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Abstract
In this work we analize some special features of the numerical solution of a variational
inequality which arises from an optimization problem with monotone controls. We give
estimates of its conyvergence rate and we show an example which shows the optimality of
these estimates.

Resumen

En este trabajo se analizan algunas particularidades de la solucién numérica de una
inecuacién variacional proveniente de un problema de optimizacién con controles monétonos.
Se dan estimaciones de la velocidad de convergencia y ejemplos donde se muestra que estas
estimaciones son criticas.

1 Introduction

We consider the following differential equation
(Y +@-F+F) =0, in (OT),

y(0) =0, Y]
y(T) = F(T),
where F € H?[0,T] and 2~ = ~min{z,0). .

This equation stems (by using the methodology of variational inequalities in Sobolev spaces) from
the optimization problem with monotone controls presented in [2]. The solution of (1) has the
following minimality property:

Theorem 1.1 y ts the minimum element of the set

U={uwe H0,T] : w0) >0, w(T) > F(T), v’ <0, v’ ~u< F" - F}, 2

where ¥’ is understood as the second derivative in a weak sense, i.e. (2) means
' W,¥)>0, VweH}o,T), v>0, &)
W)Y 2 (-F'+F—uv), YoeHY0,T], v=>0 4)

and r
{u,v) = | ult)vlt)dt. (5)
/ .
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The set U is called the set of supersolutions. By virtue of Theorem 1.1 (the proof of this theorem
is included in {2]), the problem (1) can be reformulated in the following sense:

IPC : Find y the minimum element of the set U]

A numerical procedure to solve numerically this problem was presented in {1]. Here we conilinue
with that development: specifically we present a sharper estimate of the convergence rate and an
example which shows that this estimate is optimal.

2 The discretized problem

2.1 Finite difference approximation

" Let 0 be the following set of points in [0, 7]

P ={t;: =ik i=0,..n}, kzg_

We define the following external approximation of the space H2[0, T

where ¥; : ® —» R are defined by

v,,={f:[o,ﬂ—»se | 1= 5 aw@), acn),
‘I’e(t)=%(1—lt;;ﬁ'

)+
and =t = max(z,0) . We also define

Vor ={f €V fO)=F(T)=0, f(t;)>0,Vi=1,.,n—1}.

2.2 The approximated problem

The discretization of the restrictions that define the set U : determines the subset Uy C V;, which
has the following form

Ue = {uz € Vi : u(0) >0, ux(7) > F(T), and uy verifies (6)}
{ (ullnv;s)Zo) Vvkevo-;7

(U th) 2 ~ (—F"+ F — w,we) , Yor € Vo -
Then we can state the discretized problem as:

(6)

[Pk: Find 3 the minimum element of U l
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3 'The reduced problem

In order to grasp the essential features of the approximation error of our procedure, we are going
to analyze, in a first place, a simplified problem. It consists in looking for u € H?[0, T} such that

v +{p)y" =0, in (0,T),
u(0) =0, U]
uw(T)="0,
where ¢ € H*[0,T]. 1t is easy to prove that u is the minimum element of the set $
S={s€ H'[0,1] : s(0) >0, s(I') 25, & <0, s" <p},
where §” is understood in the weak sense (3)-(5).

3.1 The discrete solution

In a similar way as to what was done in Section 2.2, we define the discrete solution in the following

form:
LP": Find u; the minimum element of Si ,l
where .
Sk = {3 €Vi : 5(0) >0, 5,(T) 2 b, and s, verities (8)}
(5;"";:) 20, Y € Vojk H
(8)
(S th) 2 — (on,m) , Yor€Vgh.
Let
sy ==t 9)
Tk AV (
we define

k
() = (0% B)(2) = / ot — 5) ¥(s) ds. (10)
~k .

