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In this work we present a new method called (SU+C)PG to solve advection-react ion-
diffusion (ARD) scalar equations by the Finite Element Method (FEM) [lJ. Follow-
ing the ideas behind SUPG [2, 3], Tezduyar and Park treated the more general ARD
problem and they developed a stabilizing term for advection-reaction problems without
significant diffusive boundary layers. In this work a PG extension for all situations
is performed, covering the whole plane represented by the Peclet number and the di-
mensionless reaction number. The scheme is based in extending the super-convergence
feature through the inclusion of an additional perturbation function and a correspond-
ing proportionality constant. The proportionality constants are selected in order to
verify the "super-convergence" feature. i.e. exact nodal values are obtained for a re-
stricted class of problems (uniform mesh, no source term, constant physical properties).
It is also shown that the (SU+C)PG scheme verifies the Discrete Maximum Principle
(DMP), that guarantees uniform convergence of the finite element solution. Moreover,
it is shown that super-convergence is closely related to the DMP, motivating the interest
in developing numerical schemes that extend the super-convergence feature to a broader
class of problems.

In this paper we focus on the numerical solution of the ARD equation using the finite
element method. Here diffusion, advection and reaction means those terms in the gov-
erning equation involving second, first and zero order derivatives of the unknown vari-
able. This kind of equation represent a simplified model for several industrial processes,
for example the simulation of electrophoresis separation phenomena and the operation
of a great number of chemical reactors. In these processes both the concentration and
temperature play the role of the unknown variable. Another interesting applicatiou is
found in the simulation of fluid flow in a non inertial frame. This phenomenon is repre-
sented by an ARD system where the inertial forces are included in the advection term,
the Coriolis forces are included in the reaction term and finally the diffusive part is due
to the viscous effects. The dimensionless Reynolds and Rossby numbers quantify the
relative magnitude of these forces. Both limits for high Rossby and Reynolds numbers
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have a lot of numerical and physical difficulties, specially concerning with the stability
of the fluid flow and the scheme used to simulate it.
Let us take the steady, linear ARD equation. As it is well known, the numerical solution
of the above equation using Galerkin formulations exhibits global spurious oscillations
in advection dominated problems, specially in the vicinity of discontinuities. Such draw-
back can be overcome by the popular SUPG method [2]. This method stabilizes the
numerical scheme by adding a perturbation to the weight function producing an oscil-
lation free solution. This perturbation is proportional to the gradient of the standard
interpolation function, so that for linear constant-size elements it is an odd function
with respect to the center node. The amount of perturbation to be incorporated is
calculated as a function of the dimensionless Peclet number. By adding a shock cap-
turing term one can preclude the overshoot and undershoot in the neighborhood of the
discontinuities [3].
On the other hand, other kind of troubles exist in reaction dominated problems as-
sociated with the existence of local oscillations, also near discontinuities, even in the
absence of advection terms. Similarly to the advection dominated problems, Tezduyar
and Park [4] added a perturbation to the weight function. They choose it to be pro-
portional to the gradient of the standard weight function, like the perturbation added
for advection dominated problems, but with a different proportionality constant. The
importance of the reaction term can be quantified by a dimensionless number, which we
call the reaction number r formed by the reaction constant, the diffusivity constant and
the element length. This scheme, which is called DRD, is designed to give the nodally
exact solution for the homogeneous, one-dimensional analysis when the reaction number
is much greater than the others and there are not diffusive boundary layers. One of
the most remarkable critics to the above scheme is the impossibility to solve diffusive
boundary layers. Another important critic stems from symmetry considerations under
coordinate inversion x -> -x. In the reactive-diffusive case (null advection), the equa-
tion is invariant under this symmetry operation and it is clear that the weight function
should be symmetric. Actually, this is not the case for this scheme.
In this direction this paper tries to give an answer to the above questions. We present a
Petrov-Galerkin formulation proposing two different perturbations to the weight func-
tion, one of them is similar to that of SUPG scheme and the other one is symmetric. For
advection-diffusion problems, the scheme reduces to the standard SUPG scheme. On
the other hand, for reaction-diffusion problems only the symmetric perturbation sub-
sists and the scheme is called CPG from "Centered Petrov-Galerkin". In intermediate
situations the scheme is a mixture of the two, and then the acronym (SU+C)PG. The
proportionality constant for each perturbation depends on the two dimensionless num-
bers, Peclet number Pe and the reaction number r. We find two expressions O'(Pe, r),
,(Pe,r) similarly as with the magic function in SUPG, where 0'" are the proportion-
ality constants for both perturbation terms. With this kind of solution, we can solve in
an optimal way not only the limit cases Pe -> 0 , r -> 0, but also the whole Pe-r plane.
Another alternative to solve the above problem, introduced by Codina[5]' consists in
using an SUPG formulation with shock capturing including in this last term the sta-
bilization of the reactive effects. He demonstrated that the original equation can be
transformed in a new adveetive-diffusive equation with a transformed velocity. Then,
he applied the well known schemes for this kind of problem.
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where k > ° represents the physical diffusivity, u the transport velocity, ,p the scalar
unknown variable, c ::=: ° the reaction constant and j the source term. The weak
formulation is:

Nr (kw:,p' + uWi<b' + CWi,p) dl1 + L r Pi( -k,p" + u,p' + c,p) dl1 =
In <=1 In.

fo wi! dl1, i = 1, ... , N - 1. (2)

Pi is the perturbation term and i, e are node and element indices, respectively. The first
term is the well known SUPG perturbation term, whereas the second one is the new
perturbation function which is intended to stabilize the reactive effects. With different
expressions for the proportionality constants 0 and, we obtain the (SU+C)PG method
as well as those ones found in the literature:

0=0,
0= cothPe -l/Pe,
0= ODRD(r/4Pe),
o = opr(Pe, r),

, =0,
,=0,
, =0,
, = ,pr(Pe, r),

Galerkin,
SUPG,
DRD,
(SU+C)PG,

The dimensionless parameters Pe and r, quantifying advection and reaction, respec-
tively, with respect to the diffusive term are defined as Pe = (uh/2k), r = (ch2/k).
As it is usual in the SUPG context, these numerical parameters are found by requiring
that the exact fundamental solutions to (1) in the homogeneous (f == 0) case must be
solutions of the discrete counterpart.
Since in the limit case of pure reaction the optimal weight function would be a Dirac's
delta, it is reasonable to assume that W + ,P2,i must behave, as the reaction number is
increased, in the form shown in figure 1. It is symmetric with respect to the center node
i and vanishes at the neighboring nodes i± 1. For zero reaction it has to coincide with
the standard "hat"linear interpolation function, whereas for increasing reaction number
it has to concentrate at the center node. After some algebra, we arrive to the following
system of equations defining the proportionality constants:
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Figure 2: Proposed second
perturbation function P2.

Figure 1: Weight functions for the null
advection case.

9jl = [4Pe(1 - cosh(Ajh) - r sinh(Ajh)J,
gj2 = 2[cosh(Ajh)rm + 2Pea sinh(>'jh)+

((a-m)r)], (7)
Ii = -2[cosh(Ajh)(r/6 - 1) + Pe sinh(Ajh) + (1 + r/3)]'

Ajh = Pe + (_l)j-l VPe2 + r,

for j = 1,2, which depends only on two geometrical parameters of P2, namely: the
dimensionless semi-area a and the dimensionless first moment of one-half of the function
m. We can obtain a super-convergent scheme by choosing an arbitrary function P2(x)
and computing a and I from the preceding expression. However, for an arbitrary choice
we will find, in general, that the proportionality constants have singularities for certain
values of Pe and r, so that a design of the P2 function is needed to avoid singularities.
A detailed analysis shows that the lowest order polynomial (inside each element) that
avoids singularities is (see figure 2):

The geometrical parameters corresponding to this function are: a = -1/6 and m =
-1/12.

