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A computational analysis of dynamic strain localization in multiphase solids is
presented in this paper. The theoretical framework is based on mixture theory,
integrated by the volume fractions concept. The constitutive equations employed are
developed within finite strain plasticity. The study of localization is based on
continuum wave propagation. The directions of localization are obtained by means of
an eigenvalue analysis of the acoustic tensor.

The investigation of the development of localized bands is carried out by means of a
finite element code. The influence on localization of coupling between the constituents
and of several material parameters is investigated. A strong influence of the spatial
discretization it is also noted. With respect to this, alternative procedures are
proposed.

Finite strain localization in multiphase solids occurs with shear bands formation in zones of limited
amplitude, where concentrated and amplified strains appear. In these regions, material behaviour is
anelastic while the other zones are elastic and the strains are infinitesimal.

Physical examples of localization phenomena are those of strain concentrations in glass, metal
cracking, concrete damaging, slope instability and soil fracture.

The analysis of finite strain localization has a noticeable interest in engineering science, since
regions where such deformations appear playa dominant role with respect to the integrity of the
affected solids or structures. Moreover, in these regions the onset of fracture phenomena or structural
collapse is most probable.

The computational analysis of strain localization allows to collect a wide information spectrum about
several aspects of the involved mechanics, like finite strain behaviour and material nonlinearity.

In this work we present the theoretical framework of localization in geomaterials and the results of
the first developments of a larger computational investigation; the geomaterials are considered as
multiphase materials in fully saturated or semi-saturated conditions.

The role of the fluids in localization is fundamental, since shear band formation preceeding cracking
and fracture is mostly affected by the interaction between solids and fluids, in terms of time sequence
of band formation and the way of their appearance.

Attention is also given to computational issues since highly strained elements are involved in
localization, with consequences in terms of stability and convergence of these elements.

The topic of strain localization has been analysed in the last years by several authors. The problem of
dynamic localization in one phase solids has been investigated, e.g., in Sluys [10] and some
modelling generalizations were performed in Owen et aI. [7]; the case of saturated porous materials
was investigated, e.g., in Loret and Prevost [6]. The mechanics of porous materials has been studied,
among others, by Schrefler et al. [9], Zienkiewicz and Shiomi [13]. de Boer et al. [4] and Ehlers [5].



The foundation of this research can be found in classical continuum mechanics (Truesdell and Noll
[II], Truesdell and Toupin [12]), with modifications to take into account the volume fraction
concept, and extensions with respect to the constitutive model to incorporate finite plasticity.

Localization theory is here based on the dynamics of wave propagation (Chen [3]) and is described
using the properties of the acoustic tensor (Briseghella and Majorana (2]). These are infact key
features to formulate the problem in general form.

The mass conservation for the i-th phase at macroscopic level can be written, in the spatial setting, as
(de Boer et al. [4]):
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and the momentum conservation equations are:

div Ti + pi ( hi - Xi) + Si = 0
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where n' = n' (x,t) = - is the volume fractions, piR(X,t) is the real density, pi = ni p iR is the

dv
apparent density, Ti is the Cauchy partial stress tensor of the i-th phase, bi is the body force vector,

X i is the acceleration of the i-th phase and Si = pi +pi X i is an additional fo(ce, accounting for
the effect of the i- I phases over the examined i-th one (the symbol" indicates the exchange of the
affected quantity with the other phases).

For non-polar continua, the momentum of momentum equations allow to find the simmetry of the
partial stress tensor. The framework of the finite elasto-plasticity can be found in Ehlers [5].

The finite strain localization theory is based on the analysis of wave propagation in continuous
solids. The first fundamental investigations on this subject are due to Duhem and Hadamard (1903).
A presentation of the theory in general form and systematic literature references can be found in
Truesdell and Noll [11], Truesdell and Toupin [12) and in Chen [3).

