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Abstract
In this work we analize some special features of the numerical solution of a variational

inequality which arises from an optimization problem with monotone controls. We give
estimates of its oonyergence rate and we show an example which shows the optimality of
these estimates.

Resumen

En este trabajo Be analizan algunas particularidades de la soluci6n numerica de una
inecuaci6n variacional proveniente de un problema de optimizaci6n con controles mon6ton08.
Se clan estimaciOlles de 1a wlocidad de convergencia y ejemploe donde Be muestra que estas
estimaciones BOncrltica.s.

We consider the following differential. equation

. { if + (y -- F + P')- = 0,

y(O) = 0,

y(T) = F(T) , .'

where P E H3[O, T] and z- =- min(x, 0) .

This equation stems (by using the methodology of variational inequalities in Sobolev spaces) from
the optimization problem with monotone controls presented in [2J. The solution of (1) has the
following minimality property:

Theorem 1.1 y is the minimum element of the set

U = {u E HI [0,11 : u(O)? 0, u(T) 2 F(T), u" :-.s; 0, u" - u S F" - F}, (2)

where 'Ii' is understood as the second derivative in a weak sense, i.e. (2) means

(u',tI)20, VVEIIJ[O,11, v20,
('Ii,tI) 2 (-P'+F-u,v) , 'r/VEIIJ[O,T], v?O

l'

(u, v) = J u(t) v(t) dt.
o
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The set U is called the set of supersolutions. By virtue of Theorem 1.1 (the proof of this theorem
is included in [2]), the problem (1) can be reformulated in the following sense:

IPc: Find y the minimum element of the set U.]

A numerical procedure to solve numerically this problem was presented in [1]. Here we continue
with that development: specifically we present a sharper estimate of the convergence rate and an
example which shows that this estimate is optimal.

2.1 Finite difference approximation
Let Ut be the following set of points in [0,T)

\-),= {f : [0, T) ~ ~ / f(t) = ~ Oi -W.(t), Oi E ~ },

2.2 The approximated problem
The discretization of the restrictions that define the set U determines the subset Uk C \-), , which
has the following form

{

{u~A)::::: 0,

(u~,tlk) :::::-- (-F" + F - Uk, Vt) ,

Then we can state the discretized problem as:

~
---------------@JPk: Find ytthe minimum element of Uk.----------,---------_. __ .



In order to grasp the essential features of the approximation error of our procedure, we axe going
to analyze, in a first place, a simplified problem. It consists in looking for u E H2[0, T] such that

{

u'/+(<p}-=O, in (O,T) ,

'1'(0) = 0,

u(T) = b,

In a similar way as to what was done in Section 2.2, we define the discrete solution in the following
form:

5" = {SII; E Yt : s,,(O) ~ 0, s,,(T) ~ b, and Sic verifies (8)}

{

(s'",~)?- 0, Vv" E Yo;",

(4,~) ~ - (<p", Vt), Vv" E Yo;" .

"
vet) = (v * \II)(t) = J vet - s) \11(.,)ds.

-k

Remark 3.1 It is easy to prove that v(~) = (v, 'Ii.). Definition (10) can be also used for elements
of (HJ(O, T»'; in the particular case of v" E Vt, we get ~~(ti) = - (~,\liD, Vi = 1, ... , n-- 1.

{

~(tj)=-(~(tj)r, Vj=l, ...,n-l,

'11.11;(0) = 0,

uII;(T) = b.



(U~,lIIj) ~ 0, Vj = 1,...,n-1

and from the definition of convolution, it results

(Uk'V~) + (cp, Vk) ~ 0,
This expI'ellllion is equivalent to

Let us denote Zk the solution of (11). Therefore

'lI:(t;) ~ zZ(t;),

and by using the Discrete MaxUnum Principle (see [3]), we get

Uk(tj) ~ Zk(tj).

It is easy to check that Zk E 5k; in consequence Zlo is the minimum element of 510 (i.e. Zk = 'Uk).

[J

{

'lI;(t;) ==~-=(t;),

'U[(O) = 0,

ul(T) = b.

u';(tj) ~ u':(tj) ,

and by using the Discrete Ma:£imum Principle (see (3j), we get

'Ul(tj) ~ 'Uk(t;) .

So, we have obtained one oj the estimates, to find the other we use Ute au.riliary re8uli given by
the Lemma (3.2).



••-1

!Iwll"(O,T) = 11:E IW(t,)I,
i=1

t

IIwll"(O,T) = (}; 11: IW(t,W) 1i •

Lemma 3.2 Let Vk verify the following difference equation

{

V'l(t;) = w = {w;}, Vj = 1,...,n -1,

Vk(O) = vk(T) = 0,

{

'1.(0) = 0,
i(n - i) 11:2

'Y.(t.) = ---n ---,
'Y.(T) = 0,

Thll,""(o,T) ~ "4k, Vi= 1,...,n-l.

