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En este trabajo se ha desarrollado un metodo para resolver ecuaciones diferenciales ordinarias usando
metod08 Runge-Kutta implkitos. Los metodos Runge-Kutta aqui emplead08 estan basad08 en dos
cuadraturas del tipo LobaUo. La primera cuadratura conforma el metodo Runge-KuHa principal que
es de sexto orden; la segunda cuadratura conforma un metodo de Runge-Kutta de tercer orden y esta
acoplado con el primero. Ambos metodoo 'de Runge-Kutta implkitos constituyen la forma acoplada de
Lobatto de tercer y sexto orden con cuatro etapas. La ventaja mas importante de este metodo es que es
implicito 8610en la segunda y tercera etapa, 10que reduce considerablemente los C.OIltosde calculo en la
computadora, dentro de sus pocas etapas. La notacion de Butcher es ,\Sada para el analisis de 106metodos
tratados aqul. Con la finalidad de resolver en CMS paso el silltema de ecuaciones no lineltles originado en
las variables k, y k3, un metodo de Runge-Kut.ta eXl'licito de cnatro etapas y cuarto orden es deflnido
para los mismo puntos intermedios, como en el metodo de Runge- Kutta implicito de se.xto orden. Este
metodo explfcito estima los valores iniciales de las mencionadas variables auxiliares, y, luego, un metodo
iterativo del tipo "punto fijo" es usado para resolver el sistema de ecuaciones no lineltles en cada paso.
Con el metodo de Runge-Kutta. de tercer orden puede ser cltlculado una estimaci6n del error local de
truncamiento, comparandolo con el metodo de sexto orden. Esto es u&adopara controlar el tamaiio del
paso cuando las tolerancias para 108errores relativo y global absoluto son especificad08. Se presenta un
a180ritmo para realizar este control de paso automaticamente. EI metodo implicito, tal como se expone
aqui, es realmente util y ha demostrado ser eficiente para ~solver sistemas de ecuacione8 diferenciales or-
dinarias rigidas y de gran t8l11aiio. Finalmente, son elahorad08 108c.riterios de convergeneia y Ins analiais
de estabilidad para los metodos Runge-K uUa implicitOll aqui present.ados.

A method for solving ordinary differential equations has been developed U8~ implicit Runge-Kutta
methods. The implicit Runge-Kutta methods used are based in two quadratures of Lobatto type. The
first quadrature produces the prindpltl R!lDge-kutta melhod which is of sixth order, while the second
quadrature produces a Runge-Kutta method of third order which is embedded in the former. Both
implicit Runge-Kutta methods constitute the Lobatto embedding form of third and sixth orders with
four stages, The moot important advantage of this method is that it is implicit only in the second :md
third stages, which reduces considerably the C08tsoCcomputer calculations. The Butcher notation is used
here for the analysis of the studied methods. In order to solve, for each step, the system of non-linear
equations in the implicit auxiliary variables k2 and k3, an explicit Runge-Kutta method of four stages
and fourth order is defined for the same intermediate points, such as the implicilsixth order Runge-Kutta
method. This explicit method estimates the inicial values for the aforementioned auxiliary variables, and
then, an iterative method of the type "fixed point" is used to solve the system of non-linear equations for
each step. With the third order Runge-Kutta method, an estimation of the local truncation error may
be calculated using a comparison with the sixth orde.r method. This aspect is Used to control the step
size when tolerances for the relative and absolute global errors are specified. An algorithm is presented
to do this step control automatically. The implidt mel,hod, lIS is exposed here, ill really useful and h•.•
demonstrated to be efficient to solve hllge alld stilf systems of ordinary differential equations. Finally,
convergence criteria and stability analysis are studied for the R.unge-Kulla methods presented here.

The principal. aim of this work is the development of an algorithm for solving ordinary differential equations based
on known implicit Runge-Kutta methods bllt where the selection of the methods and the application of iteralive
procedures have been accurately studied in order to produce the least number of numerical calculations and the



highest order of exactitude with a. re880nable stability.

