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Abstract

We consider a junction problem described by a vari&tiona.l inequaJity framework, which
involves a coupling restriction defined in terms of the common values of the system variables
at the interface. To solve the original problem, a decomposition-ooordination method is
proposed, where the global equilibrium condition plays an essential role in the coordination
phase.

Consideramos un problema de junturas analiMdo pormedio de una inecuaci6n variacional.
EI tipo de juntura considerado involucra una l'estria:i6n definida en terminos del valor COlDUn
de las variables del sisieml;.en la interfase. Para resolver el problema original, un m6todo de
descomposici6.0:«>OJ:dinaci6nes propuesto, donde la condici6n de equilibrio global juega un
rol fundamental en la fase de r.oordinaci6n.

1.1 A brief description of junction problems
This work originates in what is known as junction problems - we can see [1], [2], [3],[5], [6] and
the bibliography therein, for a more detailed description of these problems and the analysis of
some related topics. Specifically, our work analyzes some issues that appear when the variational
inequality approach is used to analyze these problems (see [7]). In order to fix the ideas, we
consider the goometrkal situation shown in Fig. 1. In ~ we have two open domains !l2 and 03 ,
of dimensions 2 and 3 respectively; O2 is in the plane:l:3 O~ O. The boundary 002 of O:! consists of
r2i, where i stands for iflterJace or junctions and r2e, where e stands for exterior. The domain
03 is an open domain in ~; we denote by r 3 = OOa its boundary.

1.2 Mathematical description of the original problem
1.2.1 System State

The state of the system· (which is defined by a scalar 0 vector function and may represent some
variables ofint.erest; temperature, deplacement, etc) is given by a real fundion (tv.!, U3); !l2X03 .....,.



1.2.2 Counectious: Operators ~

Around the interface r2i, both in O2 and in Oa, connections are established between U2 and Ua •

These connections may be local or not; they are defined in terms of linear continuous operators
~ E .c(X" 1t), i = 2,3, where 1t is a given Hilbert space. Specifically, we consider a closed
convex subset JC of 1l and we define the connection in the following form:

1.2.3 The euergy functioual: The bilinear forms

As it is usual in physical problems, we find the state of the system looking for the admissible state
that minimizes a functional of energy, which in our problem will be described in terms of a couple
of bilinear forms a2, aa- Wl!will suppose that these bilinear forms are symmetric and we define
the functional J : Xl (9 X2 -+ R in the following way:

J(U2, Ua) = la2(U2, '/12) - (12, U2) +Iaa(ua, ua) _0 (fa, Us) ,

where the bilinear forms haw the following expressions (a > 0, {j > 0)

G2(U2,v:/) = { (V'/I2VV:/ +a U2V:/)dx,In.
aa(Us, Va) = lns (V UaVVa + {j Ua Va) dx.

We associate to (5), (6) the differential operators A2 and Aa :

In the example analyzed in this paper, we will restrict the study to bilinear forms associated to
simple second order differential operators, although an extension to more general operator are
straightforward and without difficulties.
We also define the functional operators At and .Aa such that

G2(U2, V:/) = (.A2U2, V2) and asCUs, Va) = (Aa'U:l, va) ,

where (.,.) denotes the inner product in Hl(~) or H1(Oa).



1.2.4 Coupled variational inequalities

We must minimize the functional (4) in the set of admisSible states K or, in a equivalent, way, we
will consider the variational inequality: F"md u = (U2, U3) E K such that

~(U2,1l2 - U2) + a3(tta, Va - U3) ~ (f2, V2 - U2) + (f3, Va - U3), 'Ii (V2, V3) E K, (8)

where f2 E L2(f!2)' fa E L2(f!3) and (v, w) denotes the inner product in L2(il,) or L2(f!3)' By
virtue of (5), (6), this variat.ional inequality has a unique solution (see [9]).

Remark 1 By assumption, the bilinen,r forms a2 and as are symmetric and in consequence, the
ineqoolity (8) is the necessary condition that must hold at the point that realizes the minimum of
the /tlnctional J on the set K.

Now we introduce the following example, which will be solved by decomposition techniques in
Section 3.

1.2.5 The example

We use the general framework above presented. Then, the problem will be completely defined
once we have specified 'ft, 1C,M2 and M3 .

