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RESUMEN
Todo proceso que puede ser definido en la forma de una ecuacion iterativa del tipo x=g(x), puede
ser considerado como un sistema dinamico. La complejidad del sitema depende de cuan compleja
es la funcion y=g(x). AIm en los casos mas simples, el comportamiento de tales sistemas
dinimticos pUede ser caOticos. En tales procesos se puede obtener un mapa coloreando los puntos
iniciales con colores distintos, dependiendo del punto fijo aI cual converga. Estos mapas son
fractales si el sistema dinimtico es caotico y su dimension fractal puede representar una medida
de cuan caotico (0 inestable) es el sistema. En este contexto, se analizan varios metodos de
optimizacion como Newton-Raphson, Metodo de la Secante, Cuasi-Newton y Metodo de
Segundo Orden.

ABSTRACT
All process that can be defined in the form of an iterative algorithm of the form x=g(x), may be
considered as a dynamical system. The complexity of the system depends on how complex is the
function y=g(x). Even for the simplest cases, the behavior of such dynamical systems may be
chaotic. In such processes it may be obtaines a map coloring the initial points with different
colors, depending on the fixed point toward they converge. These maps are fractals if the system
is chaotic and its fractal dimension may represent a measure of the chaotic quality (or instability)
of the system. In this context, some optimization methods such as Newton-Raphson, Secant
Method, Cuasi-Newton, and Second Order Methods are analized.

In this paper we deal with iterative processes. All process that can be defined in the form of an iterative
algorithm of the form

x'+l = g(x') (I)

may be considered as a dynamical system [I]. The complexity of the system depends on how complex is the
function

y=g(x) (2)

Even for the simplest cases the behavior of such dynamical systems may be apparently unpredictable. The
sequences

in the aforementioned dynamical systems may transform itself into chaotic processes. The fixed-point methods
(steepest descent, Newton-Raphson, Cuasi-Newton, second order methods, etc.), and other optimization
methods are examples of these complex chaotic dynamical systems.



x=g(x) (4)

is obtained when the iterative process find a fixed point r=g(r). Suppose that the function is defined to be

g:R" ~ R" (5)

and every time the iterative process begin, a different initial point XO is selected. Imagine that every initial point

x'EA with A,;;R" (6)
is marked, for example with different colors, depending on the fixed point r to which the iterative process (I)
converges. Thus, if the iterative process is deterministic, the subset of the space will be colored with different
colors in different well-determined zones. Conversely, if the iterative process is chaotic, the mentioned subset
will be drawn forming strange figures embedded in the n-dimensional space, where the colored zones are not
well delimited. Such figures are known as "Fractals" [2]. If in these fractal figures one try to make a zoom to
the boundary of a mono-colored zone, the same structure is found repeatedly within the fractal structure, up to
the infinity. This property is known as "Auto-Similarity".

According to Mandelbrot [2], who coined the term "Fractal", a subset A of the space is called fractal provided
its Hausdorff dimension Dh(A) is not an integer. Intuitively, Dh(A) measures the growth of the number of sets
of diameter e needed to cover A, when e~O. More precisely, if A is a subset of Rn, let N(e) be the minimum
number of n-dimensional balls of diameter e needed to cover A. Then, if N(e) increases like N(e) is
proportional to e-Dh when e~O., it can be said that A has a Hausdorff dimension Dh [3). It is not difficult to
show that the Hausdorff dimension can be obtained by

D . 10gJ:N(e)]
• = ~~IVlog(k I e)

where k is the proportionality constant when

N ~ke-D. e~O (8)

For example, a monocolor rectangle with sides a and b can be covered with circles of diameter e = aln = him,
ordered in n lines by m rows, and the Hausdorff dimension is then obtained as

D. = lim log(nm) - 2
"",--logJ:k'.,[;b I J(a I n)(b I m)]

where k' is a proportionality constant. For a square the result is trivial and it is exactly the same. For a fractal
figure the result is not an integer as it was mentioned, but the used procedure may be the same.

Accordingly, the Hausdorff dimension represent a measure of how fractal is a figure embedded in Rn.
Consequently, more fractal is the figure less stable is the dinamical system, and therefore less stable is the
iterative process represented by that fractal map. In this paper the term "fractal map", or simply "fractal". will
be used to name a complete fractal representation of a specific dynamical system. The term "fractal figure" or
"fractal region" will be used to name the intricate configuration of colors and forms in the boundary of
uniform extended color zones, which will be named "basins".