As it is _n known. the implicit Runge-Kutta methods &re more stable th811explicit ones. However, the solution of
the system of non-line •••.equ ••tiOll8 with the auxiliary variables "k", produced by the implicit dependence, lI:enerates
an iter ••••ive proc •••••that can be extremely slow and can produce a rfl8triction in the steplliZe. This restriction can be
overcome by the selection of a speci'" implicit Runge-KuUa method based on the Loba.tto quadrature. This method
is implicit only in the lleCond and the third stages. This. ch•••.&C~ic mUes the itemtive process 1_ restrictive
respective to the siztl of the step, but, at the s&me time, reduces considerably the number of numeric&l c&!culations.
This method conforlD8 the princip'" implicit Runge-Kutta method.

In order to improve the speed of the iteBtive process, a load inili'" v&lue for each auxiliary variable It is estimated
by an alpithm using a fourth order. four stages explicit Rnnle-Kutta method. This method is new and its best
char&Cterittic is that the auxiliary variables are evalu ••••ed in the same intermediate points as in the principal implicit
Ruuse-Kntta method of sixth order and four stages.

Addition&lly to the aforell1lllltioned t1tO upsets, a third order. three stages implicit RuUSe-Kutta hu been selected
to control the step size in each jump of the method, This method is also based on tbe Lob••••to quadr ••••ure and its
best charaeteriBtic is th ••••it is embedded in the principal implicit Rnnse-KuUa method. This makes the algorithm
more efficieDt for the stepeise control purpose, a.od. as a r.onsecuencc, calculations necessary for BOlvinl the ordinary
differential equations are the same to those neeessary to <.(Introlthe size of the step.

Finally, convergence criteria for the iterative process and stability an&lysis are made for all the Ruuse-KuUa methods
presented here.

As it is well kn~. evety system of ordin •••.y differentiai equations of any order may be tr8118formed. with a convenient
change of.ftiiablee. into a system of first order ordinary differential equations [1,2}. Thiais the reason why only this
lut type of difFerential equations win be st udied.

Let the fOllowing syBtem of M first order ordinary differential equations be expl'elllled as tl'; Itl% = f(%, y) with
i = 1,2,3•... ,M, bein& 'T a M-dimension'" function with each component depending on t:. This may beaymbolically
exp~1l8 '

dy
dt: = F(%,y)

When each function f(%,y) depends only on each ,; the system is said to be uncoupled, otherwise it is said to
be coupled. If the system of ordinary differenti'" equations is uncoupled then every differenti&! equation can be
eoIved 8eplll'ateIy. When the system does not explicitly depends on % the system is said to be autoDamous. When
the conditione of the eoIution y(%) are hown at a unique specific point. for example. 11(%.) = lI~at t: = %0' or
symboliealIy

t:= t:. y(t:o) = Y. (2)

Both eJ{pfellllWns(I) and (2) &re said t.o state an Initial Value Problem, othe •.•••ise they state a BCHIndary Value
Problem.

In deed, the system of differential equatione (1) is a particular cue of a gener&l autonolDOU8eyNeJn stated in the next
form [2,3}

tly _ _ { tl'; Id% = 1 if i= I
rk-F(y)= dllldz= f(y) ifi=2,3 •...• M+l

but with an additional condition II~= %. in (2),

Trying to make a general formulation, a Runge-Kutta method of order l' and equiped with N stages is defined [3}
with the expression

tI..+l = y~ + h(Crk~)

where the auxiliary M -dimensional variables It. are calcul ••••ed by

k; = FI t:n + b,.h • Yn + h (Gr. It. ) }



for i = 1,2,3, ... , M and r, S = 1,2,3, ... , N. Notice that index convention of sum has been used. Thull every time .
an index appears twice or more in a term, this should be summed up to complete its range (In this context, it is not
important the number of factors with the s&me index within eacb term).

A Runge-Kutta method (4) has order P if, for" sufficiently smooth problem, the expressions (1) and (2) satisfy

i,e., the Taylor series for the exa.ct solution y(zn +h) and for the numerical solution Yn+t coincide up to (and include)
the term with hP [7).

