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RESUMEN

En este trabajo se ha desarrollado un método para resolver ecuaciones diferenciales ordinarias usando
métodos Runge-Kutta implicitos. Los métodos Runge-Kutta aqui empleados estin basados en dos’
cuadraturas del tipo Lobatto. La primera cuadratura conforma el método Runge-Kutta principal que
es de sexto orden; la segunda cuadratura conforma un método de Runge-Kutta de tercer orden y esta
acoplado con el primero. Ambos métodos de Runge-Kutta implicitos constituyen la forma acoplada de
Lobatto de tercer y sexto orden con cuatro etapas. La ventaja mas importante de este método es que es
implicito sélo en la segunda y tercera etapa, lo que reduce considerablemente los costos de calculo en la
computadora, dentro de sus pocas etapas. La notacién de Butcher es usada para el analisis de los métodos
tratados aqui. Con la finalidad de resolver en cada paso el sistema de ecnaciones no lineales originado en
las variables k; y k3, un método de Runge-Kutta explicito de cuatro etapas y cuarto orden es definido
para los mismo puntos intermedios, como en el método de Runge-Kutta implicito de sexto orden. Este
método explicito estima los valores iniciales de las mencionadas variables auxiliares, y, luego, un método
iterativo del tipo “punto fijo” es usado para resolver el sistema de ecuaciones no lineales en cada paso.
Con el método de Runge-Kutta. de tercer orden puede ser calculado una estimacién del error local de
truncamiento, comparandolo con-el método de sexto orden. Esto es usado para controlar el tamafio del
paso cuando las tolerancias para los errores relativo y global absoluto son especificados. Se presenta un
algoritmo para realizar este control de paso automiticamente. El mélodo implicito, tal como se expone
aqui, es realmente itil y ha demostrado ser eficiente para resolver sistemas de ecuaciones diferenciales or-
dinarias rigidas y de gran tamafio. Finalmente, son elaborados los criterios de convergencia y los anilisis
de estabilidad para los métodos Runge-Kutta implicitos aqui presentados.  °

ABSTRACT

A method for solving ordinary differential equations has been developed using implicit Runge-Kutta
methods. The implicit Runge-Kutta methods used are based in two quadratures of Lobatto type. The
first quadrature produces the principal Runge-kutta method which is of sixth order, while the second
quadrature produces a Runge-Kutta method of third order which is embedded in the former. Both
implicit Runge-Kutta methods constitute the Lobatto embedding form of third and sixth orders with
four stages: The most important advantage of this method is that it is implicit only in the second and
third stages, which reduces considerably the costs of computer calculations. The Butcher notation is used
here for the analysis of the studied methads. Ip order to solve, for each step, the system of non-linear
equations in the implicit auxiliary variables k> and k3, an explicit Runge-Kutta method of four stages
and fourth order is defined for the same intermediate points, such as the implicit sixth order Runge-Kutta
method. This explicit method estimates the inicial values for the aforementioned auxiliary variables, and
then, an iterative method of the type “fixed point” is used to solve the system of non-linear equations for
each step. With the third order Runge-Kutta method, an estimation of the local truncation error may
be calculated using a comparison with the sixth order method. This aspect is used to contro] the step
size when tolerances for the relative and absolute global errors are specified. An algorithm is presented
to do this step control antomatically. The implicit method, as is exposed here, ia really useful and has
dernonstrated to be efficient to solve huge and stiff systems of ordinary differential equations. Finally,
convergence criteria and stability analysis are studied for the Runge-Kutta methods presented here.

INTRODUCTION

The principal. aim of this work is the development of an algorithm for solving ordinary differential equations based
on known implicit Runge-Kutta methods but where the selection of the methods and the application of iterative
procedures have been accurately studied in order to prodnce the least number of numerical calculations and the
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highest order of exactitude with a reasonable stability.

As it is well known, the implicit Runge-Kutta methods are more stable than explicit ones. However, the solution of
the system of non-linesr equations with the auxiliaty variables “k”, produced by the implicit dependence, generates
an iterative process that can be extremely slow and can produce a restriction in the stepsize. This restriction can be
overcome by the selection of a special implicit Runge-Kutta method based on the Lobatto quadrature. This method
is implicit only in the second and the third stages. This characteristic makes the iterative process less restrictive
respective to the size of the step, but, at the same time, reduces considerably the number of numerical calculations.
This method conforms the principal implicit Runge-Kutta method.