Let I: be the front wave (here considered as a Riemannian manifold in motion, through which the
acceleration and the velocity gradient can be discontinous functions); n the normal directed outward
from the above manifold. Indicating with

the velocity gradient of the i-phase along this manifold, Hadarmard's ltompatibility conditions can
be written as



where Ei is the deformation tensor of the i-phase. ~..~ indicates the jump of the quantity inside thc
symbol. c represents the velocity of the manifold E with respect to the material frame of the
analysed solid and @ indicates. as usual. the dyadic or tensor product. Consequently. momentum
equilibrium equations impose:

Expressing the constitutive relationship in incremental form. it can be found in Loret [6] that c2
•

squares of the wave propagation velocities. is coincident with the eigenvalues of the acoustic tensor
B. expressed by:
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The hyperbolicity condition of the problem. implying an effective wave propagation. requires real
values of the propagation velocity c. Consequently the eigenvalues of the tensor B must be real and
positive. or in other words B must be a positive definite symmetric tensor; in the elastoplastic case it
is sufficient for this to adopt associated plasticity for the solid skeleton. Moreover B is positive
definite if det B >O. This condition is assured if the plastic modulus h is positive. The transition
from hyperbolicity to ellipticity is related to softening.

Developing the determinant of B matrix. it can be observed that the global result is related to the
evolution of the constitutive parameters of the solid skeleton only.

The two-dimensional domain of the porous material is discretized by means of isoparametric
triangular or quadrilateral finite elements. Linear finite element have been chosen because of their
computational efficiency in nonlinear analyses and their low distorsional characteristics.

The finite elements used for discretizing the problem have not been intentionally oriented along
particular lines (unbiased mesh).

The performed analyses show in particular:

i) the necessity of softening in the constitutive law to have shear band formation.

ii) the influence of permeability on band growing,

Hi) particular patterns of stresses. pressures and strains with respect to the corresponding ones
in hardening plasticity or elasticity,

iv) a strong mesh dependence of the results in the absence of some regularisation.

The onset and growth of localized bands in a soil sample of rectangular shape made of saturated
material with dimensions 25 x 35 mare analysed [Fig. 1]. The sample is subject to axial compression
by means of uniformly distributed loads both on the upper and lower surfaces.

The solid and fluid domains are not subject to any initial stress state (hence gravitational effects or
hydrostatic pressures are not accounted for). In the fluid discretization the top and botton surfaces are
considered impermeable, in order to subject the fluid flux in principle to the same motion as the



solid particles, and to evidence thc degree of coupling between the solid skeleton and the fluid
matrix.

In the considered model, homogeneous and isotropic solid and fluid phases are taken into account.
The constitutive relationship of the solid skeleton is of Mohr-Coulomb type, with a linear
displacement - strain relationship.

It can be noted that plastic strains are concentrated in narrow bands of finite amplitude where high
strain gradients occur [Fig. 2]. In Fig. 3 localization directions are shown as found with the
procedure' based on the analysis of the acoustic tensor. Fig. 4 shows that in case of plasticity with
hardening no band formation appears. The time transients of strains [Fig. 5] and pressures [Fig. 6]
are characterized by a wave form, with a marked regularity up to the onset of the shear band
formation (t < 0.3 sec.), since the plastic effect is yet limited. Plastic strain shows a different pattern,
characterized by a plateau during the time between the onset of a loading wave and the subsequent
onc [Fig. 8].

Starting from the time (t > 0.3 sec.) in which a significant length of the band appears. corresponding
to the first increment of plastic deformation, the loss of periodicity, typical of the linear elastic
solution [fig. 5], can be notcd, as well as a sudden increment of the pressures [Fig. 6]; this
phenomenon is a direct consequence of the coupling between parameters of the solid and fluid fields
in the equations governing the problem.

Fig. J: Description of the geometrical
and material characteristics of the
reference example

Fig. 2: Effective plastic strain field at
t = 0.375 s

Fig. 3.. Localization directions as
following by the analysis of the
acoustic tensor

Fig. 4: Effective plastic strain at t =
0.375 s in plasticity with hardening



Fig. 5: Comparison between strains ill a
gauss point nearest the centre, in the
linear elastic case and in plasticit)' with
softening
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Fig. 7: Comparison between effective
plastic strains V.I'. lime, in a gauss point
nearest the centre, for different
permeabilities

=.
:......."""! i-=-- ··j i--...'~"".!-~-_..J

.; ::oax;t ' ;

i_i /
i !mXll /t,l ~~ __

'f'.~ 01' C1 ~
I."JXX:t~
XQl) 1.