The Run~Kutta method thus defined c.an be applied for solving initial value problems, and it is used recurrently.
Given a point (%10'Yn), it can be obtained the next point (%,,+!,Y,,+I) using the expr_ions (4), being %10+1= %10+ h,
wbere h is named the stepsize of the method. Every time that this is made, tbe method goes forward (or backward if h
is negative) an inte~ation .tep h in "', offering the solution in conseeut.ive points, one for each jump. In this way, ifthe
method begin. with the initial conditioDB (%o,Yo)stated by (2), it can calculate (ZI,YI),(Z2,Y2), (%3,Y3),"" (zn,Yn),
and continue this way, up to the desired boundary in %. In each integration or jump the method reinitiates with the
information from the adjacent point inmediately preceding. This characteristic clasifies the Run~Kutta methods
within the group of one step methods. It should be notice, however, that the auxiliary variables ,,~ are calculated
for each,. up to N stages in each step. These calculations are no more than evaluations of the functi0D8 r(%,Y) for
intermediate points %+ b,.h in the intervall%", %10+1](0 ~ br ~ 1)

Let it now be introduced a condensed representation of the generalized Runge-Kutta metbod, formerly developed by
Butcher [4,5] and tbat is presente.d systematically in the book of Lapidus and Seinfeld [6] and in tbe books of Hairer,
NorseU and Wallner [7,8J. This last books has a numerous C<)llectionof Ronge-Kutta methods using the Butcher's
notation and an extensive bibliography. After the paper of Butcher [4J it beeame customary to symbolize the general
RUD~Kutta method (4) by a tableau. In order to ilhl.trate this repr888ntation, COII8idertbe expresioDB (4) applied
to a method of four stages (N = 4). Accomodating the coefficients Or" br and Cr in a adequate form, they may be
schematically repr888nted all

W' °12 1113 1114

b2 1121 °22 1123 °24

b3 1131 1132 1133 1134 (6)
b~ 04\ 1142 1143 1144

Ct C2 C3 C4

Tbe aforementioned representation allows for tbe basic distinction of tbe following types of Runge-Kutta methods,
according to tbe characteristics of the matrix Dr,: If au = 0 for 8 ~ r, then the matrix Oro is lower tringular. excluding
the principal diagonal, and the method is said to be completely explicit: If, Oro = 0 for 8 > r, then the matrix Dr.

is lower trian!War, including the principal diagonal, and the method is said to be semi-implicit or simple-diagonally
implicit. If the matrix Dr. is diagonal by blocks, tbe method is said to be dj~ally implicit. if the first row of the
matrix Dr. is filled witb zeros, 01,. = 0, and tbe method is diagonally implicit, then the method is called Lagrange
Method [9J (the coefficients br may be arbitrary). Ifa Lagrange method has bl'i "" 1 and tbe laBt row ofthe matrix is
the array c, = ON,., then the method is said to he stiffly accurate. If, conversely, none of the previous condition. are
s.atisfied, the metbod is said to be simply implicit. In the c.ase.sof implicit metbods, it can be noticed that an auxiliary
variable kr may depend on itself and on any other variables not calculated before in the same stage. That ill why tbe
methods are named implicit in these c.ases.

Additional\y, the coodeD88 representation above described permits to verify very easily certain properties that the
coefficients Dr •• br, and Cr should fulfill. These propertieB iU'e

The vector 6 is unita.ry in every component, i.e., 6r = I V,. = 1,2,3"", N. Those mentioned properties lI1&ybe
interpreted in the foUowing manner: The property (7.11) expr888e&that the Runge-Kutta is 8 'one step method, and
the fuur.tioDll f(x,y(x)) in (U) should be evaluated for x E [:1:10,:1:10+11.The property (H) results in 3.Pplying the
Rnnge-Kutta method (4) to the system of differential equation. (3), where ,,~ = I VB:; 1,2,3, ... ,N, and thus the
sum of Oro in each line r offers the value of br. The property (7.c) means that in the expr_ioo (4 .••) the value of iI..+l
is obtained from the value of 11.. adn the projeeti08 with I. an average of the derivativ';" d!l/d", = F(%,y), calculated
using weighted coefficients. Obviously, the sum of all Cr should be equal to unit.



The coefficients a•• , br and Cr are determined applying the properties (7) and using some relations that are deduced
in the following form:

Let the system of ordinary differential equations (3) be expressed according to (2) as an initial value problem. The
Runge-Kutta method applied to this problem is formulated by (4)

Ifnow the expansion in Taylor series is made to the component k~of(4.b), around the point (:1:•• , Yn), being particularly
Yn = Y(:l:n) in this case, the result is

Ii = Bf'.,
J ByJ 7.