In order to improve the speed of the iterative process, a good initial value for each auxiliary variable k is estimated
by an algorithm using a fourth order, four stages explicit Runge-Kutta method. This method is new and its best
characteristic is that the auxiliary variables are evaluated in the same intermediate points as in the principal implicit
Runge-Kutta method of sixth order and four stages.

Additionally to the aforementioned two aspects, a third order, three stages implicit Runge-Kutta has beeu selected
to control the step size in each jump of the method. This method is also based on the Lobatto quadrature and its
best characteristic is that it is embedded in the principal implicit Runge-Kutta method. This makes the algorithm
more efficient for the stepsise control purpose, and, as a consecuence, calculations necessary for solving the ordinary
differential equations are the same to those necessary to control the size of the step.

Finally, convergence criteria for the iterative process and stability analysis are made for all the Runge-Kutta methods
presented here.

IMPLICIT RUNGE-KUTTA METHODS
DIFFERENTIAL EQUATIONS

As it is well known, every system of ordinary differential equations of any order may be transformed, with a convenient
change of variables, into a system of first order ordinary differential equations [1,2]. This is the reason why ouly this
last type of differential equations will be studied.

Let the iollomng system of M first order ordinary differential equations be expressed as dy/dz = fi(z,y) with
i=1,2,3,...,M, being y a M-dimensional function with each component depending on z. This may be symbolically
expressed as '

% = f(z,y) " where ¥ =¥(2) = (41 (=), v*(2), (2), .- ,y“(z)) 1)

When each function f*{z,y) depends only on each 3 the system is said to be uncoupled, otherwise it is said to
be coupled. If the system of ordinary differential equations is uncoupled then every differential equation can be
solved separately. When the system does mot explicitly depends on z the system is said to be autonamous. When

the ditions of the solution y(z) are known at a unique specific point, for example, y'(z.) = yi at 2 = z,, or
symbalically :

z=1z, y(z.) =1y, : (2)

Both exprees;ons (1) and (2) are said to state an Initial Value Problem, otherwise they state a Boundary Value
Problem.

In deed, the system of differential equations (1) is a particular case of a general aut tem stated in the next
form {2,3]

dy _ _ {dyjde =1 fi=1
a—;—f(y)={d,,«/d:=f(y) if:=2,3,...,M+l ®

but with an additional condition y! = z, in (2).
RUNGE-KUTTA METHODS

Trying to make a general formulation, a Runge-Kutta method of order P and equiped with N stages is defined [3)
with the expression

Yhst = Un+ hlcrkd) (4.0)
where the auxilisry M-dimensional variables k, are calculated by

kf.:fi[zn “]"brh,yn +’l(al‘lkl)] (4~b) .
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fori=1,23,... Mandrs=123,.. N. Notice that index convention of sum has been used. Thus every time .
an index appeazs twice or more in a term, this should be d up to complete its range (In this context, it is not
important the number of factors with the same index within each term).

A Runge-Kutta method (4) has order P if, for a suflicicutly smooth problem, the expressions (1) and (2) satisly

liy(zn + B) — Yapsll S 2(C) APH = O(WFYY) (€ [2a,2a + ), (5)

i.e., the Taylor series for the exact solution y{(z, +h) and for thé numerical solution yn4+1 coincide up to (and include)
the term with AP [7]. ‘

The Runge-Kutta method thus defined can be applied for solving initial value problers, and it is used recurrently.
Given a point (z,,,¥p), it can be obtained the next point (zn 41 ,¥n41) using the expressions (4), being zpy1 = 2, + A,
where h is named the stepsize of the method. Every time that this is made, the method goes forward (or backward if h
is negative) an integration step h in #, offering the solution in consecutive points, one for each jump. In this way, if the
method begins with the initial conditions (o, yo) stated by (2), it can calculate (21,711 (22,¥2), (23, ¥3),. - -, (ZTn, ¥n),
and continue this way, up to the desired boundary in =. In each integration or jump the method reinitiates with the
information from the adjacent point inmediately preceding. This characteristic clasifies the Runge-Kutta methods
within the group of one step methods. It should be notice, however, that the auxiliary variables ki are calculated
for each r up to N stages in each step. These calculations are no more than evaluations of the functions Fi(=z,y) for
intermediate points z + 3. h in the interval {2n, £n41] (0 < b < 1)

