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Abstract
We consider a junction problem described by a variational inequality framework, which
involves a coupling restriction defined in terms of the common values of the system variables
at the interface. To solve the original problem, a decomposition—coordination method is
proposed, where the global equilibriom condition plays an essential role in the coordination
phase.

Resumen

Consideramos un problema de junturas analizado por medio de una inecuacién variacional.
El tipo de juntura considerado involucra uns restriccién definida en términos del valor comin
de 1as variables del sistema en la interfase. Para resolver el problema original, un método de
descomposicién--coordinacion es propuesto, donde la condicién de equilibrio global juega un
rol fundamental en la fase de coordinacién.

1 Introduction

1.1 A brief description of junction probléms

This work originates in what is known as junction problems — we can see [1], [2], [3], [5], [6] and
the bibliography therein, for a more detailed description of these problems and the analysis of
some related topics. Specifically, our work analyzes some issues that appear when the variational
inequality approach is used to analyze these problems (see [7]). In order to fix the ideas, we
consider the geometrical situation shown in Fig. 1. In ®® we have two open domains §2 and Qs
of dimensions 2 and 3 respectively; (1, is in the plane x3 = 0. The boundary 9Q; of 1, consists of
I'y;, where i stands for inferface or junctions and Ty, , where e stands for exterior. The domain
3 is an open domain in R ; we denote by 'y = 8Q; its boundary.

1.2 Mathematical description of the original problem

1.2.1 System State

The state of the system (which is defined by a scalar o vector function and may represent some
variables of interest: temperature, deplacement, etc) is given by a real function (uy, uz) : Qyx Q3 —
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2. We set

X2=H1(Q2)1 X3=H1(93)7 X=X2 eXSy

1
Iy =Ty U T, 80 =T

1.2.2 Connections: Operators M;
Around the interface I'y;, both in ; and in (3, connections are established between u, and u;.
These connections may be local or not; they are defined in terms of linear continuous operators
M; € L(X:, H), i= 2,3, where H is a given Hilbert space. Specifically, we consider a closed
convex subset X of M and we define the connection in the following form:
My — Mzuz € KC'H. (2)

We define the set of admissible states as the set of states that verify the connection (2), i.e.

K={(v2,) € X:® Xy : Mpvs— Msv3 €K} . 3)

Obviously, as M; are linear continuous operators, the set K is a closed convex subset of X.

1.2.3 The energy functional: The bilinear forms

As it is usual in physical problems, we find the state of the system looking for the admissible state
that minimizes a functional of energy, which in our problem will be described in terms of a couple
of bilinear forms a3, ag. We will suppose that these bilinear forms are symmetric and we define
the functional J : X; ©® X3 — R in the following way:

J(uz, u3) = L az(uz, uz) — (fo, w) +  as(us, us) — (f3, %), 4

where the bllmear forms have the following expressions (a > 0, 3 > 0)

az(uz,w)=L(Vuan+awvz)dw, (5
ay(ug,v3) = /m(Vuvas + B ugvs)dz. (6)

We associate to (5), (6) the differential operators A; and A; :

A7=—A+a1 A3=~A+ﬂ‘
In the example analyzed in this paper, we will restrict the study to bilinear forms associated to
siraple second order differential operators, although an extension to more general operator are

straightforward and without difficulties.
We also define the functional operators Ay and A3 such that

aﬂ("‘ﬁ; 'U)) = (‘A2u‘11 v?) and 03(‘!.‘3, 03) = (‘Aaufh 1’3) 3 (7)
where (-,-) denotes the inner product in H*(£2,) or H 1{0).
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1.2.4 Coupled variational inequalities

‘We must minimize the functional (4) in the set of admissible states K or, in a equivalent way, we
will consider the variational inequality: Find u = (us,u3) € K such that

ag(Ug, Vs — ) + az{ug, v3 — u3) 2 (fo, 02— ) + (f5,03 — us), V(vy,v3) €K, ®

where f» € I*(l), f € L*(Q3) and (v, w) denotes the inner product in L’(O.g) or I*(3). By
virtue of (5), (6), this variational inequality has a unique solution (see [9)).

Remark 1 By assumption, the bilinear forms ay and a3 are symmelric and in consequence, the
inequality (8) is the necessary condition that must hold at the point that realizes the minimum of
the functional J on the set K.

Now we introduce the following example, which will be solved by decomposition techniques in
Section 3.

1.2.5 The example

We use the general framework above presented. Then, the problem will be completely defined
once we have specified H, K, M, and M;.

We take H = H/2(I'), K = 0 and we define the aperator Mj to be M3 v3 = % vs (the trace of 14
on 1‘3).

