are examined, and in which, in
spite of its simplicity, this method appears as a good predictor of rough effect of turbulence in the
pear-wall region of shear flow. : .
INTRODUCTION N
Turbulence models used in industrial flow computations today, fall into eddy viscosity and stress transport
models. Even though the last models, as the Reynolds stress, (Durbin, 1993) have more precision and
physicalso\mdofturbtﬂemcphﬁmmun,theeddyviscositym)delsarestillusedowingtoitsshplicity
and robustness.

Theeddyviscosityminasstmmﬁonisthatﬂwmugheﬂ‘ectsofnuhlkmecanbemimi:kedthmughan
additional viscosity. This ‘turbulent viscosity’ is function of the mean flow characteristics snd some
universalpmmeters.ThcmstpowhranduxdeddyviscositymodelisﬂnK—a,ﬂmnﬂaandSpaldmg,
1974) in which the ‘turbulent viscosity’ in the high Reynolds region is function of a characteristic velocity
anmﬂachraﬁeﬁﬂhkngthhwaﬁngforﬂwsechm&teﬁﬁkvahesgivesthckmm
mhﬁonshipoftheeddyvbwsﬁymaﬁlmﬁonofmbukmkhwﬁcemrgyammrmhmkhdkmgy
dissipation. This eddy viscosity formulac works in the high Reynolds flow region away from solid
boundary, but fault in the viscous sublayer near-wall boundary. Consequently, the success of turbulent
nndelsmﬁlepredicﬁonofwaﬂbomdedﬂowhasdepended,atalatgeenent,ontheﬁ)rmthatbomdary
condition for high Reynolds region have been given at solid wall (Jovanovic, Ye and Durst, 1995).

Two general procedure have been followed to achieve this goal. The most popular is the so-called wall
function procedure, which means that high Reynolds turbulent flow is related directly with the wall
through a denominated wall function. This finction is a form to give the boundary condition at solid wall
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i’ortheKmldeequation,andtocomputeaneddyvisoosityﬁ)rthcnwanﬂowinthislowReynolds
turbulent flow. The second, more complex but not necessarily more precise, is the low Reynolds
procedure, in which a new adapted model is used in the near-wall region.

In this work a new-wall function procedure based in the approach of Haritonidis (1989) is proposed. In
addition, some numerical tests are shown in which this method appear as a good predictor of rough effect
of turbulence in the viscous sublayer.

EDDY VISCOSITY HYPOTHESIS
The eddy viscosity is proposed in analogy with the molecular viscosity, ie., it is assumed equivalence
between the process of momentum transfer among different scales in turbulence and molecular momentum
transfer m gas flow. Nonetheless it is known today that these processes are very different, from a
phenomenological point of view. In spite of this arguments, the eddy viscosity hypothesis has recently
gained momentum because of some results obtained by renormalization procedure applied to turbulence
(Yakhot-Orszag, 1986; Kraichnan, 1987,). Basically this hypothesis is

By mp(u)f o))
where u and [ are the characteristic velocity fluctuation and characteristic length; and ( ) means a mean

value. If the scaling for € is used, and the square root of K is taken as characteristic fluctuation value, the
result is ,

Bewe=— @

_ which is the known formmlae used in the K-g models.

In the viscous layer, near the wall, this eddy viscosity expression is not valid. Moreover, near the walls the
conservation law for € is not valid as it is used in the K- model. An alternative procedure consists in
obtaining p; with other expression, and to interpolate values for K and ¢ in the viscous layer.

In this work 4 is computed as a function of mean flow characteristics, and K and & are interpolated. The
algorithm is based on- Haritonidis’ (1989) approach, who has recently proposed an improved
phenomenological profile of mean flow velocity, from the wall to the beginning of the logarithmic region.
This approach is based on a new model of the mixing length and on the experimentally known bursting
. process in the wall region. The behavior of that new function has shown a very good agreement with
experimental date. For a boundary layer without pressure gradient, the Haritonidis' model gives
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where U' = Ujn*; u,” = wiud; v, = wjut; y' = pyubip; andu® = 775 is the friction velocity; U is the
mean velocity and u; € u; are the velocity fluctuations in the x and y directions, respectively and T, is the
wall shear stress. The parameters A, n, ¥ and x are defined as n = 3, y = 0.27, A = 0.09365 and « (von
Karmén constant ) = 0.41.
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Using the velocity profiles given by Eq. (4), it is possible to write the Reynolds stress near the wall as

out aut
~{ u,u = xz +2 —ut
( 1 2) ay" By ay* )

therefore, the eddy viscosity in the viscous layer is
u+ = E.L: 12y+2 ©)
Yoo _

Figurelilhstratuthedhnmsionlesschtmﬁcviscosityv*zp‘=wp as a function of the dimensionless
distance y*. This expression for the eddy viscosity should be used in the viscous layer instead of Eq. (2).
'I‘headvmnageofthnslatterexpmmsmn,mthatltcmbecomptnedbmedonlyonthenmﬂow
characteristics.
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Figure 1. Non dimensional eddy viscosity in the near-wall region
as a function of non dimensional wall distance

TURBULENT KINETIC ENERGY IN THE NEAR-WALL REGION
The kinetic turbulent encrgy K is defined as

- K= ~;'«“1“1) + (ugu,) +{uzu3)) 0

where the subscript 1 will be used for mean flow direction; 2 for cross-flow direction and 3 for the third
coordinate.