Let it now be introduced a cond d representation of the generalized Runge-Kutta method, formerly developed by
Butcher [4,5] and that is presented systematically in the book of Lapidus and Seinfeld [6] and in the books of Hairer,
Norsett and Waaner [7,8]. This last books has a numerons collection of Runge-Kutta methods using the Butcher’s
notation and an extensive bibliography. After the paper of Butcher [4] it became customary to symbolize the general
Runge-Kutta method (4) by a tablesu. In order to illustrate this representation, consider the expresions (4) applied
to a method of four stages (N = 4). Accomodating the coefficients a,,, b, and ¢, in a adequate form, they may be
schematically represented as

b Qi1 G123 @Gy
by | onn a6z 6z az
bs | ;1 am az; as (6)

by | an 02 ag 644
.G cz €3 Cq

The aforementioned representation allows for the basic distinction of the following types of Runge-Kutta methods,
according to the characteristics of the matrix a,,: If a,, = 0 for s > r, then the matrix a,, is lower tringular, excluding
the principal diagonal, and the method is said to be completely explicit. I, ar, = 0 for s > r, then the matrix ay,
is lower triangular, including the principal diagonal, and the method is said to be semi-implicit or simple-diagonally
implicit. If the matrix a,, is diagonal by blocks, the method is said to be diagonally implicit. if the first row of the
matrix a,, is filled with zeros, ay,, = 0, and the method is diagonally implicit, then the method is called Lagrange
Method [9] (the coefficients b, may be arbitrary). If a Lagrange method has by = 1 and the last row of the matrix is
the array ¢, = an,,, then the method is said to be stiffly accurate. I, conversely, none of the previous conditions are
satisfied, the method is said to be simply implicit. In the cases of implicit methods, it can be noticed that an auxiliary
variable X, may depend on itself and on any other variables not. calculated before in the same stage. That is why the
methods are named implicit in these cases.

Additionally, the cond rep tation above described permits to verify very easily certain properties that the
coefficients ay,, b, and ¢, should fulfill. These properties are

OSbrS1 ar, 8y = b, er by =1 (7)

The vector § is unitary in every component, i.e., §, = | Vr = 1,2,3,...,N. Those mentioned properties may be
interpreted in the following manner: The property (7.a) expresses that the Runge-Kutta is a one step method, and
the functions f*(z,y(z)) in (4.b) should be evaluated for ¢ € {z,,%.41]. The property (7.b) results in applying the
Runge-Kutta method (4) to the system of differential equations (3), where k! =1Vs = 1,2,3,...,N, and thus the
sum of a,, in each line r offers the value of §,. The property (7.c) means that in the expression (4.0) the value of yi 4
is obtained from the value of ¥, adn the projectios with h an average of the derivatives dy? /dz = f*(z,y), calculated
using weighted coefficients. Obviously, the sum of all ¢, should be equal to unit. )
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The coefficients a,,, b, and c, are determined applying the properties (7) and using some relations that are deduced
in the following form: -

Let the system of ordinary differential equations (3) be expressed according to (2) as an initial value problem. The
Runge-Kutta method applied to this problem is formulated by (4)

If now the expansion in Taylor series is made to the component ki of (4.), around the point (£a, yn ), being patticularly
¥n = ¥(z,) in this case, the result is

B =hf (6] + hf;" [“nk{] + ‘2‘ f;k faroki} (acekf] + %f;kl ["nbﬂ [a"k,"] {“ruku

(8.9)
h .
+ 57 Fitim [r b orskf o ki) [aru K]+ O(A9)
where the following notation has been used
i i ;. ar . afi
P 5= 357 b =B by, (8)

Here the fuctions are supposed to be U™ (Analytical Functions), and thercfore the subindexes in (8) are permutable. .

The variable k} in the second term of the right side of (8.a) may again be expanded in Taylor series as

k= hf[8,]+ b ff [a,akt] + ;-' Hilasakt) [aupk)] + %fi}m [8snkG] {ass kp] lary £7] + O(A®) (8)

In the same way k% can be expanded as

B =14 ]+ S oaskl] + § F skl ook + O(H*) (8
and thus sucessively
B =B 5]+ h S s K714 O09)  wp to KD = h S 6,1+ O(h?) ®2.)
I a recurrent backward substitution is finally made, it results in a long expresion
k; - P+ R0+ B f £ o, + %f;},l" bl
AR UL st + AT T 0 SR £ Pt + L 1)
WU S s tustnsbe 3 S Fo f ™ a0+ T IS ™ by (89)
4 I T B4 L £ St + ST B I b 82
A G RIT oesbiaetb+ L Fu ™0+ o 11 748 4 O()