I .[] 2[" 3 .. ~ (. '~2kr =hr br + h Jjl'br] + h !f]fil a"b. + 7JJ~f" brl

h4 [/"i ,~,' • I I',i I~/'· ,2 Ii fj/~/" • 1 •• Ij/~/"31+ ;/HI Or.a.,vt + 2 ;/~, ar.u. + ;~ , UrOr.U.+ 6/;~1 Vr

+ hS [JjllN I'mf"'Or,a••B",b••+ ~J1/~Jl'mllf"'B ••a••b~+ 11~,J~f' f"'Or.b.a"bt (8.g)

Ifl'/; f~f'''''' b3 fl· r;/~/" fmb • 1fl' ,; I~f''''''' .2+ 6" j "'m JaI'l , + jkJl m I'Or.sa,UV1 + 2' jlcJ/m J Ura,..u,

+ ~,jd{ I:;'!' /"'Or.b.Br,b. + ~/l~'/!../~I' Imb;a.,b. + -hf1umfi f~I' f"'b~l + O(h6)

This expression may be inserted for the components of kr into the eqnation (4.a), and then may be compared with
the next expansion in Taylor series of Yn+1 (around Yn)

·i . ='l + h r + 'i.(f! Ii)+ ~(f! fi ,1+ Ii Iifl) + ~(fi,t Ilf' + fi fi fl f' + 3fl fi f'fl + fi fi flf')n·f. To :l) 6) t- )t . 24' J •• J .• ; tl Jl I )11

+ I~O(fJltl,~,:"r + I1JlI,"m/' r +3/1It,/;,.I'!'" + J1/~rm/~!'!'" +4f1t11I~I:"r (9)

+ 4f1~Jfm/~f' f'" + 3J1tfl I;,.t f'" +6t;~'/!"/~ I' /'" + fj~'mfj II<f' /"') + O(hS)



Crllr.a.,a, ••b••= 1/120

crar.a"b~ = 1/60
c,.a"b.a.,6t = 1/40

c,.a"b: = 1/20

crbror.a ••b. = 1/30
c,.brllr,~ :: 1/15

crllr.b.ar,b, = 1/20

c,.b~lIr.b.= 1/10

crb: :: 1/5

c,.u"b. -= 1/6

h3 crb~ =: 1/3

In these relations, br has been defined according to the property (7.b). Notice also that in the development of the
aforementioned relations expansion in Taylor series were used only up to the term of fifth order (with h'). Since
for higher order the deduction is 'very tedious, the terms with hS were not included.in the ..,rifl8, even though this
term indicates the order of the method here studied. The relations (10) Me valid for Runge-Kutta methods, whether
implicit or explicit, from first order method (e.g. Euler method) to fifth order method (e.g. Fehlberg method [10)).
In all the CMe the indexes r, 8, t and u vary from 1 to number of stages N.

Gear [3], has presented a similar deduction for (8), but only for explicit methods. In Hairer et aI. (7], relations similar
to (10) appear, but only for explicit methods and only up to the term of order h4• Also Hairer et al. deduce a theorem
that expresses the equivalence of the implicit Runge-Kutta methods and the orthogonal collocation methods.[7,8]

Ralston in 1965 (see for example [11]) made a similar analysis to (8), to obtain the relations of the coefficients, but
for an explicit Runge-Kutta method of fourth order and four stages, and found the following family of solutions of
relations (10)

(1- b.)[b. + b3 -1 - (263 - 1)2]
a42 = 262(63 - ~)[6 6"b3 - 4 (~ + 63) + 3]

I 1 - 2(6. + bs)c, :: 2 + --12b,f>.~

1- 'lb.
C3=-= -12-bs-(bs---6-2-)(-1--- b

3
)

(1·- 2b.)(I- 6.)(1 - 63)

a43:: b3(bs - 6.)(6~63 - 4 (6. + bs) + 3]

2bs-l
c. = 126o(bs _ 6.)(1- 60)

1 2(b2+ 63) - 3
c. :: - + ---------

2 12(I - 62)(1 - 6s)

o 10 0 0 01/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

- --------
1/6 1/3 1/3 1/6

The explicit Runge-Kutta methods are of direct appication, while the implicit Runge-Kutta methods require the
resolution of a system of simultaneous equations with the variables k,. in each step of integration of the differential
equations, as it is suggested by the expression (4.b). This system of equations is generally not linear, unless the
function f(a:,y) be linear, and can be solved applying the iterative method of fixed point, explained farther on.