Inthenwrwallregion,itisobservedexpeﬁmemallythatﬂ)évebcityﬂuctuatbmmd)ecross—ﬂow
directions are of the same order of magnitude, (Schiichting, 1968), therefore K can be estimated as
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Xx= %( (“l ul) +2 <u2 u2) ) (8)('

The turbulent fluctuations in dimensionless form can be obtained from Eq. (4) as

2
) = (—72 2y 227 ®
nyA ay*
(ugu, ) = a8 LDy )

Comparing Eq. (9) and (10), it is observed that <uwu;> is much smaller than <uru;> , thus

1
K o= () an

Therefore, the expression for K in dimensionless form is

2
1 % 2 2(6U )
K+ = e ———‘A. +
Z(n y A2 ay* 12)
BasedonthemeanﬂowvelocttyglvenbyEq (3) and with Kz/(ny xl)— 2347 , the dimensionless

kmetxcenergycanbeobtmnedas _

K+ o 2347 aZyt? =
h 2
2 (1+x2y+2) ( )

DISSIPATION OF TURBULENT KINETIC ENERGY IN THE NEAR-WALL REGION
The dissipation of turbulent kinetic energy for the near wall region can be derived from the conservation
equation of the turbulent kinetic energy, which is obtained from the Navier-Stokes equation as

B, 2 o o) o 2 28] 2]

In the near-wall region changes in mean flow direction are slower than in cross-flow direction , therefore
the characteristic length in the mean and cross-flow direction are very different. Further, it can be assumed
that the flow field is 2-D and in steady state. With this hypothesis, the dissipation can be obtained from Eq.
(14), for a houndary layer near the wall equation, as

14
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(15)

2 2
K | 8*(u,u,) ap 2 au,
g=v +v —-{uy ——)— —(Ku, ) - {uu

ax% 7 ax% 26x2 ax2<K 2) ( 1 Z)axz
The first term in Eq. (15) can be obtained directly from Eq. (12). The second term is negligible in relation
to the first one. The third and fourth terms in Eq. (15) are usually modeled as a diffusion term in K-¢
nmdels,inthehighkeynoldsregion.TheyarethemstconmlextermshtheKequaﬁon.Inthepmsent
work, the following approximation is done

’ 2
] é /1 + i) aut
sz ((pu2)+ (Kuz» = —6x; <?u1ulu2> = -2.42—aer [13y+3[ o ) J 16

In the viscous layer by using the turbulent fluctuation and the Reynolds stress, this term can be taken as

2
o /1 + 8 .3 43/ out
The so-called production term in the K equation, in the viscous layer is
au, -
(“1“2) a4 ' (18)

and can be expressed in dimensionless form as

.
Uy _,2 +2[6U+) _ a2

=

‘(“1“2)+

Tlnm,thenrbukmkheticenergydissipaﬁoneqmtbnmthemm-wallngbncmbc obtained from as

oo 2347 52( Ky? | 2347 a{ 2y*3 ]+ aZy*?
(1

2 gy*? ((l + x2y+2)2 2 gyt L (1 o2y +2)2 a2yt 2)2 @0)
e @y
et =117 2% _2% 14);+2 . 7‘6y+4 +242 3 ’“3Y+2 __4 15),44 X2Y+2
' (1 + lzy”)z (1 + 7\.2y+2)3 (1 + ).2y+2)4 (1 a2 y+2)2 (1 R 12y+2)3 (1 s Azyﬂ)z

FigmeZslmwsthebehavbrofthethreediffeWmtmmwdhmmhnkssdissipatbn (e+) equation
above,asaﬁmctionofdinmbnlmswaﬂdistame(yf).'I‘heﬁrsttcrmistheinertialtransfer(’ﬁ), the
second is the diffusion term (D+) and the third is the production (P+). The dissipation distribution is also
presented. It can be observed that the contribution of the inertial term is very small. The diffusion is large
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near y+ = 0, but rapidly decays. The major contribution comes from the production term. In Figure 3 the
production and the dissipation are compared. The traditional hypothesis for the wall region (Patankar and
Spalding, 1970, Mansur et al., 1989, Lai ¢ So, 1990) is that production and dissipation are equal. By '
examining Figure 3, it can be seen that this is true, for y+ > 7. Closer to the wall, diffusion is important,

mmhmgmmdmmpmonvamemmd02mammmwnI1expemmdobsemmomelaaL
1984.
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Figure 2. Near-wall behavior of turbulent dimensionless dissipation (¢+), viscous diffusion
(D+), production (P+) and inertial transfer (T+), as a function of dimensionless

wall distance (y+).
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Figure 3. Relationship between dimensionless turbulent production
and dissipation as a function of dimensionless wall distance
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NUMERICAL PROCEDURE