This expression may be inserted for the components of k. into the equation (4.a), and then may be compared with
the next expansion in Taylor series of ¥Yn+1 (around y,)

hi
—(

; R L i i .y . o
Yoss S+ P4 AP+ SO+ Gl 1) 4 I + B E 43500 57 + s )
| A - . i i :
+ oG AR ™ + R R £ 4 3501 I™ 4 [ S £ 1™ 4 AL A P AL 1 )

A i L ™ A 3 P L ™ 4 6F i £ 1™ 4+ Fam P £ F ™) + O(h)
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Thus, this gives the following relations that should be fulfilled by the coefficients a,,, b, and ¢,

Cr a4 8,1 a4by = 1/120

L Cr GrsGee? = 1/60

Crarabytaibe = 1/40

Cr Gy Byrhe = 1/24 arsbyapibe /
Crtp b3 = 1/20

B2 | erbe =172 82 =1/12
S / craesby =1/ Crbrarsagebe = 1/30

cbyanb, = 1/8
X ;ba‘_: 1/4/ c,b,a,,bf =1/15
rOr =

CrOrsb, = 1/6 crarebyari; = l/20
B b2 =1/3 erblar,b, = 1/10

h? cobi=1/5

(10)

In these relations, b, bas been defined according to the property (7.b). Notice also that in the development of the
aforementioned relations expansion in Taylor series were used only up to the term of fifth order (with 4°). Since
for higher order the deduction is ‘very tedious, the terms with h® were not included in the series, even though this
term indicates the order of the method here studied. The relations (10) are valid for Runge-Kutta methods, whether
implicit or explicit, from first order method (e.g. Euler method) to fifth order method (e.g. Fehlberg method f10]).
In all the case the indexes r, 5, t and u vary from 1 to number of stages N.

Gear [3], has presented a similar deduction for (8), but only for explicit methods. In Hairer et al. {7], relations similar
to (10) appear, but only for explicit methods and only up to the term of arder h*. Also Hairer et al. deduce a theorem
that expresses the equivalence of the implicit Runge-Kutta methods and the orthogonal collocation methods.[7,8]

Ralston in 1965 (see for example [11]) made a similar analysis to (8), to obtain the relations of the coefficients, but
for an explicit Runge-Kutta method of fourth order and four stages, and found the following family of solutions of
relations (10)

by =0 by=1 4, =0 (s>71) (1la —c)

an=b am=bs—o0y om= ———————2‘;’2(("13_' 2":)2 ) aar = 1 - 0 — as ©(1ld-y)

o 25’1—62){b;+b3—1—(2b3— D, (- 26— b2)(1 k) (1Lh9)
2(b3 — b2)[6 b2ba — 4 (b2 + b3) + 3] Ba(bs — b2)[6 babs — 4 (b7 + b3) + 3]

Notice that if by = 1/2 and b3 = 1/2, then the well known classical Runge-Kutta method of fourth order is obtained

0 0 0 0 0
/21 1/2 6 0 0
1/2 o 12 0 O (12)
1 0 0 1 0

1/6 1/3 1/3 1/6

LOBATTO QUADRATURES

The explicit Runge-Kutta methods are of direct appication, while the implicit Runge-Kutta methods require the
resolution of a system of simultaneous equations with the variables k. in each step of integration of the differential
equations, as it is suggested by the expression (4.b). This system of equations is generally pot linear, unless the
function £(z,y) be linear, and can be solved applying the iterative method of fixed point, explained farther on.
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The implicit Runge-Kutta method to be used here is a sixth order method (P = 6) with four stages (IV = 4), developed
on the bases of Lobatto quadrature [12] (for more details see [6] or {7]). The coefficients of this method expressed in
the Butcher notation are

0 0 0 0 0
(5-vB)/10 | (5+V5)/60 1/6 (15 — 74/5)/60 0
(B5+V5)/10 | (5—+5)/60 (15+7v5)/60 1/6 0 (13)
1 1/6 (5-vE)/12  (5+v5)/12 0
1/12 5/12 5/12 1/12

This method will be named the principal implicit Runge-Kutta method.