The implicit Runge-Kutta method to be used here is a sixth order method (P = 6) with four stages (N = 4), developed
on the bases of Lobatto quadrature [12] (for more details see [6] or [7]). The coefficients of this method expressed in
the Butcher notation are

0 0 0 '::Jl(5 - V5)/1O (5 + ..;'5)/60 1/6 (15 - 7..;'5)/60 0

(5 + .,/5)/10 (5 - ..;'5)/60 (15 + 7.,/5)/60 1/6 0

I 1/6 (5 - .,/5)/12 (5 + ";5)/12 0

1/12 5/12 5/12 1/12

Within the coefficients of the principal implicit Runge-Kutta method it can be detected that a part of them forms
another implicit Runge-Kutta method embedded in the first one. This method is of third order (P = 3). has three
stages (N = 3). and can be expressed as Butcher tableau (13) without last column and with last row of matrix a•• as
the coefficients Or'

Both methods, the principal and the e..mbedded. form what is narned the Lobatto embedding form of third a.nd sixth
orders with four stages. Notice that these methods are implicit only in the auxiliary variables k2 and ka, and therefore
the system of non-linear equations should be solved only in the mentioned variables. The other variables are of direct
solution.

In order to apply an iterative process to solve the system of non-linear equations, initial estimations of the values of
the auxiliary variables are required. The best way to carry out the latter is to obtain these values from an explicit
Runge-Kutta method, where the auxiliary variables kr are evaluated in the same intermediate point in each step, i.e.
an explicit method having the same coefficient 6r of the implicit method. Observing the method (13), it is clear that
the aforementioned exp~cit method is rapidly obtained from the relations (11) assuming 6] =: 0, 62 =: (5 - V5)/10,
63 =: (5 + .,/5)/10 and 64 = 1. Notice that these coefficients are consistent with the characteristics of an explicit
method. This last aspect makes the implicit method (13) ideal for the desired purpoee.

Thus, if ~ and 63 are substituted in the relations (11), it is obtained that a~] = (5- V5)/10, aSl = -(5 + 3.,/5)/20,
and a~2 = (3 + .,/5)/4. These are the coefficients of the new explicit Runge-Kutta method that in Butcher's notation
can be expressed as

0 0 0 0 0
(5 - ..;'5)/10 (5 - .,/5)/10 0 0 0

(5 + V5)/10 -(5 + 3.,/5)/20 (3 + ../5)/4 0 0 (14)
1 1/6 (5 - .,/5)/12 (5 + .,/5)/12 0

-------
1/12 5/12 5/12 1/12

The obtained explicit Runge-Kutta method is not reported in the speciality literature and does not correspond to any
known quadrature, but pertains to the family of solutions (11) of the fourth order, four stages explicit Rung ••.Kutta
methods. This method will be used to obtain the initial estimations k~ and k3 for the iterative process in the following
form

Once these initial estimations are obtained. a rapid convergence to the solution of the system of non· linear equations
(4.6), with the coefficients (13), can be expected.

As it was mentioned before, the system of non-linear equations (4.6), l·hat is originated by any implicit Rung ••.Kutta
method, can be solved in the auxiliary variables kr applying the iterative method of fixed point (see Gear[3])

which is the easiest method to be used due to the form of the mentioned system of equations. Here m = 0, 1.2,3, .
is the number of iteration in the iterative process.



The global error in the iterative process is defined as O~,{m)= k~.(m)- k~, where k~ is the exact solution of the system
of non-linear equations.

The local error in the iterative process is defined as (~.(m) == k~.(m+I)-k~,(m)' and it is stopped when c.1!(r,(m)1I< (mos,
where (mas is the tolerance imposed to the local error to find the solution !I..+I of the differential equations in one
step, and the norm of the local error (r,{m) is supposed to be euclidean.