3. THE PROPORTIONALITY CONSTANTS
We refer to (SU+C)PG as the Petrov-Galerkin method based on the variational for-
mulation (2), with the perturbation function defined by (3-8), and the proportionality
constants defined by (6-7). In some limits the expressions are undeterminate but this
singularities are removable. (This is also the case for the "magic function" of SUPG
(see equation (4.2))). In figures 3-4 we show them, and we see that they are bounded
and well-behaved: lal s; (1/2) and 0 s; I s; 2 for all Pe, r. Regarding consistency, it
can be shown that the "numerical additives" vanish like""" h2 with mesh refinement.
On the other hand, some desirable limits are automatically satisfied. For instance, we
recover SUPG with the standard magic function in the case of null reaction:

1 1
a = 2(cothPe - Pe)' 1=0 for r = O. (9)
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Figure 3: Proportionality constant for
the standard SUPG perturbation
term a as function of Pe for constant

Figure 4: Proportionality constant for
the second perturbation function I
as function of r for constant Pe.

a = 0, ,= 12cosh(y'r)(r/6 -1) +(1 +r/3)
r [1 + cosh( y'r) 1

The whole family of weight functions for null advection is shown in figure 1 from I = 0
to 2. The weight function concentrates in the center node as I increases. For I = 2
(pure reaction) the weight function takes negative values near the neighboring nodes
and it can be checked that the resulting discrete scheme reduces to collocation.
With respect to the computational cost involved in the calculation of the proportion-
ality constants, it amounts to the evaluation of 4 exponentials, 2 square roots and 49
operations (additions, multiplications and divisions). For reference, the DRD method
(expressions (4.3) and (5» involves 3 functions and 15 operations, so that the cost of
(SU+C)PG is, at most, 3 times higher than that of DRD. However, we it can be shown
both theoretically (§3) and through examples (§5) that the robustness and accuracy of
(SU+C)PG largely pays this extra computational cost. On the other hand, the cost for
those methods that resort to non-linear feedback of the solution, like the discontinuity-
capturing techniques presented in [4] or [5], depends on the precision with which the
non-linear problem is solved, but we can estimate that the cost of (SU+C)PG is well
below them.
Regarding the extension to multi-dimensional problems, it does not pose severe problems
and the interested reader is referenced to [1].

4. THE DISCRETE MAXIMUM PRINCIPLE

It is well known that the continuum problem satisfies a maximum principle, which can
be put in the following terms: if f( x) :s: 0 for all x, then <P attains its maximum at
the boundaries. The question is whether the discrete scheme inherits this feature, i.e.
if, for any f( x) :s: 0 the numerical solution satisfies: <Pi :s: maxi ¢>} for all i, where ¢> is
the value of <P at the boundaries .. It has been shown [10] that the satisfaction of the
DMP implies uniform convergence of the finite element solution. It can be shown that
the (SU+C)PG scheme verifies the Discrete Maximum Principle (DMP), for all Pe and
r, whereas the others (Galerkin, SUPG and DRD) only satisfy the DMP in restricted
regions of the Pe-r plane. We will call these regions the stability regions of each method.
The satisfaction of the Discrete Maximum Principle can be assessed from the verification
of some conditions on the coefficients of the matrix of coefficients. Furthermore, for a
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Figure 5: Stability map for Galerkin, DRD and SUPG.