We take 'ft = H1/2(f3), K: = 0 and we define the operator M3 to be M3 Va = 'Y3 Va (the trace of Va

on 1'3)'
We consider now the trace operator 4J -----. ¢l1r.., which is linear and continuous in H1(f3) -+
Hl/2(f2i). This operator has inverse, an operator R such that

We introduce now the opemtor B E .c(H1/2(f2i); H1/2(f3}}; we can talre, for example, E = R.
Let 'Y2i V2 be the trace of 112 on f2i , and so we have 'Y2i 112 E H1/2(f,,}. We define M21l2 = E /" 'U2
and we consider the convex set of admissible states

means that we consider an extension to r3 of the t,race /2.112 defined on r2. and that E".xtension
must be equal to the trace of V3 .

The idea of solving (8) by hierarchical optimi2ation and decomposition steIns from the fact that
the solution u = (U2, u3tdepends on the values at some intermediate space (in the case of the
example that space is lJl/2(f2i)} and if we choose the correct (and unique) intermediate value,
then the original problem (8) is solved. The procedure chooses a value Ur of the intermediate
space and - after solving some naturally defined separated problems - that value is corrected until
('.andition (8) is verified.



Definition 1 Decomposition of the CODVeX K
We introduce a linear spact: XI and a convez set KI- Also, 'r/UI E KI, VIe consider the associated
closed COmJex sets K,(uIl, Ka(UI) with the properly

K= U (KlI(UI) El:lKa(UI»'
"IEKI

Definition 2 The separated problems
We introduce the notation

rp,(UI) = min J(u" 0), (13)
U2EK2(UI)

ipa(uI) = min J(O, fIG), (14)
•••EKlI(UI)

and to compute the junctions rp, and ipa we define the problems 1',(u/) and 1'a(UI):
Problem 1'2(U/)

Find ~(u/) E Ka(u/) such that J(O,ua) = !Pa(u/).

Remark 2 By (5) and (6), there exista unique solution of (15) and (16).

DefInition 3 The hierarchical optimization problem
Let us define the tI'U%iliaryjunction ip

ip(u/) = ip2(U/) + ipa(u/).

By virtue of (12) we have

min J(u" fIG) = min ( min J(u" ua») .
(U2 •••••)EK ur~Kr K,(Ul)@K.(-r)

But from (4) we have

min J(U2,u.a) = ( min J(U"O») + ( min J(O,U3»)
K2(_1)@K.(Ul) U2EK.(ur) U.EK.(us)

Remark 3 .Hum (18)-(21) it follows that the new problem 1'1 is a decomposablehierarehical
op~~ problem [8]. -

The keystone of the decomposition method is the fact that the junction ip appea,"ing in (21) verify
(17) and that (rp" cpa) can be computed by solving two separated optimization problems.



In the following we will suppOse that the hypotheses of Theorem 1 hold and in consequence, 1(>2

and'P3 are convex functions. Finally, &om (17), I(> is also convex.

Theorem 1 Let XI, X be vector spaces, KI a closed convex subset of XI, <PO a strictly convex
and continuous junction defined on XI and (for each v E KI) a closed convex stWset 1(" C X
such that we can define on K I the junction

then t/J is a convex function.

Proof: Let v and ii be elements of KI and u, it such that

t/J(.\v+(I->')v):c; if>(>.u+ (1-->')u)

:c; .\ <jJ(u) + (1 .~ >') if>(u)

= .\¢(v) +(1- >.)t/J(ii)

Remark 4 (U2(UI), U3(UI)) is the .~olution of the variational inequality (8) when UI realizes the
minimum of 1(>.

Remark 5 In .qeneml the problem 'PI is easier than (8), bel'.ause

1. Thedimension of 01 (where XI is defined) is smaller than the dimensions of O2, 03,

2. XI has a. simpler structure.

3. Problem 'PI is the minimum of a convex junction on the set KI which involves sometimes
simpler restrictions.

Definition 4. The auxiliary function 9
Let us suppose that 1(>2, 1(>3 are differentiable and let us denote 92, 93 the corresponding derivatives.
For each VI E XI, we define



De8Dition 5 The equilibrium condition
The optimalitll condition (tIuJt tile will 6a1lit is the equilibrium condition) for "I to be tM 6Olution
of Problem PI is:

Remark 6 As 1p is convu this condition is also a sufJident condition of optimalit,l. In addition,
if I{J is strictlll convu, the point UI tIuJt fJfJf'i/ies this optimality COfldition is unique. '

De8Dition 6 An iterative algorithm
The abo1Ie mentioned unique value "I can be found iteratively using tM algorithm described be-
low, which employs tM infOf'JOOtiongiven by the function g. The algorithm genemtes a sequence
(1i2(t/f),tis(t/f», which starts at an initial pair 1i2(v~),U3(~) and tIuJt converges to the solution
(Ull,U3) 0/(8).