If noW expression (4.6) is substracted from expression (16), then k~.(m+l) - k~ == h [J'(zn + 6rh, Yn + a••k,,(m»
- J'(zn+brh, Y••+ar.k.)]. If the Lipschitz condition (with h > 0 for convenience) is applied, it resultslk~,{m+l)~·k~1 ::;

h lj la •• II~,(m) - k~1with IO~.(m+l)1::; hi; lar.IId,,(m)l, where I; is the maximum of the absolute value of each element

in thejacobean matrix off. This is IJ1I::; Ii. Thus, if it is satisfied that Oem)'" maxl$j$lIl{maxl$.$N 1~.(m)l), then

lo~,(m+l)l::; hi; lar.II~.(m)l::; hlj6j lar.16.c{m), where

The expression (18) meaD8 that for a high number of iterations, m -> 00, the global error Oem).....•0 when h::; l/(LA)
and the iterative process is convergent locally (also globally) in the form

The expresrion (18) is the limit of the stepmze, for the iterative method of fixed point to be convergent, when the
system of non-linear equation is being solved in the implicit Runge- Kutta method. This is the only restriction of the
implicit Runge-Kutta methods, comp&ted to the explicit methods which are nmch less stable.

The implicit Runge-Kutta method of sixth order with four stages that is defined by the coefficients (13), in fact
represents two different embedded methods, one of third order within the other of sixth order, i.e. the coefficients (13)
include both sixth and third order methods. This aspect is relevant to control the stepsize, because solving the system
of non-linear equations (4.6) for the same coefficients, it can be obtained two solutions of different order in the local
truncation error, reducing to a minimum the number of numerical calculations to be made. Fehlberg [J 0] reported
this aspect to control the stepsize in his explicit Runge- Kutta methods of fourth and fifth orders in a embedded form.

Let Yn and Yn+l be the solutions of the system of differential equations (1), offered by the Runge-Kutta methods type
Lobatto of sixth and third orders, respectively, embedded in only one formulation as it was described before. This is

. . 1· . . .
Y~+l == y~ + 12(k~+ 5k~ + 5k3 + k~)

The auxiliary variables kl, k2, k3 and k. are the same for both expressions and are obtained using the equation (4.6)
with the coefficients (13).

If Y(Zn) is the exact llOlution of the differential equation (1) in the value Z == Zn, the local truncation errors of the
numerical80lutions (20) are defined respectively as e~ == tfn - yi(zn) == O(h~_tl, where e:. == in ~ yl(zn) == O(h~_d,
and then

E~+l == 1I~+1~ Y:.+I == e~+l - e:.+1 c'= O(h~)

Remember that the local truncation error is of order P + I if the Run~e-Kutta method is of order P.



If now it is assumed that lIi(xn+d is approximated by 1I~+1in the denominator of (24), it can be applied the Cauchy-
Schwartz and the triangular desequalities to the expression (23), and this results

where e(r).", ••. and em ••. are respectively the tolerances for the relative and ab60lute local truncation errors for the
implicit Runge-Kutta methods of sixth and third orders. The expression (25) also means that, for the solution of the
differential equations in one step be accepted, it should be verified that

Let hn+1 be the soopsize in the next step that tends to make Q~ ~ I. Taken into account the order of the difference
E~+l defined by (22), the patameOOr Qn may be redefined lIlS

Qn = (~--)'
hn+1

(
1 ) 1/'

hn+1 = hn Qn = hnSn

Here, it is convenient to mention that Shampine et aI. [13J use expressions similat to (28) and (29) to control the size
of the step of integration in the Runge-Kutta method of fourth and fifth orders with five stages developed by Fehlberg
[10], but with some modifications, in order to guatantee that Sn always be bound in the interval [Smin, Sm••.]' and
that hn+1 alw&ys be greater than a limit value "min' Additionally, the mentioned authors multiply Sn of (29) by
a coefficient G'q less than unit, to make hn+1 tends to lon, and thus to make Qn ~ I, but a little lower. All the
aforementioned modifications are resumed in continuation as

(
1 ) 1/'Sn = G'q -

Qn

While in [13) the exponent is 1/5 in the expression (30), here the exponent is 1/4, and they also recommend for the
coefficients and limits the values G'q = 0.9, Smin = 0.1 and S", ••. = 5. The value of the minimuIll stepsize, hmin, is
determined by the precisioo of the computer to be used. In this work they are recommended the same values for t.he
coefficients in the expressions (30) to (31).

The procedure to calculate the optimal value of the size of the integration step, that permits to satisfy the tolerances
e(r),m..- and e", ••. , is described in continuation:



• Esfunated an initial stepsize h••, the implicit Runge-KuLt& method type Lob&tto is used to calculate the auxiliary
vari&bles J:L J:;, J:~ a.nd J:~ with the expression (4.6), using the coefficients (13) &nd with the iter&tive process (16),
using the initial values (15).