Remark 3.1 It is easy to prove that T(t;) = (v, V). Definition (10) can be also used for elements
of (H}(0,T)); in the particular case of vy € Vi, we get vh{t:) = — (v}, ¥}), Vi=1,..n 1.
Lemoma 3.1 u, verifies the following difference equation

W) =~ @), Vi=1,.,n-1,

u'k(o) =0, (11)

'U.);(T) =b.
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Proof. From the definition of uy , it is verified
(u;,vf,)z(), 'UgE‘/oj‘,
In consecuence, we have
, .
(uln\l’.lj>207 VJ=1)"'7n—1
and from the definition of convolution, it results
w(t) <0, VYj=1..,n-1. (12)
In the same way
(u;nvlk) + ((P,'Ulg) 2 0: w € ‘/DTI; :
This expression is equivalent to
' W) +@(t) <0, j=1,.,n—1. (13)
By‘(12) and (13) we have
Wit <-@t:)",  d=L..n-1. (14)

Let us denote 2 the solution of (11). Therefore
FAARFAE

and by using the Discrete Maximum Principle (see [3}), we get
ur(t;) 2 2u(ts).

1t is easy to check that z; € S;; in consequence z is the minimum element of Sy (i.e. 2 = uy).

N
Remark 3.2 Let us define uy € Vi : u(t;) = u(t;),Vi =0, ....n. Then, u; is the solution of
W(t;) = —p~(t;), Vi=1,..,n-1,
w(0) =0, : (15)

u;(T) =b.
The function min(z,0) is concave, then
~p(t;) < —(@(¢;)", Vi=1,.,n—1.
Therefore . .
wy(t;) < ¥(t),
and by using the Discrete Mazimum Principle (see [3]), we get
ur(t) 2 w(t;) -

S0, we have obiained one of the estimates, to find the oiher we use ihe auriliary resuil given by
the Lemma (3.2).
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Note 3.1 We will denote, Vw € V;

el = R o fw(t)] (16)
n—1

"w"ﬂ(o,'r) = kz lw(t:)|, : (17)
t==]

oo = (S k@) (18

Lemma 3.2 Let v verify the following difference equation

W) =w={w;}, Vi=1..,n-1,
(19)
v,,(O) = U;,(T) == 0,
then, there are positive constants ¢,€ (independent of n) such that
u(ty) < cllwllner < ellwlner - (20)
Proof. Let; (i=1,...,n— 1) be the triangular function defined by:
7!(0) =0 3 2
iin—14) k
ey = -LIE (21)
%(T)=0,
it is easy to prove that
' — T
Y/ (t;) =1 and ]|7,-}|,w(o,r) < Zk , Vi=1,..,n—1. (22)
Then, to a generic w, we have that the solution of (19) is given by
n .
v(t) = winlt). ' (23)
i=1
Finally, (20) appears as a result of (17), (18) and (22).
m]

We will use the previous Lemma to estimate the error of approximation. In consequence we need
to obtain a bound of the differences:

v () — @), Vi=1,.,m 1.
Lemma 3.3 Vo € H'(0,T) the following inequality holds

@ —v . <2i¢aen k- (24)
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Proof. We will use the following partition of [0,T] = I°U I~ U I, where
IF={te[0,T] : o(t+3s) >0, Vse|-kk]},

I"={te[0,T) : p(t+s)<0, Vse[-kk]},
P={te0,T) : ds€[—kk|, oft+s)=0}.

For all t; € I U™, we have L
o= (t;) = (@)~ (t;)-
Then, it remains to estimate the value of (F - (iﬁ)’) , Vt; € I°. Taking in mind that V¢ € [0, T

—p~(t) < olt),
we have .
"8 (tJ) Z "'-‘ﬁ(tj) 1
therefore L
v (t) = (@(t;)) - (25)
For the other inequality, we have by (25)
0 <o (t) ~ @(t3)” < (ty).
Also, ¥t € [0, T] it is valid that .
: e (1) < le®)],
and then . L
@ (t5) < lel(t;) -
Let t; € I°, then 3¢ € (—k, k) such that ¢(t; ~ {) = 0. Then, Vt € (£;_1,%;41) we have
t b1
woi< [ Woldrs [ 100ide < VIR Il 1
¢ -1

therefore .
|<P’(t1) <V2k ”(p,”Lz(tj’lgtj»fnl) 4

n—1 n-1
Y A N 2 2
Y k() < D28 ¢ sy gy < 482 1 laoimy -
=1 j==1

Then

!
ooy < 26 1 o,

and in consequence

e (t)— @) (t) <2 1l caem) - (26)