We consider now the trace operator ¢ —- ¢jr,, , which is linear and continuous in H(I'3) —
HY2(Ty;). This operator has inverse, an operator R such that

R e L(HY*(Ty); H'(T3)), Rolr, =¢ Vo e HVATY). @

We introduce now the operator E € L{H"/?(Ty;); HY/*(T3)); we can take, for example, £ = R.
Let 725 v be the trace of v3 on Ty, and so we have 7 vy € HY2(T'y;) . We define My vo = E yp; vo
and we consider the convex set of admissible states

K"——'—{(‘Uz,‘l};;)éXz@Xs 2 Mz’l}z—*M;;'l):;:—"-o}. (10)
In this case, the connection condition
Mg Yy = M3 Y3, (11)

means that we consider an extension to I'z of the trace y; v, defined on I'y; and that extension
must be equal to the trace of v3.

2 A decomposition method

The idea of solving (8) by hierarchical optimization and decomposition stems from the fact that
the solution % = (ug,u3) depends on the values at some intermediate space {in the case of the
example that space is HY2(T'5;)) and if we choose the correct {and unique) intermediate value,
then the original problem (8) is solved. The procedure chooses a value %y of the intermediate
space and — after solving some naturally defined separated problems — that value is corrected until
condition (8) is verified.
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Definition 1 Decomposition of the convex K
We introduce a linear space X and a convex set K;. Also, Vuy € K;, we consider the associated
closed convez sets Ky(u;), Ks(u;) with the property

K == U (Kg('u;) @ Ks(ﬂ[)) . (12)

Definition 2 The separated problems
We introduce the notation

(Pz(ul) = u,é‘;ézl(lnx) J(ug y 0) . (13)
oswn) = in, JO.w), 0

and to compule the functions @, and @3 we define the problems Pal{u;) and Ps(uy):
Problem P(u;)
Find ’!_l/z(‘ul) € Kz(ul) such that J(ﬁg, 0) = <p2(u1) s (15)

Problem 'P,-,(u,)
. Find ﬁg(‘ul) € K3(U1) such that J(O, ’fls) = (p3(1l[) . (16)
Remark 2 By (5) and (6), there ezists unigue solution of (15) and (16).

Definition 3 The hierarchical optimization problem
Let us define the auxiliary function ¢ '

p(ur) = pa(ur) + s(ur) . a7
By virtue of (12) we have
W J(uz,u3) = L min (x, W2 Tl ,us)) . (18)

But from (4) we have

j J = in J(uy,0 J(0
Kz(“m:v(ﬂx) (2, ua) ("ﬂg‘l:%w) (va, )) * ( agll‘ltl(l'u) ( u3))

(19)
= @a(ur) + 3(ur) = p(ur) .
Then
Win I (e, us) = min o(ur) (20)
and we conclude that problem (8) ts equivalent to the following problem P :
Py : Find 4; € K; such that o{fi;) = ux'rgxnl wlur). 21

Remark 3 From (18)-(21) it follows that the new problem P; is a decomposable hierarchical
optimization problem (8].

The keystone of the decomposition method is the fact that the function ¢ appearing in (21) verify
(17) and that (2, 3) can be computed by solving two separated optimization problems.
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In the following we will suppose that the hypotheses of Theorem 1 hold and in consequence, @2
and 3 are convex functions. Finally, from (17), ¢ is also convex.

Theorem 1 Let X;, X be vector spaces, K a closed convez subset of Xy, ¢(-) a strictly convez
end continuous function defined on X; and (for each v € K;) a closed conver subset K C X
such that we can define on K the function

B(v) = inf $(z), | (22)
and such that there exists a unique @(v) with the property
$(a(v)) = P(v). (23)
Assume the multivalued mapping v — K" is a convez mapping in the sense that
AKY + (1= A) K® ¢ K- (24)
then 9 is a convex function.
Proof: Let v and ¥ be elements of K; and u, # such that
u=ufv), u=u?), (25)
then, 1 is convex because
PRAv+(1-2)70) <dAu+ (1-—-A)a) by (22) and (24)
< Ag(u) + (1 — A) o(a) by the convexity of ¢
=A%) +(1-N%@ by (23) and (25).
8]

Remark 4 (@(4;), 53(81)) is the solution of the variational ineguality (8) when @; realizes the
mintmum of . .

Remark 5 In general the problem P; is easier than (8), because
1. The dimension of Q; (where X; is defined} is smaller than the dimensions of 2y, 3.
2. X1 has a simpler structure.

3. Problem P; is the mintmum of a convex function on the set K; which involves sometimes
sirnpler resirictions.

4. By solving the problems Py and P, it is possible to compute a descent direction for ¢.
Definition 4 The auxiliary function g

Let us suppose that g3, ps are differentiable and let us denote g», g3 the corresponding derivatives.
For each vy € X;, we define

9(v1) = ga(vr) + galvr) - (26)
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Definition 5 The equilibrium condition
The optimality condition (that we will say it is the equilibrium condition) for %, to be the solution
of Problem Py is:

(g(ﬁl)’vl '—1_‘1) Z 0, V‘U] € KI. R (27)

Remark 6 As ¢ is conver this condition is alse a sufficient condition of optimality. In addition,
if @ is strictly convez, the point G; that verifies this optimality condition is unigue.’