• The expre88ions (20) permit to find the solutions 11..+1 and Y:.+l of the methods of sixth &nd third orders, respec-
tively.

• The definition (21) permits to calcul&te the difference E:.+l between both methods.

• With the equ&tion (26) it C&D be calculated the p&r&meters Ii.•,and with the equation (27) it can be obtained the
maximum of them.

• The relations (30) to (31) determine the value of the size of the next step h,.+I.

• If Q•• ~ 1, the integr&tion with the step h,. (or the application of the Runge-Kutt& method from z•• to Z"+1)
is lICCepted and the step h,.+1 is considered the step for the next integration (or the next &pplication of the
Runge-Kutts. method from Z••+1 to Z"+2)'

• If Q" > I, the integr&tion with the stepsize h" is rejected and it is repe&ted all the algorithm but witb h,. '" h~+1

obtained from (31).

This procedure, sometimes increases the stepsize, and other times decreases the stepsize, in &optimal form, in order to
guarantee th&t the relative enor '(r),"+1 of the sixth order Runge-Kutta method be less th&n the tolerance e(r}.maz,

and the error ~+1 of the third order Runge-Kutt& method be less th&n the tolerance em•z· In &ny case, the solution
of the Runge--Kutta method will be Y~+l' i.e. the solution with the implicit Runge-Kutt& method of sixth order.

The order of precision of any Runge-Kutt& method comee from the comparison between this &nd the expansion in
Taylor series of Y(Z"+I) 8lound y(z ••). From this comp&rison was obt&ined the relations (10) that should be fulfilled
by the coefficients of the Runge-Kutta methods. For a Rungl>-Kutta method of order P, it should be satisfied the
rel&tioDS(10) up to the term of the Taylor series that cont&ins hP. The rem&inder terms in the 1'&ylorseries are they
which determiue the order of the local trunc&tion error. Thus, &method of order P hu a local truncation error of
order P + 1, i.e. th&t depends on hP+I. The globa.l trunc&tion error always is one order less than the local truncation
error [3), i.e. that depends on hP. All tbese criterions c&n be applied to the implicit Runge-Kutts. type Lobatto of
third &nd sixth order. In this form it is obt&ined that, the method of tbird order satisfy the relations (10) up to term
with hS and the local and global truncation errors depend, respectively, on h4 and h3. The method of sixth order
s&tisfy the relations (10) up to term with hi (the relations for this last term does not &ppear for the r"""ona explained
there) and the local &nd global truncation depend, respectively, on h7 and h6. The dependence of an enor respect to
hP is indicated as O(hP) &nd is said that the order of precision is P, according to the definition ""+' := Z •• + h. Also
it is satisfied that O(hP) + O(hQ) = O(hP) when Q:;> P.

In the section of Iterative Process it was indicated that tbe implicit Runge- Kutta methods generated a system of
equ&tions of the type (4.6), in general of non-linear characteristics, where the unknowns were the awtiliary variable6
It,.. As it was sa.id before, this system of Don-linear equations may be solved using an iterative method of fixed point,
which converges for the treated problem in particular, if it is s&tisfied (18) and the local convergence is established
accordinll to (19).

dy
d% := f(y)

it is obtained that L := \).1. For the implicit Runge--Kutta methods typl Lobatto of third and sixth orders, it is obtained
that A -= (6+v'5)/10 and A == 1, respectively. Thus, to assure the coDvergence of the iterative process stated in these
cases, particularly to the linear problem (32), it should be satisfied the following two conditions (assuming h positive)

5 - v'5 '"' 1.38h ~ 2lAI- W (Implicit 3rd order method)
J

h ~ IAI (Implicit 6th order met.bod)



STABILITY

The stability of the Runge- Kutta methods is generally studied on the bllSes of their performance for solving the specific
problem (32) with only one linear ordinary differential equation. In Appendix C it can be found the analysis of the
stability for the more general case of a system of linear ordinary differential equations.