Within the coefficients of the principal implicit Runge-Kutta method it can be detected that a part of them forms
another implicit Runge-Kutta method embedded in the first one. This method is of third order (P = 3), has three
stages (IV = 3), and can be expressed as Butcher tablean (13) without last column and with last row of matrix Gy, 48
the coeflicients ¢,.

Both methods, the principal and the embedded, form what is named the Lobatto embedding form of third and sixth
orders with four stages. Notice that these methods are implicit only in the auxiliary variables k; and k3, and therefore
the system of non-linear equations should be solved only in the mentioned variables. The other variables are of direct
solution. .

In order to apply an iterative process to solve the system of non-linear equations, initial estimations of the values of
the auxiliary variables are required. The best way to carry out the latter is to obtain these values from an explicit
Runge-Kutta method, where the auxiliary variables k, are evaluated in the same intermediate point in each step, ie.
an explicit method having the same coefficient b, of the implicit method. Observing the method (13), it is clear that
the aforementioned explicit method is rapidly obtained from the relations (11) assuming b; = 0, by = (5 - v5)/10,
bs = (5 v5)/10 and by = 1. Notice that these coefficients are consistent with the characteristics of an explicit
method. This last aspect makes the implicit method (13) ideal for the desired purpose.

Thus, if b; and b3 are substituted in the relations (11), it is obtained that aj; = (5 — V5)/10, afyy = —(5+ 3/5)/20,

and aj; = (3 + v5)/4. These are the coefficients of the new explicit Runge-Kutta method that in Butcher’s notation
can be expressed as

0 0 0 0 0
(5~ v5)/10 (5—v5)/10 0 0 0
(6+v5)/10 | ~(5+3v8)/20 (3+v5)/4 0 0 (14)
1 1/6 (5-vB)/12 (5+v5)/12 0
/12 5/12 5/12  1/12

The obtained explicit Runge-Kutta method is not reported in the speciality literature and does not correspond to any
known quadrature, but pertains to the family of solutions (11) of the fourth order, four stages explicit Runge-Kutta
methods. This method will be used to obtain the initial estimations k; and ke for the iterative process in the following
form

kz,0) = hf(zn + bah, yn +afky) ks 0) = hf(zn +bsh, yo + a5 Ky + ajoko) (15)

Once these initial estimations are obtained, a rapid convergence to the solution of the system of non-linear equations
(4.5), with the coefficients (13), can be expected.

ITERATIVE PROCESS

As it was mentioned before, the system of nop-linear equations (4.8}, that is originated by any implicit Runge-Kutta
method, can be solved in the auxiliary variables k, applying the iterative method of fixed point (see Gear[3])

ki,(m«}—l) = hfi(zn + brh1 Ynt+ arsks,(m)) (16)

which is the easiest method to be used due to the form of the mentioned system of equations. Here m = 6,1,2,3,. ..
is the number of iteration in the iterative process.
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The global error in the iterative process is defined as ! | =k} () — ki, where ki is the exact solution of the system
of non-linear equations.

The local error in the iterative process is defined as (f,'(m) = ki’(m +])—kf,,(m), arfd it is stopped when ¢/ |{er,(m)ll < €mas,
where €nqz i8 the tolerance imposed to the local error to find the solution yp, ., of the differential equations in one
step, and the norm of the local error ¢, (m) is supposed to be euclidean.

if now expression (4.5) is substracted from expression (16), then l::',.(m iy kb = R{f'(Tn + brh, Yo + rike(m))
—f(@n+brh, yatar,k,)]. If the Lipschitz condition (with A > 0 for convenience) is applied, it results [ki’(m = El<
B lar, | !k{_(m)—kﬂ with {€} (13l < R lays) H,(m)l» where I} is the maximum of the absolute value of each element
in the jacobean matrix of £. This is |fj| < . Thus, if it is satisfied thal £(m) = max) ¢j < p {maxi<,< N |e’,‘(m)]), then

le8 manyl € Bl Larsl 16 (omy| < B 1365 J0rs] 816 (m), where

g, (I my)l) < ma [ max, (B55; laral Suemy)] (17)
Thus . . .
Em+1) <AL Agm) where L= l%({‘i&j) A= 1212&“""' 6.) (18)

The expression (18) means that for a high number of iterations, m — oo, the global error £m) — 0 when h < 1/(L A)
and the iterative process is convergent locally (also globally) in the form

eeller,omanll < erlleromll (19)

The expression (18) is the limit of the stepsize, for the iterative method of fixed point to be convergent, when the
system of non-linear equation is being solved in the implicit Runge-Kutta method. This is the only restriction of the
implicit Runge-Kutta methods, compared to the explicit methods which are much less stable.