Graphical figures are represented by this technics, for some iterative methods like Newton-Raphson, Secant
Method, Cuasi-Newton and Second Order methods applied to some simple system. Then the Hausdorff
dimension is numerically quantified in an approximate form. With special attention, the Second Order Method
is studied exhaustively for the mentioned system, and, as a conclusion, this method is found to be the most
stable.

The Problem
Let's now focus our attention to an specific problem in R2. This problem consist of solving the following
equation



/(=)==4-1=0

which is equivalent to the next system of two equations

(x' - /)' -4x'y' -1=0

The equation (10) represent the equation of the quartic roots of I in the complex plane, where z = x + i y E C.
This equation, in the set of complex numbers, represents a system of two non-linear equations in the set of the

real plane.

The Technics
The roots of the equation (10) are
±l and ±i. The fractal figure is
formed with combinations of
different colors depending on which
root the system converges, begining
on the colored point with the initial
value. Most of the fractal map were
obtained with approximated
43Ox390 points, and the area covers
the intervals from -1.5 to 1.5, both
in x and y. The legend of each
fractal map contains information
about the minimum, averaged and
maximum iteration number
(KminKmed.Kmax) and the Hausdorff
fractal dimension (Dh) averaged for
all the colors and for the subset of

the plane shown. The Hausdorff dimensions here calculated are only aproximations due to the limited number
of points used. and are numerically obtained by

o
Fig. I.a Newton-Raphson Method (Kmio=3, Kmed=9.6 , Kmax=83 ,
Dh~ I. 974688 ).

D,."2 10g{N(COLOR») (12)
10g{NT(COLOR»)

where N(COLOR) is the number of points of color "COLOR" that are totally surrounded by points of the same
color, and NT(COLOR) is the total number of points of color "COLOR". Notice that the Hausdorff fractal
dimension average for all the colors,
named from now on simply "fractal
dimension", is aproximately 2, but a
little smaller. If the map were a
collection of colored polygons, then
the fractal dimension would be
exactly 2. While the fractal figure is
smaller within the map, then the
fractal dimension is closer to 2.
While the fractal dimension is closer
to 2, then the behavior of the system
is more stable.

The chaotic process occurred in the
systems described above is more or
less stable depending on the location
of the inicial point in the iterative
process. When tile iterative process Fig. l.b Newton-Raphson Method (Detail).
begins in a point colored with a
specific color, the consecutive iterations jump from a point of that specific color to another point with the same
color, until a root in the same color basin is reached. This process is chaotic if the iniciaJ point is located



within the fractal figure and may be unstable if a jump is made outside the fractal map and falls in another
point really far from the root. This process is absolutely stable if the inicial point is located in an attraction
basin which contains a root.

Newton-Raphson Method
Figures I shows the fractal map of
the Newton-Raphson method
(Appeared early in [3] ) for the
solution of the equation (10), without
any relaxation [4]. Additionally,
figure l.b shows a detail of the first
quadrant of the fractal figure. There,
it can be noted the recurrent property
of autosimilarity, which is a special
characteristic of the fractals. Notice
that every colored basin surrounds a
different root of the equations. In the
middle of the map there is a rosette
with eight petals. The intermitent
shadowed and clear regions especify
when the method passes from one
iteration to another. The route of one
iteration process may seem

unpredictible when this begin in the fractal region. When the iteration process begin in a principal basin the
route is directly toward the nearest root. Therefore, the stability of this method is good when the iteration
process begin within a principal basin. Near the fractal region the number of iterations may increase
substantially, and the method is said to be less stable. The maximum number of iteration may be. 83 and the
average value is almost 10. Clearly, every initial point finish in any of the mentioned roots, each one marked
with a small circle in the principal basins.

Secant Method
The figure 2 shows the fractal map
for the secant method. The algorithm
formula for this method is similar to
the Newton-Raphson method except
for the calculation of Jacobian
matrix, which is calculated with two
consecutive iteration values in each
direction [4]. Similar to the last
section figure 2.b present a detail of
the first quadrant of the fractal figure.
Here the fractal figure is presented
with diffusive regions in the
boundaries of the basins, like a
fractal dust with a different color for
each grain. In the center, it appears a
rosette with 24 petals. This mean
that, in the center of the map, the Fig. 2.b Secant Method (Detail).
root to converge in less predictible
than for the Newton-Raphson method. The Secant method presents a stability similar to the Newton-Raphson
method, mainly near the roots, but the diffusive region seem to reduce the fractal dimension and the stability of
the method., and increase the number of iterations up to 889, which represent an approximate factor of 10. The
average iteration number is lightly higher. The shadow and clear regions have cusp forms, which means that
the convergence may have a lateral component, which retard the convergence. Like the Newton-Raphson
method every the point converges to a root.