Thus, if the expression (4.b) is applied, taken into account that the problem being solved is (32), it is obtained that
ler = hf(y ••+ a,..Ie,) = hA(y" +a •• Ie,) = hAy" + hAa,., Ie,. Moreover, ifler is substituted as o..,le, and the therms
are regrouped, it results 0•• 1e.= hAy" + h A a•• Ie•• where o•• k. - h A a,.. Ie, = hAy", and thus, if k. is factorized, then
[0•• - h A a••] Ie, = h >. y" 6r with r,s = 1,2,3, ... ,N.

Thes latter expression represents a system of N linear equations with N unknowns Ie,. If this system of linear
equations is solved and if the solutioDll ler are substituted in the equation (4.a), then, it is found a relation for Yn+1
depending only on Yn and on the coefficients of the used Runge-Kutta method. The mentioned relation is of the form
y,,+1 = ~1(hA) y", where ~1(hA) is found applying, for example, to the implicit sixth order Runge-Kutta method of
Lobatto type, the procedure above explained. In this case the result is

where the function ~1(Z) was deduced from the coefficients (13). For the case ofthe iInplicit third order Runge-Kutta
method type Lobatto resumed ill the inner coefficients (13), the result is Y"+I '" iJl(h>') y", where

The functions iJl(Z) and J.ll(Z) 8J'e denominated characteristic roots of the Runge-Kutta methods of third and sixth
orders, respectively. The characteristic roots Me also known as stability functions. The Runge-Kutta methods, to
which these roots pertain, Me considered stables if their absolute values ace less than unit, for a determined real value
of Z = h>.. Notice that, if liJl(hA)1 or lJ.ll(h>')1 is less than the unit, then it is satisfied that liin+d or IYn+ll is less than
Iy" I and the stability is guacanteed.

The functions (34) and (35) may be represented graphically as iJI(hA) and J.ll(1.>.) vs. h>', and the region of stability
for each one may be observed. The methods ace stable if it is satisfied the following two conditions (assuming that h
is positive and >. is negative).

h 6.8232 (I I" 3 d d h d):s ¥ mp lClt r or er met 0 h $ 9.~~5 (Implicit 6th order method)

Therefore, the mentioned methods are not A..•table. When comparing the conditions (33) with the condition.. (36).
the condition (33.b) continues being the Il108trestrictive of all.

The function J.lI(Z) constitutes an aproximation of Pade [2]for the function y = e'" (see Lapidus and Seinfeld [6]), and,
additionally, is always positive and less than unit in the interval [-9.648495252, 0.0]. Notice that the function Pl(Z)
approximates well to the function y = e' for the range z > -4.

The function iJl(Z), however, is not an approximation of Pade, has only one root in the point Z = -2.706010973 ... ,
and is, in absolute value, less or equal to the unit withiu the interval [-6.823183583 , 0.0]. This can be observed
graphically.

The conditions (36) reveal that the implicit Runge-KuUa methods type Lobatto of third and sixth orders are more
stable than the explicit Runge-Kutta. methods type Fehlberg of fourth lOne!fifth oruerto, h ••viug these 1••••t lllethuu.. ti,e
following stability conditions

h < 2.785 (Explicit 4th order method)-- IAI h < 3.15 (Explicit 5th order method)
- IAI



The only limitation of the implieit Run~Kutta methods comes from the convergency conditions (33), which are based
on the way I18edto solve the system elf equations (4.6), and on the &SSumptionthat the differential equation has a linear
form (32). These convergency conditions permit an increase of the stepsize h much less than the stability conditions
(36). This aspect brakes the advance of the implicit Runge-Kutta methods in a notable manner, but the difficulty may
be comp_ated partiaJIy in two forms. Fint, estimating conveniently the initial values of the auxiliary variables k,.
for the iterative proCellll.As it was treated before, this can be made using an explicit Runge-Kutta method with the
expressions (IS). Secondly, it may be used the fixed point method in a efficient manner, similar to the GaU8&-Seidel
method, i.e. when an unknown is approximately calculated, it is substituted inmediately in the next equation, and
thus on. These two modifications of the implicit Runge-Kutta methods here used may improve the performance of
the method, in the sense elf that the stepsize h is liberated from the convergency conditions (33) and thus it may be
permitted to increase much more.

A more sofisticated solution to the problem mentioned before can be developed, if it is used the Newton-Rapson
method to solve the system of non-linear equations (4.6). This may increase the number of numerical calculations to
be performed by the algorithm, but the convergence will be more rapid.
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