STEPSIZE CONTR.Ot

ERROR ANALYSIS

The implicit Runge-Kutta method of sixth order with four stages that is defined by the coefficients (13), in fact
represents two different embedded methods, one of third order within the other of sixth order, i.e. the coefficients (13)
include both sixth and third order methods. This aspect is relevant to control the stepsize, because solving the system
of non-linear equations (4.5) for the same coefficients, it can be obtained two solutions of different order in the local
truncation error, reducing to a minizmm the number of numerical calculations to be made. Fehlberg [10] reported
this aspect to control the stepsize in his explicit Runge-Kutta methods of fourth and fifth orders in 2 embedded form.

Let y,. and Fn41 be the solutions of the system of differential equations (1), offered by the Runge-Kutta methods type
Lobatto of sixth and third orders, respectively, embedded in only one formulation as it was described before. This is

. . 1. R ; . . . 1 . . .
Vi =t E S ASEHE)  f =kt K+ G- VRE + (54 VB (20)

The auxiliary variables ki, ks, ks and kg are the same for both expressions and are obtained using the equation (4.t)
with the coefficients (13).

1t will be denoted as E%,, the difference of the equation (20.a) minus the equation (20.b). This is

. ; » 1 . ;o ;
Erti = Ynps — ny1 = ﬁ[—k; + VB(K — k) + &3] (21)
If y(£,) is the exact solution of the differential equation (1) in the value & = z,, the local truncation errors of the
numerical solutions (20) are defined respectively as e}, = g3 — ¥'(zn) = O(hl_,), where & =5 — yi{za) = OthL_ ),
and then ) ) . ) )
Ef‘l+l = lh'a+l - !7:&1 = ehgy — a1 = O(":) (22)

Remember that the local truncation error is of order P + 1 if the Runge-Kutta method is of order P.
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If the expression (22) is organized in the following form

N g oyt x, N ) . .
B = [B i (= o] (28)
it is obtained
‘ i i P i Vi1 = ¥ (@as1)
Bty = €y (Ent) — Enpy where Erynt1 = [w (A4)

is the relative local truncation error.

If now it is assumed that y*(z,41) is approximated by y}, ,, in the denominator of (24), it can be applied the Cauchy-
Schwartz and the triangular desequalities to the expression (23), and this results

1Bl < Iezr)'n-}ll W (@as N+ 180 < €(r),maz 1yf.+1| + Emay (25)

where €(r),mar a0d &nar aTe respectively the tolerances for the relative and absolute local truncation errors for the

implicit Runge-Kutta methods of sixth and third orders. The expression (25) alsc means that, for the solution of the
differential equations in one step be accepted, it should be verified that

——-—_'E:.'“.'"___- <1 (26)
€(r),maz ly:|+1! + €maz

Q=
being the tolerances for the relative and absolute local truncation errors proposed by the user of the algorithm.

CONTROL ALGORITHM

Let h, ;; be the étepsize in the next step that tends to make Q% = 1. Taken into account the order of the difference
Ei ., defined by (22), the parameter Q, may be redefined as

= (ha ¥ _ i .
Q.= (’::H—) where Qn = lg?}u(Qn) 27
and thus, solving for k4, it results
141/ . . 1\ 1/4
Bngr = hy (5:) = hnSn with S, = (b}) (28,29)

Here, it is convenient to mention that Shampine et al. [13] use expressions similer to (28) and (29) to control the size
of the step of integration in the Runge-Kutta method of fourth and fifth orders with five stages developed by Fehlberg
{10}, but with some modifications, in order to guarantes that §, always be bound in the interval [Smin, Smaz), and
that hnyy always be greater than a limit value Apmg,. Additionally, the mentioned authors maltiply S, of (29) by
a coefficient C; less than unit, to make An4; tends to hn, and thus to make Q, 2 1, but a little lower. All the
aforementioned modifications are resumed in continuation as

1/4
S =0y (é‘) Cyp =09 ~0.99 (30)

S:; = m(mm(sm Smu::).smin) hn+l = hnS:; h:s-H = Iﬂm&(hn+1,hmm) (31)

While in {13} the exponent is 1/5 in the expression (30), here the exponent is 1/4, and they also recommend for the
coefficients and limits the values Cy = 0.9, Smin = 0.1 and Smar = 5. The value of the minimurn stepsize, Rmin, is
determined by the precision of the computer to be used. In this work they are recommended ihe same values for the
coefficients in the expressions (30) to (31).