Some numerical tests were performed to validate the proposed method. The numerical solution are
obtained using a control volume based formulation (Patankar, 1980). In this procedure, the domain is
discretized by a series of control volume, each containing a grid point. The grid system used is a so-called
staggered grid system in which the value of each scalar quantity is associated with every grid node, while
the vector quantities are displaced in space relative to the scalar ones. The conservation laws are expressed
in an integral manner over the control volume and power profile approximation are considered, leading to
a system of algebraic equation solved in an iterative manner by the TDMA algorithm. The pressure field is
computed by the SIMPLEC algorithm (Van Doormaal ¢ Raithby, 1984).

TURBULENCE METHOD
The two-equation K-¢ differential turbulence model was selected to model the turbulence in thedomam.
However, this model can only be applied in the regions where p >> p. In the region y+ < 11.6, or near-
wall region, the eddy viscosity, K and & are computed with the expression (6), (13) and (21), respectively.

The wall parameter u* is defined as

. ( %)112 i [v %];/2 ' o

can be computed from the mean velocity value U, if the y+ = U+ hypothesis, valid for y+ < 5 ( Kline et al.
1967 ) is considered. u* can be obtained in the following way

+
=== =Y"* (23)

Hence, in the near-wall grid point, the Y+ is computed and the u* parameter is recuperated.

Since y+ = U+ for y+ < 5, in the calculation of the wall parameter u*, with the procedure suggested above,
it is necessary that the nearest to solid wall grid point must be located in y+ < 5.

NUMERICAL RESULTS
The proposed wall function was tested, at first, for shear flow in the boundary layer of a circular duct and
for turbulent flow between parallel plates, with excellent result. Then, it was tested for a more complex
turbulent flow, ic., the turbulent flow over a backward facing step, which is presented here.

Turbulent flow over a backward facing step is one of the standard test case to evaluate performance
model. The backward-facing step domain is shown in figure 4. The same situation i
investigated by Kim et al (1980) was considered bere. The Reynolds number is Re = 132000, based in the
inlet centerline mean velocity Uc and the outlet high Hs. The specified aspect ratios was H/Hg = 1/3, where
H is the step height.
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Figure 4. Backward facing step domain.

The reattachment distance was predicted as X1/H = 6.65 for a mesh of 118 x 82 points in the x and y
directions, respectively (Pasinato and Nieckele, 1996). This result presents a difference of 5% in relation to
the experimental results of Kim et al, who measured Xt/H = 7. At the present work a finner mesh equal
to 200 x 100, was employed and the reattachment point predicted was 7.35. The difference in relation to
the experimental result was again of 5%. In this case the recirculating zone was over predicted.

It should be mentioned here, that the present law of the wall is valid for zero pressure gradient, which is a
great simplification of the model. However, even with this simplification, reasonable results were obtained.

Figure 5 presents the mean velocity profile along the vertical direction, near the wall, before and after the
reattachment point. The negative velocities at x/H = 5.89 and 6.56 indicate the presence of the secondary
flow. For x/H = 7.0, the derivative at the wall is almost zero, indicating that this position is very close to
- the reattachment point. Further downstream, x/H = 7.71, all velocity profile is positive, indicating that the
flow field is developing.

0,03

0,2

Figure 5. Mean velocity profile next to the reattachment
point for the backward facing step problem
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CONCLUSION
’I'heprmemworkpresemedanewlawofthewallbasedonthevelocityproﬁlepmposedbyHaritonid'n
(1989).Ilndissipabnofnnimbmkhnﬁcemrgymthewaﬂisowkeepingthemerﬁamﬂ
diﬁ:sbnterm.Asamnsqmeﬂmpedbtedewhw&tbwaﬂaMwhbmeMﬂob&rmﬁom
Mmthodwasmdhmebmkwmds&cmgaeppmbmmmﬂmobtamodmbemmﬂaed
satisfactory, with a good prediction of the reattachment point.

As a final comment, it can be said that the model presented here, although simple, can predict reasonable
wellﬂ:eﬂowﬁeldinconmlexgeometrim,withalowoost,whaiisvelyattmcﬁvefortechnological
applications.
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