Fig. 6: Comparison between pressures
in the celltral node in the linear elastic
case and in plasticit)' with softening

Fig. 8: Effective plastic strains at t = 0.375
.I' with a relative permeability of Kw=0.25
mls

The permeability affects the degree of coupling between the two phases and presents a significant
role in the development of localization. The lower is its value, the higher is the part of the load
increment assumed by water and the slower is the transfer to the solid skeleton. Hence the coupling
effects increase as the permeability decreases.

In the localization phenomenon this implies the variation of the plastic strain levels [Fig. 7], the
change of band dimension [Figs. 8,9] up to the disappeance of their formation [Fig. 10].

The coupling can be so strong that the fluid can be captured inside the bands and simultaneously the
pressures may localize [Fig. 11].



Fig. 9: Effective plastic strains at 1 =
0.375 s with a relath'e permeability of
Kw=0.25E-03111/s

Fig. /0: Effeclive plastic slrains al 1 =
0.375 s with a relalive permeability of
Kw=0.25E-/O mfs

Fig. II: Nodal pressures at 1 = 0375 s
with a relative permeability of
Kw=0.25E-03 mfs

Fig. 12: Devialoric sirain (62
elements)

Using a rate-independent model the localization is subject to a strong dependence on the chosen
discretization, and the numerical solution cannot have a physical meaning. This is connected with the
presence of a softening branch in the constitutive relationship, responsible for the loss of
hyperbolicity in the equations of motion (becoming elliptical). The wave propagation disappears
because a wave with zero velocity appears or two waves with immaginary velocities (stationary
jump). Such statement can be easily demonstrated in the one-dimensional case, where the wave
velocity is equal to ±JDep / p, being Dep the elastoplastic modulus (negative in the softening
branch). Hence the system of differential equations becomes ill posed, i.e. with a strong dependence
on the initial and boundary conditions. The absence of a scale parameter in the constitutive law leads
to the dependence of the band width on the element dimension.



The model of a hypothetical slope has been investigated. It is subject to a load in the upper edge.
increasing in time monotonously.

Initially a discretization with 62 triangular elements has been set up, giving as result the formation of
zones with concentrated strains along curves reproducing the typical instability circles of earth slopes
[Fig. 12]. If a more accurate discretization with much more elements is used, (refining the mesh with
a higher element density in the most significant zone) the phenomenon previously described
manifests itself again: the strains are concentrated along aligned elements.

This paper shows the first results of a research in progress on localization in two or three phase
geomaterials. One of the problem to be solved is the mesh dependence of the shear band width; to
eliminate this drawback, a characteristic length parameter in the constitutive model must be
introduced. This can be done by improving the continuum model and regularizing the solution. The
first goal can be matched using e.g. a model with polar constituents, like micro-rotations and micro-
moments (see Pastor et al. [8)), or introducing in the description of continuum mechanics a higher
degree of strain, as in the second grade plasticity formulation due to Ehlers et al. [5] (both of non-
easy experimental calibration). On the other hand, regularization can be obtained by a rate-dependent
model. using in the constitutive law a non-physical viscosity (like the models by Perzyna and Duvait.
Lions); working in this way. the system of differential equations retains its character (hyperbolic in
dynamic anlysis, elliptic in the static one) remaining always well posed also in the softening range.
Such regularization implies the effective independence of th~ discretization used only after a suitable
calibration of the viscosity parameters.

A further problem concerning softening in the constitutive law is stilI open, i.e. instability of the
material in the Drucker sense, with possible non uniqueness of the solution. The above limitation can
be overcome using an enhanced plasticity model. Moreover. together with the above methods to
better describe the shear bands. it is possible to improve the discretization in the localization regions.
Two strategies appear suitable from this point of view: one is the mesh densification as emerging
from the analysis of the acoustic tensor (remeshing) (Pastor et al. [8)) and the other one is to align
the elements along the band directions again as indicated by the eigenvector solution of the acoustic
tensor (biased mesh) (Blcanic and Selman [I)).

It should be finally remarked that an enhanced numerical simulation of strain localization in porous
materials would requi~e a geometrically and material non linear dynamic analysis, followed by the
transition to a contact problem between separating surfaces and a flow model through fractures.
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