The procedure to calculate the optimal value of the size of the integration step, that permits to satisfy the tolerances
€(r),mas 300 Emag, is described in continuation:
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o Estimated an initial stepsize hy, the implicit Runge-Kutta method type Lobatto is used to calculate the auxiliary
variables K , k5, kS and ki with the expression (4.b), using the coefficients (13) aud with the iterative process (16),
using the initial values (15).

o The expressions (20) permit to find the solutions ¥4y and § 4, of the methods of sixth and third orders, respec-
tively. .

» The definition (21) permits to calculate the difference Ej 4, between both methods.

» With the equation (26) it can be calculated the parameters @', and with the equation (27) it can be obtained the
maximum of them.

.

« The relations (30) to (31) determine the value of the size of the next step hnt1-

o If Q, < 1, the integration with the step h, (or the application of the Runge-Kutta method from zn 40 Zny1)
is accepted and the step huy1 is considered the step for the next integration (or the next application of the
Runge-Kutta method from Zn41 t0 Zn42).

e ¥ Q, > 1, the integration with the stepsize Ay, is rejected and it is repeated all the algorithm but with hn = Ay 4y
obtained from (31).

This procedure, sometimes increases the stepsize, and other times decreases the stepsize, In a optimal form, in order to
guarantee that the relative error ez',_)m 41 of the sixth order Runge-Kutta method be less than the tolerance €(r)maz;
and the error &, 41 of the third order Runge-Kutta method be less than the tolerance &max- In any case, the solution
of the Runge Kutta method will be ¥/ ,,, i.e. the solution with the implicit Runge-Kutta method of sixth order.

ANALYSIS OF THE METHODS

PRECISION

The order of precision of any Runge-Kutta method comes from the comparison between this and the expansion in
Taylor series of y{&n41) atound y(z»). From this comparison was obtained the relations (10) that should be fulfilled
by the coefficients of the Runge-Kutta methods. For a Runge-Kutta method of order P, it should be satisfied the
relations (10) up to the term of the Taylor series that contains AP . The remainder terms in the Thaylor series are they
which determine the order of the local truncation error. Thus, a method of order P has a local truucation error of
order P+ 1, i.e. that depends on hF+1. The global truncation error always is one order less than the local truncation
error [3], i.e. that depends on h¥. All these criterions can be applied to the implicit Runge-Kutta type Lobatto of
third and sixth order. In this form it is obtained that, the method of third order satisfy the relations (10) up to term
with A3 and the local and global truncation errors depend, respectively, on A* and h®. The method of sixth order
satisfy the relations (10) up to term with h® (the relations for this last term does not appear for the reasons explained
there) and the local and global truncation depend, respectively, on h7 and h®. The dependence of an error respect to
&” is indicated as O(A¥) and is said that the order of precision is P, according to the definition Tn41 = z4 +h. Also
it is satisfied that O(AF) + O(h?) = O(h”) when Q > P.

CONVERGENCY

In the section of Iterative Process it was indicated that the implicit Runge-Kutta methods generated a system of
equations of the type (4.5), in general of non-linear characteristics, where the unknowns were the auxiliary variables
k.. As it was said before, this system of non-linear equations may be solved using an iterative method of fixed point,
which converges for the treated problem in particular, if it is satisfied (18) and the local convergence is established
according to (19).

For the specific case when it is being solved the problem with only one differential equation of the form

Botw  fw=n (32)

it is obtained that L = JA]. For the implicit Kunge-Kutta methods typ¢ Lobatto of third and sixth orders, it is obtained

that A = (6+/5)/10 and A = 1, respectively. Thus, to assure the convergence of the iterative process stated in these

cases, particularly to the linear problem (32), it should be satisfied the following two conditions (assuming h positive)
5-v5 _ 138

Y, = ™ (Implicit 3rd order method) h< l_']\I {(Implicit 6th order method) (33)

K<
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respectively. Notice that the condition (33.b) is the most restrictive of the two.

STABILITY

The stability of the Runge-Kutta methods is generally studied on the bases of their performance for solving the specific
problem (32) with only one linear ordinary differential equation. In Appendix C it can be found the analysis of the
stability for the more general case of a system of linear ordinary differential equations.