••
v(t) = E w. ')'«t) .

i=1

We will use the previous Lemma to estimate the error of approximation. In consequence we need
to obtain a bound of the differences:



[+={tE[O,T] cp(t+s) >0, '<IsE[-k,k]},

[- = {t E [O;T] cp(t+ s) < 0, '<IsE [-k,k]},

JO={tE[O,T] : 3SE[-k,k], cp(t+s)=O}.

cp-(tj) = (~ntj)'
Then, it remains to estimate the value of (j? - (ij5)-), '<It;E [0. Taking in mind that '<ItE [0,T]

cp-(tj) ~ (ij5(tjW .
For the other inequality, we have by (25)

cp-(tj) :s: M(t;).
Let tj E .[0, then 3( E (-k, k) such that cp(t; .- () = O. Then, '<ItE (tj-l. tj+l) we have

t t;+1

jcp(t)I :s: f Icp'(r)ldr::; f Icp'(r)ldr:S:..ffk IIcp/IIL2(t;.I,ti+1);
t;--' t;'1

n-l n-l

2:) (Fpf(tj»2 :S:L2k211Cf'lIi'(tj."t;+1):S: 4k211Cf'1I~2(O,T)'
jo=l j~=l



Proof. Let us define E~(tj) = 'U(tj) - 'U~(tj). From (15) and (11) we have

{

t.:':(tj) = -<p-=(tj) + (ip)-(tj) Vtj• j = 1,", n - 1,

E~(O) = E~(T) = O.

We apply now to this equation the results established in Lemmas 3.2 and 3.3. From both estima-
tions we get (27).

We present in this Section an example whir.h shows that for a given partition Ok of [0,T] there
exist an ad-hoc purposely devised data for which the estimate (27) is achieved. The example is
defined in the following way

...;21' . (n1f"t)<pet) = --sm - .
n1l" T

{

Uk=O,

../2T
?tI(l') = --(T - t-)t·,

J 2n1r2 J J

-./2'f 2
lIul-u~III""(o.T)=2n1r2T /4.

Finally, taking into account Remark 3.2 we get

1
m 2111'1."- ukIIOO(O,T) = 2n1r2 T 4.

{

'!I' + (y -- F + F")- = 0 ,

y(O) = 0,

yeT) = F(T).



{

y'~(tj) = - (11" - F + F")(tj))-

11,,(0) = 0,

y,,(1') = F(1').

To obtain the error estimation we use basically the estimate (27) and the continuity of an operator
P associatf'-<I.to the solution of (32).

Theorem 5.1 Let us denote by 11 the solution of (31) and YTc the solution of (32), we have

IIY" - 1I1IIoo(o,T) 5 M k.

{

U1~(tj) = - (y =-F + F")(tj) r
111,,(0) = 0,

111,,(1') = F(T) .

AI! 11 is a fixed function, if we consider in (26) : <P = 11 - F - F', we get the inequality

1111- w"lIloo(o,T)5 M k.

Let us define the operator P : H2 (0, T) -+ V" , such that P(J) = z" , where

{

zZ(tj)=--((f~tz,,-F+F")(tj))-

z,,(O) = 0,

z,,(1') = F(1').
It is obvious that w" = P(y - w,,) and y" = P(O). P is a continuous operator and there exist a
constant Ii such that

1111"-111,,11 = IIP(y -111,,) - P(O)II 5 M lIy - w,,1! ,
Finally, from (34) and (36)

IIYIe-YIl 5 lIy"-w,,I!+IIY-w,,1I sM{M+l) k.

Remark 5.1 Estimation optimaIity
To show the optimality of the estimate (37) we can study the behavior of the solution corresponding
to the following data F:

F(t) = .m sin (n1rt) .
n31r l'

It is easy to check - mutatis mutandis _.by using essentially the arguments used in Section .• that

1Ily- Ylellloo(o,T)? en'



We have obtained in this paper a critical estimate of the error associated to the numerical pro-
cedure presented in [1], for the computational solution of the optimal control problem analyzed
theoretically in [2].
This estimate represents in a certain sense the worst case that can arise in this procedure, but
really, for a particular data, the sequence of errors Ek = Y -- Yk has a faster rate of convergence
than that given by (37), i.e. we have

lim !Y - Yk~l.':(O'72 = O.
k-oO k

The origin of this improvement is the fact that the estimate (27) can be modified -- obtaining a
tighter estimate - in the following form

lIuk- ulll~(o,T) :S C Ilip'IIL'(Io) k,

and because lIip'lIv(JO) .-> 0, due to the regularity of ip.
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