Cuasi-Newton Method (Broyden Algorithm)
The Cuasi-Newton method here analyzed is that known as "Broyden Algorithm" [5]. This algorithm
necessitates for starting few iterations with the Newton-Raphson method. The figures 3.a-d show the fractal



maps obtained for this method using from one to ten Newton-Raphson starting iterations. The dark regions
represent those initial points with no convergence. Thus, the color black marks the instability zones. This is
one of the iterative methods which is not stable. Within the principal basins the convergence is similar to the

Secant method with the shadow and clear cusped
regions. Outside the principal basins the iterative
process is completely unstable, except in the spots of
uniform color fractal dust. These spots joint themselves
while the starting iteration increase its number, until
they touch the basins. In the center of the map,
gradually grows a rosette with eigth petals. The cusped
region and the central rosette, jointly with the fractal
dust, combine the characteristics of the iterative
processes for both the Newton Raphson and Secant

Fig. 3.a Cuasi-Newton Method, Broyden Algorithm,
with one starting iteration using Newton-Raphson
Method ( Kmin=l , Kmed=11.8 , Kmax-698626 ,
Dh~1.811758 ).

methods. While starting iterations increase, the shadow
and clear regions are bigger within the basin because
the method necessitates less iteration to converge, since
they approach the solution toward the roots. It is
importatnt to note that after ten starting iterations
(Fig.3.d) the Cuasi-Newton method continues being
unstable in the small dark regions. Only in the basins is
stable due to the help of the Newton-Raphson method.

Fig. 3.c Cuasi-Newton Method, Broyden Algorithm,
with 5 previous iteration using Newton-Raphson
Method ( Kmin=1 , Kmed=7 , Kmax=73527 ,
Dh~1.946423 ).

Fig. 3.b Cuasi-Newton Method, Broyden Algorithm,
with 3 previous iteration using Newton-Raphson
Method (Kmin=l, Kmed=8.2, Km.ax=IOOOOO,
Dh~1.909757 ).

Second Order Method
The Second Order method is base on an expansion in
Taylor Series up to the second order term. The Newton
Raphson method is like, but it is developed using an
expansion in Taylor Series up to the first order term.
The Second Order method generates a quadratic system
of equations, which may be solved using a secondary
internal iteration procedure with the Newton-Raphson
method. This procedure is performed in each principal

iteration [6]. Figure 4 shows the influence of the
number of internal iterations on the Second Order
method. There are Three fractal maps with one, two
and three internal iterations. The fractal dimension is a
little closer to 2 when the internal iteration number
increases. It should be noticed that the proximity of the
fractal dimension to :'. and the stability of the systems
are notable with the used procedure. This is Fig. 3.d Cuasi-Newton Method. Broyden Algorithm,
appreciable, despite of the increment of the number of with 10 previous iteration using Newton-Raphson
the averaged principal iterations, which is aproximately Method ( Kmin=l , Kmed=3 , Kmax=547 .
ten times higher than the standard Newton-Raphson Dh~1.967462).



method for the case of three internal iteration (Fig.4.c). While the iteration number is higher, the shadow and
clear regions are smaller. Another feature presents in the Second Order method but not in the others is that, in
both side of the fractal figure, there are small convergence hole that perturbes the convergence within the
principal basins.

Fig. 4.a Second Order Method with I internal
iteration ( Kmin=12 , Kmed=24 , Kmax=199 ,
Dho1.984425 ).

maximum, when used in optimization problems).
However, the effort of calculation and the
computational cost are greater. Even though, it is

Fig. 4.c Second Order Method with 3 internal
iteration ( Kmin=47 , Kmed=94.3 , Kmax=469 •
Dho I.990834 ).

The conclusion of this analysis is that the Second
Order methods offers more stability in the resolution of
systems of non-linear equations than the classical
methods, as Newton-Raphson method,and. most of the
time, it is possible to find a root (or a minimum or a

Fig. 4.b Second Order Method with 2 internal
iteration ( Kmin=25 , Kmed=48.6 , Kma>r-300 •
Dho 1.988387 ).

worthwhile for highly non-linear equations.
Additionally. the Second Order methods increase, in
average. the number of principal iterations.
Nevertheless, the increment of the number of principal
iteration is not so high, and this is compensated by
stability reached by the algorithmic procedure. In
summary, the higher stability is the main feature that
make the second order methods attractive. On the other
hand, the worst method is the Cuasi-Newton method
because of its instability in the fractal region, and the
high starting iteration necessary to be reasonably stable.
In the middle there are the Newton-Raphson and the
Secant methods, being the latter a little worse.
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