Thus, if the expressiou (4.0) is applied, taken into account that the problem being solved is (32), it is obtained that
ke = B f(yn + ark,) = B A (Yo + 0 k,) = hAy, + hXa,, k,. Moreover, if k, is substituted as 4,,k, and the therms
are regrouped, it results r,ky = hAyn + h X ar, k,, where 6,,k, —h Aa, k, = h A Y., and thus, if k, is factorized, then
[6rs —hAar, ]k, =hAyn 6, with r,5=1,2,3,...,N.

Thes latter expression iepresents a system of N linear e¢quations with N unknowns k,. If this system of linear
equations is solved and if the solutions k, are substituted in the equation (4.a), then, it is found a relation for Ynil
depending only on y, and on the coefficients of the used Runge-Kutta method. The mentioned relation is of the form
Un+1 = p1(hA) yn, where p1(h)) is found applying, for example, to the implicit sixth order Runge Kutta method of
Lobatto type, the procedure above explained. In this case the result is

1+4§2+%z2+%23+ 55t ‘
= 34

where the function p;(2) was deduced from the coefficients (13). For the case of the implicit third order Runge-Kutta
method type Lobatto resumed in the inner coefficients (13), the result is §iuq1 == i1 (AA) yn, where

1+§z-ﬁz_’+3—1‘,z3] (35)

f(s) = [w--—w

1-1z4 al—ozn

The functions /i;(z) and p;(2) are denominaied characteristic roots of the Runge-Kutta methods of third and sixth
orders, respectively. The characteristic roots are also known as stability functions. The Runge-Kuita methods, to
which these roots pertain, are considered stables if their absolute values are less than unit, for a determined real value
of z = hA. Notice that, if }ii; (hA)] or lu1(BA)] is less than the unit, then it is satisfied that l¥n+1] OF |yn41] is less than
l#m] and the stability is guaranteed.

The functions (34) and (35) may be represented graphically as ji;(hA) and p1(hX) vs. h), and the region of stability
for each one may be observed. The methods are stable if it is satisfied the following two conditions (assuming that
is positive and A is negative).

8232 K
h< 8:823 (Implicit 3rd order method) h< 9—%‘?53- (Implicit 6th order method) (36)
!

- W

Therefore, the mentioned methods are not A-stable. When comparing the conditions (33) with the conditions (36),
the condition (33.5) continues being the most restrictive of all. .

The function 1(z) constitutes an apruximation of Padé [2] for the function y = e* (see Lapidus and Seinfeld [6]), and,
additionally, is always positive and less thar unit in the interval {—9.648495252 , 0.0]). Notice that the function pi(z)
approximates well to the function y = e* for the range z > —4.

The function i1 (z), howevet, is not an approximation of Padé, has only one root in the point z = —2.706010973 . . "
and is, in absolute value, less or equal to the unit within the interval [~6-823183583 , 0.0]. This can be observed
graphically.

The conditions (36) reveal that the implicit Runge-Kutta methods type Lobatto of third and sixth orders are more
stable than the explicit Runge-Kutta methods type Fehlberg of fourth and filth orders, haviug these last methods the
following stability conditions

h< %5- (Explicit 4th order method) h < %? (Explicit 5th order method) 37
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The only limitation of the implicit Runge-Kutta methods comes from the convergency conditions (33), which are based
on the way used to solve the system of equations (4.b), and on the assumption that the differential equation has a linear
form (32). These convergency conditions permit an increase of the stepsize h much less than the stability conditions
(36). This aspect brakes the advance of the implicit Runge-Kutta methods in a notable manner, but the difficulty may
be compensated partially in two forms. First, estimating conveniently the initial values of the auxiliary variables k,
for the iterative process. As it was treated before, this can be made using an explicit Runge-Kutta method with the
expressions (15). Secondly, it may be used the fixed point method in a efficient manner, similar to the Gauss-Seidel
method, i.e. when an unknown is approximately calculated, it is substituted inmediately in the next equation, and
thus on. These two modifications of the implicit Runge-Kutta methods here used may unprove the performance of
the method, in the sense of that the stepsize h is liberated from the convergency conditions (33) and thus it may be
permitted to increase much more.

A more sofisticated solution to the problem mentioned before can be developed, if it is used the Newton-Rapson
method to solve the system of non-linear equations (4.5). This may increase the number of pumerical calculations to
be performed by the algorithm, but the convergence will be more rapid.
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