Theorem 3.1 The following estimate for the error of approzimation holds

s — wlleogory < C 1€ 20y K- (@7
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Proof. Let us define Ex(t;) = u(t;) — ux(¢;) . From (15) and (11) we have
{ Bl(t)=—¢~ 1)+ @) () Y, j=1.,n-1,

Ex(0) = E(T) = 0.

(28)

We apply now to this equation the results established in Leramas 3.2 and 3.3. From both estima-
tions we get (27).

4 Estimation optimality

We present in this Section an example which shows that for a given partition (% of [0, T] there
exist an ad-hoc purposely devised data for which the estimate (27) is achieved. The example is

defined in the following way
(t) = vaT . (et
h T )

It is easy to check that

Iy’ "Lz(o,r) =1,
¢ =0 (29)
= V2T ,
(QO)—(tJ) = —nk’ﬂ:i“ Vt, )= 1,...,13 -1.
In consequence, it is
) w =0,
. 30)
V2T (
wi(ty) = 5— (T~ t5)t;,
then VIT ’
2T .,
”‘UI - uk“‘w(oyT) = m T / .
Finally, taking into account Remark 3.2 we get
V2T o
flu— uk"tm(o,rr) = onn? T/,
5 General case
Now we are going to consider the general case, i.e.
y”+(y,_F’+Fv’)'—=0, m([):T)’
4(0) =0, | (31)

(T) = F(T).
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By definition the discrete solution verifies

Rt =—(G-F+Ft)  d=L.n-L,
4(0) =0, (32)
u(T) = F(T).

To obtain the error estimation we use basically the estimate (27) and the continuity of an operator
P associated to the solution of (32).

Theorem 5.1 Let us denote by y the solution of (31) and v, the solution of (32), we have
lux — Wiy < ME.
Proof. Let w; € Vi such that
wi(ty) =~ (G":F?T')(t,-))_ j=1.,n-1

wk(O) = 0, (33)
wi(T) = F(T).
As y is a fixed function, if we consider in (26) : ¢ =y — F — F", we get the inequality
fly.— wk"ton(o,T) <Mk - (34)

Let us define the opérator P: H?(0,T) — Vi, such that P(f) = z, where
A=~ (FFa-F+P)t) i=l.,n-1

«(T) = F(T).

It is obvious that wy = P(y - w) and yx = P(0). P is a continuous operator and there exist a
constant M such that

fus = wrll = | Ply —we) = PO < M Jly —will, (36)

Finally, from (34) and (36)
s — 9l < llge — well + ly — well < M (M +1) k. (37)
I}

Remark 5.1 Estimation optimality
To show the optimality of the estimate (37) we can study the behavior of the solution corresponding
to the following data F:

F(t) = ‘:f? sin ("—T—”> .

It is easy to check - mutatis mutandis — by using essentially the arguments used tn Section 4 that

1
ly — ¥ llicogo.z9y = c.-
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Conclusions

We have obtained in this paper a critical estimate of the error associated to the numerical pro-
cedure presented in [1], for the computational solution of the optimal control problem analyzed
theoretically in {2].

This estimate represents in a certain sense the worst case that can arise in this procedure, but
really, for a particular data, the sequence of errors By = y — yx has a faster rate of convergence
than that given by (37), i.e. we have

Lim E{:ﬂﬂ'ﬁ(ﬁﬂ =0.
k=0 k

The origin of this improvement is the fact that the estimate (27) can be modified - obtaining a
tighter estimate — in the following form

fla — “"Po(o,r) <C ”‘P"|Lﬂ(15) k,
and because ¢/ [| 2y -+ 0, due to the regulasrity of p.
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