00

Let {'Y" : v = 0, ... } be a sequence of positive numbers such that lim 'Yv = 0 and L 'Yv = +00 .
v-t+oo v=O

Also, let us denote by PKAq) the projection of q onKr.

ALGORITHM
Step 1: /.I = 0, ~ E Kr.

Step 4: If I{J(VI) < 1{J(t/f) + ~(g(vn,vr - vI), set v~+l = vr, v = v + 1 and go to Step 2;

'Yelse, 'Y= 2" and go to Step 3.

3.1 Elements of the decomposition
We deal with the problem P1llBl!lllted in Section 1.2.5. In this case we define:

XI = Hl/2(f'2i)'

K2(vI) = {V2 E X2 : 'Yfi 'll2(x) = vr(x), a.e. x E f'2i} ,

K3(VI) = {Va E X3 : 1'3 Va(x) = (E(VI» (x), a.e. x E f'3} .

With these data, we consider the problem P2(Vl) defined in (15), which is equivalent to find the
solution ~(vr) of the Dirichlet-Neumann problem:

{

A2U:z = 12 ,

~Ir••= VI,

~
linlr.·=O.



To make explicit the dependence on VI of the solution 'ib.!(vI) , we introduce the following defini-
tions: Let U!2 be the solution of

{

A2W2=h,

w211''' = 0.,

Owz
&11'2.=0,

{

AZ(G2~) = 0,

(G,</)I.,. - ". '

~(~~2I1'2e = 0.

By virtue of (29), (30) and (32), we have

'Pz(VI) = !(Az( G2VI + W2), G2VI + W2} - (lz, G2VI + roz) ,

then, for the derivative (in the ltfechet sense) we obtain: Ve;, E XI

Note 1 We have used the rwtation: j for the element given by the Riesz representation theorem,
i.e. (jz, vz) = (lz, Vz), 'dvz E Xz. A similar notation is used below.

Now, we consider the problem Pa(vr) defined in (16). In this case, the solution ua(vI) is given by
the solution of the DiridJ1et problem:

{

~iia = f3,

. usl1'. = Evr .

{

~W3 =13,

W311's = 0,



{

Aa(Gar/» =0,

(Gar/»Ira = r/>.
By virtue of (36), (37) and (39), we have

rps(VI) = ~(~( GaEVI +Wa), GaEVI + Wa) - (fa, GaEVI +UI3) , (41)

Therefore, ror the derivative (in the Frechet sense) we have: V( E XI

The solution ilj is given by solving the equation g(VI) = 0, where g(Vl) = Dtp'l(vr) +Drps(vr). By
virtue of (35) and (42), we have

G;.A,G'1Ur + G;(.A,1.I12 - f'1) + (E"o;~GaE)tlI + E*a;(~U13 - fa) = 0 - (43)

{

U2(UI) =G'1Q (-G;(.A2W, - f2)A- E*G;(~. U13 - fa)! +W'1, (46)

us(ur) = GaEQ ( -a;(.A,w2 - /2) -- E"G;(Aawa - fa») + UTa·

We have solved in this paper a junction pl'Qblem in"VOlvingcoupling restrictiODB. Using a variaUOIlaI
inequality formulation, we hawe obtained both the differential equations and the global equilibrium
condition which identify the solution. We haw proposed a procedure to obtain the solution via
a decomposition-coordination method - the basic elements of the methodology UBedin our work
can be seen in [4}, {8]; for more recent developments in this field we reftoz the reader to [10],
{Il]. We haw derised this procedure because it allows us to solve the CQUpledproblem through
the solution of simple independent problems - in general, they are linear problems or simple
obstacle problems. These problems depend on some auxiliary variables which are modified (by
a coordination prooedure) until the desired solution is obtained. In the example here p~ted,
we have given an explicit form of the solution in terms of some simple operatoIB 8SlIOCiatedto
classical problems of Dirichlet and Neumann type.
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