uniform mesh the coefficients of the linear system of equations are constant, and, when
conveniently non-dimensionalized, they depend only on the non-dimensional Pe and r
numbers. Then, for each method, we can find the region of the Pe-r plane where the
DMP is satisfied (see figure 5). The region of stability for Galerkin is a triangle, for pure
advection the range of admissible Peclets is IPel < 1, whereas for pure reaction we have
r < 6. SUPG has a much broader range of stability. Needless to say, for pure advection
all the Pe axis is in the stable zone, and for IPel > Pecrit it is stable for all r. However,
for pure reaction the range of stable reaction numbers is the same as Galerkin (r < 6).
On the other hand the DRD method has an stable region smaller than that of Galerkin.
In contrast, the (SU+C)PG scheme is uniformly stable over the whole Pe-r plane. The
demonstration can be found in [1] and is based mainly on the super-convergence feature
of the method. Then, it is rather independent of the particular scheme and can be
extended easily to other kind of problems (system of equations, higher order schemes,
for instance), whenever the scheme is based in adjusting the numerical coefficients in
order to match the solutions for the homogeneous case (superconvergence).

5.1. Experimental regions of stability. Comparison with other methods.
To experimentally confirm the stability regions deduced previously, we performed a
large number of numerical experiments simulating the problem described by (1) with
no source term, and <Po = 0, <PI = 1. The region IPel ::; 10, 0 ::; r ::; 10 was covered with
a grid of lOOx50 points of the form (±Pej,r,) where the Pej and rl, j,1 = 1, ... ,50
are interpolated logarithmically between 0.2 and 10. The mesh was non-uniform: the
position of the inner nodes are computed as Xj = (j + %fJj)h, where h = l/N, N = 20
is the number of elements and the fJj are randomly choosed in (with a uniform density
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Pe
Figure 6: Experimentally determined stability map for Galerkin, DRD and SUPG.

distribution) in the range 16- jl < 6max = 0.95. The physical properties k, u and c
were set according to the values of Peclet and reaction numbers, considered as based
on the average size element ii. Since the exact solution is monotone we used this as
the criterion for stability, i.e. the discrete solution {¢>i} for a given set of parameters
(Pej,r/) is unstable if ¢>i+I < ¢>i for some i.
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8: One-dimensional example with non-
uniform mesh. Case A2.

The resulting stability map is shown in figure 6. It can be seen that the right portion of
the map (Pe > 0) is similar to the stability map based on the DMP (see figure 5). The
differences can be attributed to the fact that the non-dimensional mesh parameters Pe
and r are based in an average element size. In contrast, the left portion is qualitatively
different from the DMP version. For all methods, the stability region for Pe < 0 is much
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uniform mesh. Case AI'
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9: One-dimensional example with non-
uniform mesh. Case A3.
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10: One-dimensional example with
non-uniform mesh. Case A4.

broader than that for Pe > O. This is because for a large part of the region Pe < 0,
the solution is rather smooth, even if IPel and r are large. For instance, consider the
cases Pe = ±5, r = 5 (u = ±200, c = 2 X 103, as h = %0), indicated as Al and
A2 in figure 6. The corresponding profiles can be seen in figures 7 (Pe = +5) and 8
(Pe = -5). The solution for Pe < 0 is rather smooth, since it is basically equal to the
inviscid solution, which has a characteristic length of 5 ~ lu II c = VIOand practically
all methods give a qualitatively good result, even Galerkin. In contrast, the solution
for u > 0 exhibits a thin diffusive layer, with a characteristic length 5 ~ k/lul = 11200'

and only the SUPG and (SU+C)PG methods, who can cope with the strong diffusive
boundary layer, give non-oscillatory results. Coming back to the Pe < 0 case, if we
move deeper into the instability region of both the DRD and Galerkin methods, as for
case A3 (Pe = -10, r = 2, u = -400, c = 800, see figure 9.), then the amplitude of
the mismatch at the left boundary is larger, and both DRD and Galerkin exhibit large
oscillations. Up to this point, we have not found any advantage of DRD over SUPG,
in fact DRD behaved very similar to Galerkin. Consider now the case A4 (Pe = -1,
r = 10; u = -40, C= 4 X 103, see figure 10.). The inviscid approximation continues to be
valid and the downwind boundary layer is very small, but now the characteristic length
for the inviscid solution is lul/c = 10-3 ~ h, so that the solution is not "smooth",
and SUPG exhibits oscillations whereas DRD behaves very well. If we increase r to
50 (c = 2 X 104) case As, see figure 11.), the overshoot for SUPG is more pronounced,
whereas DRD continues to be stable. This region, where r ~ IIPel, and Pe < 0 is the
region where DRD signifies an improvement over SUPG. However, as was shown, DRD
will fail whenever a diffusive boundary layer is expected. In contrast, the (SU +C)PG
method was stable uniformly over the whole Pe-r plane.