Definition 6 An iterative algorithm

The above mentioned unique value @iy can be found iteratively using the algorithm described be-
low, which employs the information given by the function g. The algorithm generates a sequence
(Be{v?), a(v})), which starts at an indtial pair Ga(vY), 4s(v?) and that converges to the solution
(u2,us) of (8)-

20
Let {m : v =0,...} be a sequence of positive numbers such that lixfx'y,,-—-o and ¥ 7, = +o0.
L o p=0)
Also, let us denote by Py, (q) the projection of qon K.

ALGORITHM
Step 1: v=10, U?EKI.

Step 2: Solve problems P2(v}) and Ps(vy). Set v =1,
Step 3: 7 = P, (v} — v9(v7))-
Step 4 1 p(0) < p{uf) + Ho(ef), 01~ v7), set v}* =5y, v =1 +1 and go to Step %

elae,v:%, and go to Step 3.

3 Application of the decomposition method

3.1 Elements of the decomposition
‘We deal with the problem presented in Section 1.2.5. In this case we define:
X; = HV*(T'y),

Ka(vr) = {v € Xy : v va(x) = v1(x), a.e. s € Ty}, (28)

Ka(vr) = {vs € X5 : 13 »3(z) = (E(v1)) (z), s.e. z €[5} .

With these data, we consider the problem P,(v;) defined in (15), which is equivalent to find the
solution tis(v;) of the Dirichlet-Neumann problem:

Agiiy = fy,
Galrw =vr, (29)
Biip

B I =0
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To make explicit the dependence on vy of the solution #@,(vy) , we introduce the following defini-

tions: Let w, be the solution of

Agwa = f,
Walr,, = 0,
ow

67: Ier -0 2

and let G be the operator
HY*(I'y) — H(Q),

¢ — Gag,

such that
A{Ga¢) =0

(Gap)lrs = b,

By virtue of {29), (30) and (32), we have
dp(vy) = Ggp, +w,.
In consequence, for the auxiliary function @,(v;) we have
p2(vr) = 3(A2(Gavr + wa), Govr + wa) — (f2, Gavr + wa),
then, for the derivative (in the Frechet sense) we obtain: V( € X,
| (Dea(on), Q) = (GiAaGavy +Gilhates — ), ).

(30)

(31)

(32)

(33)

(34)

(35)

Note 1 We have used the notation: f for the element given by the Riesz representation theorem,

ie. (f2 ,v2) = (fa,vq), Yin € X3. A similar notation is used below.

Now, we consider the problem P;(v;) defined in (16). In this case, the solution ua(vl) is given by

the solution of the Dirichlet problem:
{ Agtia = f3,
{ tialr, = Evy.
Let be ws the soiution of
: ‘ Ayws = fs,
{ ws|py =0,

@d let G be the operator _
H'Y(T5) — H'(Q),

¢"~’G3¢’

(36)

(37

(38)
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such that
: { A(Gap) =0, :
(39)
(G3¢)ll'z =¢.
By virtue of (36), (37) and (39), we have .
t3(vy) = G3Bvy + ws. (40)
Then, we obtain
pa(vr) = 3(As(GsEvy +w3), GsBur + ws) — (f3, GsEvy +ws) , (41)
Therefore, for the derivative (in the Frechet sense) we have: V{ € X;
(Des(v1),€) = {(B*G3AGEYor + E*G3lAgws — f5), ¢} (42)

The solution #; is given by salving the equation g(v;) = 0, where g(v;) = Diy(v;) + Dys(vy) . By
virtue of (35) and (42), we have

G5 MGty + G3(Agwa — o) + (B* Gy AG3 E)ay + E*Gi(Asws — f3) = 0. (43)
In consequence we get
@ = Q(G3(Aws — ) + Gyl Asws - 1)) . (44)
where
Q = —(G3A:G1 + E*G3AsG1 E) . (45)

So, the solution is given by

() = G2Q (~Gi(Aaws - o) — EGi(Asws — ) + w3,
(46)

us(fi;) = GEQ (—G';(-Azw: o E*Gi(Ayws — f:'i)) +ws.

Conclusions

‘We have solved in this paper a junction problem involving coupling restrictions. Using a variational
inequality formulation, we have obtained both the differential equations and the global equilibrium
condition which identify the solution. We have proposed a procedure to obtain the solution via
a decomposition—coordination method ~ the basic elements of the methodology used in our work
can be seen in [4], {8]; for more recent developments in this field we refer the reader to [10],
[11]. We bave devised this procedure because it allows us to solve the cuupled problem through
the solution of simple independent problems — in general, they are linear problems or simple
obslacle problems. These problems depend on some auxiliary variables which are modified (by
a coordination procedure) until the desired solution is obtained. In the example here presented,
we have given an explicit form of the solution in terms of some simple operators associated to
classical problems of Dirichlet and Neumann type.
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Figure 1: A 2-3 dimensional coupled domain