5.2. Non-constant physical properties
In this example, the physical properties u and c are not constant over the domain and
non-uniform meshes are used:

N=20, k=l, 5rnax=0.8, u={uI=-lfor x<0.5, u2=-10forx<0.5;}

c = {CI = 4 X 103 for x < 0.5; Cz= 1 for x < 0.5. }
(12)

The numerical solution is shown in figure 12, along with the Galerkin solution and the
exact one. While the solution in the x 2: % region is smooth, the solution in x ::; V2
has a transition zone with a scale length 0.015, that is smaller than the average element
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13: Example with internal source and
null advection. Comparison between
the different methods.

size h = 0.05. Consequently, Galerkin's method suffers from oscillations whereas the
(SU+C)PG one remains stable.

5.3. Example with internal source and null advection
Here a source term along with non-uniform meshes are used. The physical constants,
source term and boundary conditions are:

N=20, k=l, u=O, c=8xl03
, omax=0.8,

f(x) = {Ofor x < %;c for x > %j}, </>(0)= </>0= 0, </>(1)= <PI = 1.

The solution </> is S-shaped and for c -+ 00 it approaches a step function about x = %.
The scale of the transition zone from </> = 0 to r.p = 1 is O( .jk{C}. For large c, this
discontinuity induces oscillations for the non-stabilized algorithms, so that it is a good
test in order to show the benefits of the (SU+C)PG scheme. The numerical results
are shown in figure 13, comparing the solution with the present method and Galerkin.
For the given physical data, the scale of the transition zone from <p = 0 to <t> = 1 is



~ yIkf;: = 0.011, being smaller than the average element size h = 0.05. In consequence,
Galerkin method produces spurious oscillations, whereas the (SU +C)PG method does
not.

5.4. Multi-dimensional results

14: Two-dimensional example with
advection (parabolic profile).
Problem description and numerical
results with the (SU+C)PG scheme.

15: Two-dimensional example with
advection (parabolic profile). SUPG
scheme.

Finally we performed a two-dimensional example that consists in a linear convection
reaction without source term but, now, the velocity is not constant [5]. The domain is
the unit square 0 ::; x, y ::; 1. The velocity u = (u, v) is assumed to have a parabolic
profile: u(y) = um"xy2, V == o. The reaction coefficient is equal to c = 5, diffusivity
k = 10-8 and Um"x = 1. The mesh is uniform and consists of 20 X 20 elements. The
boundary conditions are natural (null flux) in three of the four sides of the domain and
in the fourth side we have imposed a Dirichlet condition fixing the solution value equal
to 1, as shown in figure 14. Figures 14, 15 show the stabilized scheme results and the
standard SUPG ones. We can observe that the oscillations obtained with the standard
SUPG near the zone where a very high reaction number exists have disappeared with
the stabilized scheme whereas, in the rest of the domain, both solutions are equivalent
because the problem is advection dominated there.

This paper presents a stabilized multidimensional scheme for ARD problems that ex-
tends the SUPG method to overcome the numerical oscillations that appear from the
reaction term. This numerical improvement allows to treat in an optimal way a lot of
industrial interesting situations where reaction effects are important in some regions of
the domain, advection effects dominates in other zones, specially if the location of these
zones is a priori unknown. It has been shown that (SU+C)PG scheme satisfies the DMP
criterion uniformly over all the Pe-r plane and it has been proved to be stable also in a
series of numerical tests.
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